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Abstract

We present a general description of electromagnetic RR interactions be-

tween pairs of magnetically dual D-branes, focusing on the interaction of a

magnetically charged brane with an electrically charged one. In the boundary

state formalism, it turns out that while the electric-electric and/or magnetic-

magnetic interaction corresponds to the usual RR even spin structure, the

magnetic-electric interaction is described by the RR odd spin structure. As

representative of the generic case of a dual pair of p and 6-p branes, we discuss

in detail the case of the self-dual 3-brane wrapped on a T6/Z3, which looks

like an extremal dyonic black hole in 4 dimensions.
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I. INTRODUCTION

Since Polchinski provided us with a powerfull σ-model technique for studing non per-

turbative phenomena in String theory [1], a number of interesting relations between String

theory, Supergravity and Super Yang-mills theory have been understood. In particular, the

already known family of solitonic p-brane solutions of Type IIA and IIB supergravities in 10

dimensions [2] are recognized to be described, in the String theory framework, by D-branes.

A number of fascinating issues like black holes entropy and non-perturbative properties

of Super Yang-Mills theory in diverse dimensions have been adressed in this context and

partially answered, promoting D-branes and their dynamics [3,4] to one of the most promis-

ing and interesting parts of String theory to be studied. In particular, using the boundary

state formalism [5], many properties of D-branes have been efficiently studied both in the

covariant [6–9] and in the light-cone [10] formalisms.

In this paper we are going to study some interesting aspects of the electromagnetic

interactions between pairs of dual D-branes, which corresponds to the RR configuration

of the exchanged closed superstring. In the boundary state formalism, one has to further

consider the two possible GSO signs, referred to as even and odd spin structure respectively.

It is well known that the even spin structure encodes the standard interaction between two

both electrically or both magnetically charged objects. We call this the diagonal interaction.

An electrically charged object can also interact with a magnetically charged one. This

interaction is more difficult to describe because the gauge potential fields cannot be globally

defined. We call it the off-diagonal interaction, which also occurs in the general case of

two dyonic objects [11], carrying each both electric and magnetic charge (beside it, they

will also have the diagonal interaction, of course). A general theoretical framework for

describing the off-diagonal interaction has been developed long ago in ref. [12]. In Sect. II,

we review shortly this general framework, which is in fact very well suited for discussing

the brane’s interactions, and we will show that some recently derived results for dyons in

various dimensions [13] are naturally obtained within this scheme.

In Sect. III we show that the general results of Sect. II for the off-diagonal interaction are

exactly reproduced in String theory within the boundary state formalism, by an expression

of the amplitude in the RR configuration corresponding to the odd spin structure. According

to the general framework, one has to consider the off-diagonal interaction of, say, one brane

with a pair of a brane and an antibrane (it is like having a Dirac string between the two

members of the pair). In Sect. IV we consider in particular the interesting case of the D3-

brane of the type IIB theory, which is self-dual in d = 10 dimensions, that is both electrically

and magnetically charged with respect to the self-dual RR 4-form present in the massless

spectrum of the theory. We evaluate explicitly their diagonal and off-diagonal interactions.

In Sect. V, we consider a wrapped 3-brane [7,8] in the interesting compactification over

the T6/Z3 orbifold [14], leading in 4 dimensions to an N = 2 effective Supergravity theory
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[15]. We show how the single electric and magnetic charge in ten dimensions is reinterpreted

from the 4-dimensional non-compact spacetime point of view as a variety of possible dyonic

charges, all satisfying Dirac’s quantization condition, depending on the orientation of the

brane in the compact space. It is rather amusing to see how the odd spin structure string

computation automatically encodes this feature.

Let us end this introduction by remembering that, from the analysis of refs. [7,8], the

3-brane on the T6/Z3 orbifold does not couple to (4-dimensional) scalars; rather, it only

couples to gravity and to the U(1) gauge field with equal strength, the total static diagonal

interaction being zero, as appropriate for BPS states. Thus, being a source of equal strengh

for gravity and Maxwell fields, and nothing else, it looks like a Reissner-Nordström black

hole in 4-dimensional spacetime.

II. INTERACTIONS OF CHARGES, MONOPOLES AND DYONS

As well kown, the electromagnetic potential generated by a magnetic monopole cannot be

defined everywhere; in the case of a p-extended object in d spacetime dimensions, there exists

a Dirac hyperstring on which the potential is singular. As a consequence, the phase shift

of another electrically charged q-dimensional extended object along a closed trajectory in

this monopole background, which would be a gauge-invariant quantity if the potential were

well defined, suffers from an ambiguity. In fact, the requirement that the phase-shift should

remain unchanged mod 2π leads to the famous Dirac quantization condition eg = 2πn.

It is possible to define a mod 2π gauge-invariant phase shift also for open trajectories

by considering a pair of charge and anti-charge instead of a single charge. Since an anti-

charge travelling forward in time is equivalent to a charge travelling backward, this system

can in fact be considered as a single charge describing a closed trajectory ∗. The phase-

shift for such a setting in the monopole background is then a gauge-invariant quantity

(provided Dirac’s quantization condition holds). Actually, this is the setting that can be

most easily analyzed in the String theory framework, since it corresponds to D-branes moving

with constant relative velocities. Indeed the available techniques for computing explicitely

branes interactions allow us to deal only with rectilinear trajectories, more in general with

hyperplanes as world surfaces.

The phase-shift for a system of a charge and an anti-charge moving along two parallel

straight trajectories in a monopole background is a special case of the general analysis carried

∗ If one consider only the usual electric-electric part of the interaction, one can even consider

a single infinite straight trajectory; the corresponding phase-shift is gauge-invariant provided we

require any gauge transformation to vanish at infinity.
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out in ref. [12] that we shall briefly review.

We will consider dual pairs of branes, namely p-branes and (d−4−p)-branes (with d being

the dimension of the corresponding spacetime). It is convenient to describe the interactions

formally in the Euclidean signature (which can be then continued to the Lorentz one). With

such a metric one can consider closed world surfaces of the branes, as they would correspond,

in Lorentz spacetime, to brane-antibrane pairs, as explained above.

The world surface Σ(p+1) of the p-brane is (p + 1)-dimensional and it couples to the

(p+ 1)-form gauge potential A(p+1). We introduce the notation:

∫

Σ(p+1)

A(p+1) ≡ Σ(p+1) · A(p+1) . (1)

This can be rewritten as

Σ(p+1) · A(p+1) = Σ(p+2) · F(p+2) , (2)

where F is the field strength F(p+2) = ∇A(p+1) and Σ(p+2) is an arbitrary (p+2)-dimensional

surface whose boundary ∂Σ(p+2) is Σ(p+1). In formulae:

Σ(p+2) · ∇A(p+1) = ∂Σ(p+2) · A(p+1) = Σ(p+1) · A(p+1) . (3)

The diagonal (electric-electric and/or magnetic-magnetic) interaction of two p-branes,

whose world surfaces are Σ′
(p+1) and Σ(p+1) respectively, can be written as

ID = (e′e+ g′g)Σ′
(p+2) · PΣ(p+2) = (e′e+ g′g)Σ′

(p+1) ·DΣ(p+1) , (4)

where e, e′ (g, g′) are the electric (magnetic) charges carried by the two branes, D is the

propagator, that is the inverse of the Laplace-Beltrami operator ∆ = ∂∇+∇∂, i.e. ∆D = 1,

and P = ∇D∂. In the Euclidean path-integral, this interaction appears at the exponent,

namely the integrand is e−ID .

Consider now what we call the off-diagonal interaction of two mutually dual branes, a

p-brane and a (d− 4− p)-brane, in d = 2(q+ 1) dimensions (the case p = q− 1 is self dual):

Ioff−D = eg′Σ′
(d−2−p) · ∗PΣ(p+2) + e′gΣ(p+2) · ∗PΣ′

(d−2−p) . (5)

Here ∗F = ǫ/2qF means the Hodge dual of a form F , obtained by contracting its components

with the antisymmetric tensor. It is crucial to observe that the Hodge duality operation

depends on the dimension d = 2(q + 1) of spacetime (that we shall suppose to be even in

any case). In fact, the ǫ tensor satisfies (ǫ/2q)2 = (−1)q+1 1 and ǫT = (−1)q+1ǫ. Using these

properties, one can see that P + (−1)q+1∗P ∗ = 1 in the space of antisymmetric tensors, as

it is equivalent to the Hodge decomposition. Therefore ∗P +P ∗ = ∗1. Now, the insertion of

the ∗1 between Σ′
(d−2−p) and Σ(p+2) yields a contact term given by their intersection number;
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assuming by a “Dirac veto” that this number is zero, we get ∗P
.
= −P ∗. Finally, transposing

the second term in eq. (5) and using the above properties, we get finally

Ioff−D = (eg′ + (−1)qe′g)Σ′
(d−2−p) · ∗PΣ(p+2)

=
1

2
(eg′ + (−1)qe′g)

(

Σ′
(d−2−p) · ∗PΣ(p+2) + (−1)qΣ(p+2) · ∗PΣ′

(d−2−p)

)

. (6)

In order for the path integral over eiIoff−D to be well defined, it is necessary to impose

the Dirac quantization condition [13]

(eg′ + (−1)qe′g) = 2πn . (7)

The point is that Ioff−D depends on the (supposed irrelevant) choice of the unphysical

Σ′
(d−2−p), which is only constrained to have the physical brane world surface Σ′

(d−3−p) as

its boundary: ∂Σ′
(d−2−p) = Σ′

(d−3−p). However, the path-integral integrand is in this case

eiIoff−D and this has no ambiguity. Indeed,

Ioff−D = (2πn)Σ′
(d−2−p) · ∗∇DΣ(p+1) . (8)

Now, if we change Σ′
(d−2−p) keeping its boundary fixed, the ensuing change of Ioff−D can

be written as δIoff−D = (2πn)∂V(d−1−p) · ∗∇DΣ(p+1), where the boundary of V(d−1−p) is the

union of the old Σ′
(d−2−p) and the new one. By integrating by parts, using ∇∗ = ∗∂ and

∂Σ(p+1) = 0 since we consider closed world surfaces, we get

δIoff−D = (2πn)V(d−1−p) · ∗Σ(p+1) = 2π(integer) , (9)

since V(d−1−p) · ∗Σ(p+1) is the intersection number of the closed hypersurface Σ(p+1) and the

hypervolume V(d−1−p) and is therefore an integer. Notice that relaxing the Dirac veto, eq.

(6) is a consistent expression provided eg′ + (−1)qe′g = 4πn.

The above properties remain valid also when we compactify some of the dimensions, in

particular compactifying 6 (the directions a, a + 1, a = 4, 6, 8) of the d = 10 dimensions in

String theory. Objects whose extended dimensions are wrapped in the compactified direc-

tions will appear point-like in the 4-dimensional spacetime. In particular, as anticipated,

we will be interested in the sequel in the case of the D3-brane, occuring in Type IIB String

theory, compactified on the orbifold T6/Z3. The 3-brane of Type IIB is a special case since

it is both electrically and magnetically charged with respect to the self-dual RR 4-form; this

peculiarity will be relevant in our study giving rise, both before and after the compactifica-

tion, to a dyonically charged state. From the 4-dimensional spacetime point of view, this will

look like the interaction of two dyons, whose values of electric and magnetic charges turn out

to be dictated by the brane’s different orientations in the compact directions. For instance,

if the two (off-diagonally) interacting branes are parallel in the compact directions, then it is

easy to see (we will be explicit in the following) that Ioff−D = (2πn)Σ′
(d−2−p) ·∗∇DΣ(p+1) = 0
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and this will be interpreted in 4 dimensions by saying that there is no off-diagonal interac-

tion between to ”parallel” dyons, that is having the same ratio (magnetic charge)/(electric

charge). In fact, two such dyons behave with respect to each other as purely electrically

charged particles.

It is amusing to notice that although the Dirac quantization condition is automatically

implemented, as we said, once the off-diagonal interaction is correctly normalized in 10

dimensions, it might look somewhat non-obvious at first sight in 4 dimensions, due to the

non-intuitive features of compact spaces. We will explore the ensuing pattern of charge

quantization in the following sections.

In the following, we are going to consider the off-diagonal interaction of two pairs of

3-branes-antibranes, wrapped on the compact space and moving linearly in spacetime (the

brane’s parameters will be labeled by B, the antibrane’s ones by A and the index i = 1, 2

labels the two pairs). We will take the trajectories in spacetime to describe a line in the

(t, x) plane. In each of the two pairs, the brane and the antibrane are parallel to each other.

This means that each pair is described by two parallel 4-dimensional hyperplanes, three

directions being compact and specified by the angles θ(i)
a (a = 4, 6, 8), which are common to

the brane and the antibrane, in each of the three tori which compose T6 and one direction

w(i) in the plane (t, x). In the Lorentz spacetime, the (t, x) direction w(i) is specified by an

hyperbolic angle, the rapidity v(i) (w
(i)
t = sinh v(i) , w(i)

x = cosh v(i)). The (t, x) trajectory

of the brane of the pair i is taken in the positive t-direction and is located at position y
(i)
B , z

(i)
B

in the transverse (y, z) plane, while the trajectory of the antibrane is taken in the negative t-

direction and is located at position y
(i)
A , z

(i)
A . It is convenient to introduce a complex variable

ξ = y + iz. The positions of the brane and the antibrane of the two pairs in the transverse

(y, z) plane is depicted in Fig. 1.

B

(1)

ξ (1)

A

ξ (2)

Aξ B

(2)

ξ
γ

y

z

α
β

δ

Fig. 1

According to the general construction, the diagonal and off-diagonal interactions ID

and Ioff−D are given by eqs. (4) and (6) respectively. In order to integrate along the

hypersurfaces, let us suppose first that the angles θ(2)
a are different from the angles θ(1)

a .
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Consider then the Fourier transform of Dd(r) =
∫

ddk/(2π)dD̃(k)eikr and write D̃(k) =

1/k2 =
∫∞
0 dle−lk2

. The integration along the planes in the compact space and along the

(t, x) plane will result in putting to zero all the compact and the (t, x) components of the

momentum k. Hence, after those integrations, the propagator D will be reduced to the

Fourier transform of D̃ where only ky, kz are different from zero, that is the two dimensional

propagator D2 in the plane (y, z). Thus, the only possible derivatives occurring in the

previous equation will be in the (y, z) plane. Actually, by doing the integration over l as the

last one, the other integrations factorize into the product of integrations along the planes

(t, x), (y, z) and the three compact planes (a, a+ 1) respectively.

In the diagonal case, the integration in the (t, x) plane gives

(w(1) ·w(2))
∫

dt(1)
∫

dt(2)
∫

dktdkx

(2π)2
ei(t(1)w(1)−t(2)w(2))·ke−l(k2

t +k2
x) =

w(1) · w(2)

|w(1) ∧ w(2)| = coth(v1−v2)

where w(i) represents the direction of the i branes trajectories in the (t, x) plane. The

integrations in the (a, a+ 1) planes give instead, as we will see in Sect. V,

∏

a L
(1)
a L(2)

a

Vol(T6/Z3)

∏

a

cos (θ(1)
a − θ(2)

a ) .

This factor (times the 10-dimensional charges e′e+g′g) is interpreted in 4-dimensions as the

dyon charge combination e(1)e(2) +g(1)g(2). It is convenient to introduce the two-dimensional

complex propagator, whose real part is D2(ξ, ξ
′) = ReD2(ξ, ξ

′) (λ is an infrared cut-off)

D2(ξ, ξ
′) =

1

2π
ln
ξ − ξ′

λ
. (10)

The remaining integrations in the (y, z) plane are over the straight lines joining the brane

in ξ
(i)
B and the antibrane in ξ

(i)
A for each of the two pairs i = 1, 2, and give

(

e(1)e(2) + g(1)g(2)
)

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) · ∂ξ(1)

∫ ξ
(2)
A

ξ
(2)
B

dξ(2) · ∂ξ(2)ReD2(ξ
(1), ξ(2)) =

=

(

e(1)e(2) + g(1)g(2)
)

2π
Re ln





ξ
(1)
A − ξ

(2)
A

ξ
(1)
B − ξ

(2)
A

· ξ
(1)
B − ξ

(2)
B

ξ
(1)
A − ξ

(2)
B



 . (11)

In the off-diagonal case, the integration in the (t, x) plane gives

(w(1) ∧ w(2))
∫

dt(1)
∫

dt(2)
∫

dktdkx

(2π)2
ei(t(1)w(1)−t(2)w(2))·ke−l(k2

t +k2
x) =

w(1) ∧ w(2)

|w(1) ∧ w(2)| = ±1 .

The result is therefore ±1 (the degenerate case where the trajectories (1) and (2) are parallel

should be taken to be zero). The integrations in the (a, a+ 1) planes give instead

∏

a L
(1)
a L(2)

a

Vol(T6/Z3)

∏

a

sin (θ(1)
a − θ(2)

a ) .
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This factor (times the 10-dimensional charges eg′ +e′g) is interpreted in 4-dimensions as the

dyon charge combination e(1)g(2) − g(1)e(2) = 2πn. The remaining integrations in the (y, z)

plane give in this case (for n = 1)

(

e(1)g(2) − g(1)e(2)
)

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)

∫ ξ
(2)
A

ξ
(2)
B

dξ(2) · ∂ξ(2)ReD2(ξ
(1), ξ(2)) =

= Im ln





ξ
(1)
A − ξ

(2)
A

ξ
(1)
B − ξ

(2)
A

· ξ
(1)
B − ξ

(2)
B

ξ
(1)
A − ξ

(2)
B





= β − α = δ − γ (12)

(keeping the same sign convention for the angles, see Fig. 1).

There are here two important observation that we can make. First, considering pairs of

branes-antibranes automatically eliminates any infrared divergence. Second, the off-diagonal

interaction is given by the difference of the angles by which any curve joining ξ
(1)
B and ξ

(1)
A is

seen from ξ
(1)
B and ξ

(1)
A , or viceversa. We thus see explicitely that Ioff−D is defined modulo

2π. Concluding, the total diagonal and off-diagonal interactions are given by

ID =

(

e(1)e(2) + g(1)g(2)
)

tanh(v(1) − v(2))
ReD2 , (13)

Ioff−D = ±
(

e(1)g(2) − g(1)e(2)
)

ImD2 , (14)

with

D2 = ln





ξ
(1)
A − ξ

(2)
A

ξ
(1)
B − ξ

(2)
A

· ξ
(1)
B − ξ

(2)
B

ξ
(1)
A − ξ

(2)
B



 .

Notice the interesting fact that in d = 2(q+1) = 10, where the gauge field is a q = 4 even

form, the 3-brane is a dyon in the sense that it has e = g = µ3 =
√

2π and that it has both

a diagonal and an off-diagonal interaction with itself. In fact, the off-diagonal interaction

is in this case proportional to e(1)g(2) + e(2)g(1) (whereas for q odd it is proportional to

e(1)g(2) − e(2)g(1)) and different from zero also for e(1) = e(2), g(1) = g(2). On the contrary,

for d = 2(q + 1) = 4, where the gauge field is a q = 1 odd form, two “parallel” dyons

having e(1) = e(2) and g(1) = g(2) do not have any off-diagonal interaction, the latter beeing

proportional to e(1)g(2) − e(2)g(1).

It turns out from our analysis that the d=10 off-diagonal interaction, proportional to

e10g10, becomes automatically proportional to e
(1)
4 g

(2)
4 − e

(2)
4 g

(1)
4 upon compactification down

to d=4. This happens because the off-diagonal interaction is proportional to the factor
∏

a sin(θ(1)
a − θ(2)

a ), which is zero when the branes (1) and (2) are seen by a non-compact

observer to be parallel in the sense that e(1) = e(2) and g(1) = g(2). All of this will be

explicitly shown in Sect. V. More in general, notice that the off-diagonal interaction between

two dyons (1) and (2) is symmetric both for q even and for q odd, under the exchange of every

quantum number, (1) ↔ (2). In fact, the transverse (y, z) contribution to the amplitude,

7



that is D2, is symmetric, D2(1, 2) = D2(2, 1), whereas each pair of the remaining non-

transverse directions (t, x) and (a, a + 1) gives an antisymmetric contribution; therefore,

since e(1)g(2) + (−1)qe(2)g(1) is symmetric for q even and antisymmetric for q odd, the total

amplitude turns out to be symmetric in both cases (see eq. (6)).

III. THE INTERACTIONS IN STRING THEORY

As already noticed, the diagonal electric-electric and/or magnetic-magnetic interaction

between two p-branes is a well defined quantity also for open trajectories. In this case, in

fact, there is no strict necessity of considering interactions among pairs of brane-antibrane

(although this is advisable to avoid infrared problems). In string theory, the diagonal even

interaction of just one brane at ξ(1) and one brane at ξ(2) is computed within the boundary

state formalism to be [1,3–9]

AD =
µ2

p

16

∑

α even

< v(1), θ(1)
a , ξ(1)|

∫ ∞

0
dle−lH |v(2), θ(2)

a , ξ(2) >α , (15)

where |... > is the boundary state representing the p-brane, H is the closed superstring

hamiltonian, µp is the RR charge of the p-brane and the factor 1/16 comes from our conven-

tional normalization. The even spin structure corresponding to the case α = RR+ (meaning

the RR closed superstring sector and the GSO projection sign = 1) represents the diagonal

electromagnetic interaction, whereas the two NSNS spin structures α = NS± represent the

gravitational one. The main features of this diagonal amplitude are reviewed in Sect. IV.

Let us stress here that only the even spin structure contributes. In fact, in the odd spin

structure case, even if the rapidity tilt v(1) − v(2) and the angle tilt θ(1)
a − θ(2)

a prevent the

occurrence of fermionic zero modes in the directions (t, x) and (a, a + 1) with a = 4, 6, 8,

there still remain fermionic zero modes in the (y, z) transverse directions. The amplitude

therefore vanishes since there is no insertion of operators to soak up those zero modes.

Now we show that also the off-diagonal interaction can be expressed in String theory

within the boundary state formalism. In this case, as we have seen, it is necessary to

consider at least the interaction of a brane-antibrane pair, say located at ξ
(1)
B,A, with one

brane (or antibrane) located at ξ(2). According to the previous general description, this

interaction is expressed by an integral over a Dirac string joining ξ
(1)
B and ξ

(1)
A , which we

represent parametrically by ξ(1)(s), s = (0, 1).

The expression of the off-diagonal odd amplitude is the following:

Aoff−D =
µ2

p

16

∫ 1

0
ds < v(1), θ(1)

a , ξ(1)(s)|J(s)J̄(s)
∫ ∞

0
dle−lH |v(2), θ(2)

a , ξ(2) >RR− , (16)

where the subscript RR− means that the braket is evaluated in the RR odd spin structure.

Here J, J̄ represent the left and right moving ”supercurrents”: J = ∂Xµψµ and J̄ = ∂̄Xµψ̄µ.

8



Along the Dirac string, ∂, ∂̄ = ∂s ∓ i∂τ , where ∂τ is the normal derivative, that is along

the direction τ orthogonal to the Dirac string; τ is therefore the (Euclidean) world sheet

evolution time of the closed superstring.

The odd spin structure case is now different from zero due to the supercurrent insertion.

In fact since the odd amplitude vanishes unless there is the proper fermionic zero modes

insertion, only the part of the insertion containing ψyψ̄z (or z, y interchanged) will contribute

(for this reason the result would be the same also inserting the complete supercurrent in-

cluding also the ghost part). Since the boundary conditions essentially identify ψ and ψ̄, we

see that, due to the anticommuting properties of the fermionic coordinates,

< (1)|J(s)J̄(s)
∫ ∞

0
dle−lH |(2) >RR−= 2i < (1)|(∂sy∂τz−∂sz∂τy)

∫ ∞

0
dlψ0

yψ̄
0
ze

−lH |(2) >RR− .

Now, in the odd spin structure case the contribution of the fermionic and bosonic oscilla-

tor modes is equal to 1, since the bosonic modes’ contribution is exactly the inverse of the

fermionic modes’ one. Moreover, only the non-oscillator part of the inserted supercurrents

contributes: the fermions are necessarily zero modes as already explained and give an anti-

symmetric result; consequently, we are left with an antisymmetric bosonic correlation which

is zero except for the non-oscillator part. Thus it remains only the non-oscillator modes,

both bosonic and fermionic, contribution. The rest of the discussion now follows closely the

general pattern described in Sect. II. The part of that contribution from the coordinates

directions (t, x) and (a, a + 1) with a = 4, 6, 8 gives a position independent factor, which

after compactification can be reinterpreted as the dyon charge combination e(1)g(2)−e(2)g(1).

This will be explicitely discussed in Sect. V. It is interesting to notice that the contribution

of the fermionic non-oscillator modes is essential in providing the correct ”numerators” in

the resulting expressions.

The position dependence of the amplitude comes from the (y, z) non-oscillator modes

contribution. The fermionic zero modes’ (y, z) contribution, with our normalization, is

equal to 1/2, due to the insertion of ψ0
yψ̄

0
z . We further notice that for the bosonic modes

ds(∂sy, ∂sz) = (dy, dz) along the integration line, and that as an operator (∂τy, ∂τz) =

−(∂y, ∂z); therefore ds(∂sy∂τz−∂sz∂τy) = dy∂z−dz∂y ≡ dξ∧∂ξ. Moreover, for the transverse

bosonic modes < ξ(1)(s)| ∫∞0 dle−lH |ξ(2) >= D2(ξ
(1)(s), ξ(2)), whereas the remaining non-

transverse part of the amplitude gives ±i. Finally we obtain

∫ 1

0
ds < (1)|J(s)J̄(s)

∫ ∞

0
dle−lH |(2) >

(y,z)
RR−=

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)D2(ξ
(1), ξ(2)) , (17)

which reproduces precisely the expected result for the off-diagonal interaction, see Sect. II.

As a final comment, one could also suspect that the odd spin structure contribution,

eq. (16), might somehow automatically come from general world sheet supersymmetry

considerations. In fact, it is known [16] that the occurrence of the supercurrent insertion

is dictated by the occurrence of the socalled supermoduli, which indeed are expected in

9



the odd spin structure case. Actually, in the cylinder case there is only one modulus,

the previously introduced l, and thus one would expect only one supermodulus and one

supercurrent insertion. However in our case we are obliged to consider simoultaneously the

interaction of a brane and antibrane pair with a given brane (or antibrane). Thus it is not

surprising to see the occurrence of the pair of supercurrents J and J̄ as if the brane-antibrane

pair would entail the torus, rather than cylinder, topology.

Let us stress that in any case it is a fact that the boundary state amplitude eq. (16)

reproduces exactly the correct result for the off-diagonal electric-magnetic interaction.

IV. D3-BRANES IN 10 DIMENSIONS

In this section, we make more explicit the content of the formulae of Sect. III by briefly

reviewing a series of results obtained in ref. [7,8] about the dynamics of D3-branes in 10

dimensions, using the boundary state formalism. In particular we will consider the precise

structure of the amplitude for the scattering of two moving of such D3-branes with an

arbitrary orientation putting in evidence the various contributions coming from the four

different spin structures arising in a closed string channel computation.

Let us start from a 3-brane configuration with Neumann boundary conditions in the

directions t = X0 and Xa, and Dirichlet in x = X1, y = X2, z = X3 and Xa+1, with

a = 4, 6, 8. The coordinates Xa, Xa+1 will eventually become compact. Consider then

two of these 3-branes moving with velocities V (1) = tanh v(1), V (2) = tanh v(2) along the 1

direction, at transverse positions ~Y (1), ~Y (2), and tilted in a, a+ 1 planes with generic angles

θ(1)
a and θ(2)

a .

The cylinder amplitude in the closed string channel is just a tree level propagation

between the two boundary states, which are defined to implement the boundary conditions

defining the branes:

A =
µ2

3

16

∫ ∞

0
dl
∑

α

< v(1), θ(1)
a , ~Y (1)|e−lH |v(2), θ(2)

a , ~Y (2) >α . (18)

As stated before, there are two sectors, RR and NSNS, corresponding to periodicity and

antiperiodicity of the fermionic fields around the cylinder, and after the GSO projection

there are four spin structures, R± and NS±, corresponding to all the possible periodicities

of the fermions on the covering torus.

The configuration space boundary state can be written as the a product of delta functions

enforcing the boundary conditions for the center of mass position operator Xµ
o , that is a

Fourier superposition of momentum states:

|v, θa, ~Y >B= δ
(

cosh v(X1
o − Y 1) − sinh vX0

o

)

δ
(

X2
o − Y 2

)

δ
(

X3
o − Y 3

)

∏

a

δ
(

cos θa(X
a
o − Y a) + sin θaX

a+1
o

)

|v, θa >

10



=
∫ d6~k

(2π)6
ei~kB·~Y |v, θa > ⊗|kB > , (19)

with the boosted and rotated momentum

kµ
B = (sinh vk1, cosh vk1, k2, k3, cos θak

a, sin θak
a) .

Integrating over the momenta and taking into account momentum conservation which

for non-vanishing v ≡ v(1) − v(2) and θa ≡ θ(1)
a − θ(2)

a forces all the Dirichlet momenta but

k2, k3 to be zero, the amplitude factorizes into a bosonic (B) and a fermionic (F) partition

functions:

A =
µ2

3

2 sinh |v|∏a 2 sin |θa|
∫ ∞

0
dl
∫ dk2dk3

(2π)2
ei~k·~be−k2

B
l
∑

α

ZBZ
α
F

=
µ2

3

2 sinh |v|∏a 2 sin |θa|
∫ ∞

0

dl

4πl
e−

b2

4l

∑

α

ZBZ
α
F , (20)

where µ3 =
√

2π is the 3-brane tension, ~b = ~Y
(1)
T − ~Y

(2)
T (b = |ξ(1) − ξ(2)|) is the transverse

impact parameter (in the 2, 3 directions) and

Zα
B,F =< v(1), θ(1)

a |e−lH |v(2), θ(2)
a >α

B,F .

In the above expression, only the oscillator modes of the string coordinates Xµ appear, since

we have already integrated over the center of mass coordinate. Notice also that world-sheets

with l ≪ b2 give a negligible contribution to the amplitude, and in the large distance limit

b→ ∞ only world-sheets with l → ∞ will contribute.

Notice finally that the amplitude A can be written, in agreement with the fact that it

corresponds to a phase-shift, as a world sheet integral

A = µ2
3

∫

dτ
∏

a

∫

dξa

∫ ∞

0
dl(4πl)−3e−

r2

4l
1

16

∑

α

ZBZ
α
F (21)

in terms of the true distance

r =

√

~b2 + sinh2 vτ 2 +
∑

a

sin2 θaξ2
a .

In the limit v, θa → 0, translational invariance along the directions 1, a is restored and the

integral over the world-sheet produces simply the volume V3+1 of the 3-branes.

The remaining part of the boundary state has been explicitly constructed in ref. [7] (see

also [8]); after the GSO projection, the even part of total partition function was found to be

(η(2il) being the Dedekin function)

ZB = η(2il)4 2i sinh v

ϑ1(i
v
π
|2il)

∏

a

2 sin θa

ϑ1(
θa

π
|2il) , (22)

Zeven
F = η(2il)−4

{

ϑ2(i
v

π
|2il)

∏

a

ϑ2(
θa

π
|2il)

−ϑ3(i
v

π
|2il)

∏

a

ϑ3(
θa

π
|2il) + ϑ4(i

v

π
|2il)

∏

a

ϑ4(
θa

π
|2il)

}

. (23)
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The even part of the amplitude represents the usual interplay of the RR attraction and

NSNS repulsion, leading to the well known BPS cancellation of the interaction between

two parallel D-branes (vanishing like v4 for small velocities). In the large distance limit

(b, l → ∞), the behavior of the partition functions is

ZB → 1 ,

Zeven
F → 2 cosh v

∏

a

2 cos θa − 2

(

2 cosh 2v +
∑

a

2 cos 2θa

)

.

As we have seen in Sect. III, the odd part encodes instead the electric-magnetic off-

diagonal RR interaction; due to the supercurrent insertion carrying the fermion fields ψ2, ψ3,

it does not vanish, since the (2,3) fermionic zero modes are soaked up:

Zodd
F = η(2il)−4ϑ1(i

v

π
|2il)

∏

a

ϑ1(
θa

π
|2il) .

Notice that in the odd spin structure, the oscillator’s contribution cancel between fermions

and bosons by world sheet supersymmetry, and

ZBZ
odd
F = 2i sinh v

∏

a

2 sin θa .

Remember also that the bosonic coordinates present in these supercurrents alter the non-

oscillator part of the bosonic partition function precisely in the right way to allow the

interpretation of Sect. II.

Summarizing, the diagonal interaction between two 3-branes at the positions ξ(1) and

ξ(2) in the transverse (2,3) plane is, at large distances,

ID = µ2
3 coth v

∏

a

cot θaD2|ξ(1) − ξ(2)| , (24)

where

Dd(r) =
∫

ddk

(2π)d

ei~k·~r

k2
=
∫ ∞

0
dl (4πl)−

d
2 e−

r2

4l

is the Green function in d dimensions.

The off-diagonal interaction between a 3-brane at transverse position ξ(2) and a pair of

3-brane and antibrane at ξ
(1)
B and ξ

(1)
A is instead the same all distances and given by

Ioff−D = ±µ2
3

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)D2|ξ(1) − ξ(2)| . (25)
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V. D3-BRANE ON T6 AND T6/Z3

In this section we shall apply the general construction that we have introduced to the

case of the Type IIB 3-brane wrapped on the orbifold T6/Z3. Compactifying the directions

a, a + 1, a = 4, 6, 8 on T6, one gets N = 8 supersymmetry, which is further broken down to

N = 2 by the Z3 moding, and this configuration was shown in ref. [7] to correspond to a

solution of the low energy effective N = 2 supergravity with no coupling to any scalar.

T6/Z3 is the orbifold limit of a CY manifold with Hogde numbers h1,1 = 9 and h1,2 = 0.

The standard counting of hyper and vector multplets for Type IIB compactifications tells

us that nV = h1,2 and nH = h1,1 + 1 [17] and the 4-dimensional low energy effective theory

we are left with is therefore N = 2 supergravity coupled to 10 hypermultiplets and 0 vector

multiplets (see [15] and references therein). In particular, the only vector field arising in the

compactification, namely the graviphoton, comes from the self-dual RR 4-form Cµνρσ under

which the D3-brane is already charged in 10 dimensions.

As explicitly shown in ref. [7,8], the 3-brane wrapped on T6/Z3 does not couple to the

hypers (as it must be) and has both an electric and a magnetic charge with respect to

the graviphoton, consistently with the fact that the 3-brane is selfdual in 10 dimensions.

This can be seen by analyzing the velocity dependence of the large distance behavior of

the scattering amplitude for two of these 3-branes moving with constant velocities in the

4-dimensional non-compact spacetime, in which they look point-like. The boundary state

decribing this 3-brane wrapped on T6/Z3 can be obtained from the one constructed for the

non-compact 3-brane essentially through the usual quantization of the momentum along a

compact direction.

More precisely, recall that the T6/Z3 orbifold is constructed identifying points in the

covering T6 = T2 × T2 × T2 which are connected by Z3 rotations in the 3 a, a + 1 planes

corresponding to each of the T2’s [14]. Notice that h1,2 = 0 means that the number of complex

deformations is 0 in this case, consistently with the fact that the Z-orbifold procedure “freezes

out” any possible freedom in the choice of the 3 T2’s [17]. This reflects into the fact that the

3-brane configuration we consider must have one Neumann and one Dirichlet direction in

each of the 3 T2’s and is therefore wrapped on a 3-cycle which is “democratically” embedded

in (T2)
3.

Let us start concentrating on a single T2 factor, then. The only lattice compatible with

the eventual Z3 moding is the triangular one, with modulus τ = Rei π
3 , as in Fig. 2. The

lattice of windings L̄ = Lx + iLy is given by L̄ = mτ + nR = R
2
(2n + m) + i

√
3

2
Rm, with

m,n integers, that is

Lx =
R

2
Nx , Ly =

√
3

2
RNy ,

where Nx, Ny are integers of the same parity. The lattice of momenta is as usual determined

13



by the requirement that the plane wave eip·X is well defined when X is shifted by a vector

belonging to the winding lattice, and one finds

px =
2π

R
nx , py =

2π√
3R

ny ,

where nx, ny are again integers of the same parity.

x
R

τ

60

y

Fig. 2

We choose in each of the T2 an arbitrary Dirichlet direction x′ at angle θ with the x

direction and an orthogonal Neumann direction y′ at angle Ω = θ + π
2

with the x direction,

and fix its lenght. This amounts to choose an arbitrary vector L̄ in the winding lattice, which

is identified by the pair (Nx, Ny) or, more conveniently for the following, by the orthogonal

pair (n̄y,−n̄x), which corresponds to the orthogonal direction of allowed momenta (see Fig.

3). In this way

Lx = −L sin θ , Ly = L cos θ ,

cos θ = −
√

3R

2L
n̄x , sin θ = − R

2L
n̄y .

where

L ≡ |L̄| =
R

2

√

n̄2
y + 3n̄2

x .

x’

y

L

Ω
θ x

y’

Fig. 3
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We are now interested in the bosonic non oscillator modes contribution to the whole

picture and let us start, for semplicity, remembering the result for the non-compact case.

The boundary state for the bosonic non oscillator modes in a given a, a + 1 pair is

|~Y >B= δ (X ′
o − Y ′) |0 >

=
∫ dpxdpy

(2π)
e−i(px·Yx+py·Yy)δ (cos θpy − sin θpx) |px, py > . (26)

The δ-function selects momenta parallel to the Dirichelet direction we have chosen. Indeed

if ω is the direction of the generic ~p momentum, the argument of the δ-function becomes

proportional to sin(θ − ω). Using of the normalization

< p(1)
x , p(1)

y |p(2)
x , p(2)

y >= (2π)2δ
(

p(1)
x − p(2)

x

)

δ
(

p(1)
y − p(2)

y

)

,

one recovers the following vacuum amplitude

< θ(1), ~Y (1)|e−lH|θ(2), ~Y (2) >B=
∫

dpxdpye
−i(px·∆Yx+py·∆Yy) ×

×δ
(

cos θ(1)py − sin θ(1)px

)

δ
(

cos θ(2)py − sin θ(2)px

)

=
1

sin |θ(1) − θ(2)| . (27)

In discretizing this result we adopt the following strategy. Let us begin by supposing

θ(1) 6= θ(2). First we substitute in eq. (27) the previously derived expressions for the dis-

cretized quantities ~p and θ and extract some jacobians from the Dirac δ-functions, obtaining

< θ(1), ~Y (1)|e−lH |θ(2), ~Y (2) >B =
L(θ(1))L(θ(2))

(
√

3/4)R2

∑

nx,ny

same par

δ
(

n̄(1)
x ny − n̄(1)

y nx

)

δ
(

n̄(2)
x ny − n̄(2)

y nx

)

.

Since in this case the solution of the condition enforced by the δ-functions is nx = ny = 0,

all the momenta are zero and the exponential drops as in the continuum case.

The Dirac δ-function containing only integers can now be turned to a Kroneker one;

however, since the latter is insensitive to an integer rescaling whereas the former transforms

with an integer jacobian, we shall keep an arbitrary integer constant in this step:

δ
(

n̄(1)
x ny − n̄(1)

y nx

)

δ
(

n̄(2)
x ny − n̄(2)

y nx

)

= Nδ
n̄

(1)
x ny,n̄

(1)
y nx

δ
n̄

(2)
x ny ,n̄

(2)
y nx

= Nδnx,0δny ,0 .

Therefore †, with Vol(T2) = (
√

3/2)R2

< θ(1), ~Y (1)|e−lH |θ(2), ~Y (2) >B= N
L(θ(1))L(θ(2))

Vol(T2)
.

† Notice that we consistently take
∑

nx,ny

same par

δnx,0δny,0 = 1
2 .
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The integer N is fixed to 1 by the requirement that for θ(1) = θ(2) the amplitude reduces

to the “winding” L2/Vol(T2). Actually, in order to achieve the above limit, an infinite

L(θ) is in general required because of the discreteness of the allowed angles, even if for

strictly parallel branes finite L(θ)’s are possible. Indeed, L(θ(1))L(θ(2)) sin |θ(1) − θ(2)| =

|n̄(1)
x n̄(2)

y − n̄(1)
y n̄(2)

x |Vol(T2). In this way the continuum and discrete results differ by the

integer jacobian |n̄(1)
x n̄(2)

y − n̄(1)
y n̄(2)

x | (which vanishes for θ(1) = θ(2)). The final result is then

< θ(1), ~Y1|e−lH |θ(2), ~Y2 >B=
L(θ(1))L(θ(2))

Vol(T2)
=

|n̄(1)
x n̄(2)

y − n̄(1)
y n̄(2)

x |
sin |θ(1) − θ(2)| . (28)

The above result could have been obtained starting directly from the compact boundary

state, that is, by first discretizing the continuum boundary state (26) and then computing

the amplitude. The correct discrete boundary state turns out to be

|~Y >B= L(θ)
∑

nx,ny

same par

1

(
√

3/2)R2
e−

2π
R

i(nxYx+ny/
√

3Yy)δ (n̄xny − n̄ynx) |nx, ny > , (29)

and reproduces correctly eq. (28) with the definition

< nx, ny|mx, my >=
√

3R2δnx,mx
δny,my

.

Postponing for the moment the Z3 identification, let us now consider as an instructive

intermediate result the case of T6. The result eq. (28) can be generalized in a straightforward

way giving for the total contribution from the compact part of the bosonic non oscillator

modes

< θ(1)
a , ~Y (1)|e−lH |θ(2)

a , ~Y (2) >B=
V (B1)V (B2)

Vol(T6)
, (30)

where V (B1), V (B2) are the volumes of the two 3-branes. This factor can be reabsorbed in

the definition of a 4-dimensional µ̂3 (from now on θ(1)
a − θ(2)

a ≡ θa)

µ̂2
3 ≡ µ2

3

V (B1)V (B2)

Vol(T6)
= 2π

∏

a

|n̄(1)
a n̄

(2)
a+1 − n̄

(1)
a+1n̄

(2)
a |

sin |θa|
. (31)

The contribution of the fermions doesn’t change during the compactification and the

amplitude (20) becomes in this case

A =
µ̂2

3

sinh |v|
∫ ∞

0

dl

4πl
e−

b2

4l
1

16

∑

s

ZBZ
s
F , (32)

and can be rewritten this time as a one dimensional world-sheet integral

A = µ̂2
3

∫

dτ
∫

dl(4πl)−
3
2e−

r2

4l
1

16

∑

s

ZBZ
s
F , (33)
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in terms of the 4-dimensional distance

r =

√

~b2 + sinh2 vτ 2 .

Eqs. (24) for the large distance diagonal interaction between two branes at the positions

ξ(1) and ξ(2), and (25) for the scale-independent off-diagonal interaction between a brane at

transverse position ξ(2) and a pair of brane and antibrane at ξ
(1)
B and ξ

(1)
A , modify to

ID = αeven coth vD2|ξ(1) − ξ(2)| , (34)

Ioff−D = ±αodd

∫ ξ
(1)
A

ξ
(1)
B

dξ(1) ∧ ∂ξ(1)D2|ξ(1) − ξ(2)| , (35)

with

αeven = µ̂2
3

∏

a

cos θa ,

αodd = µ̂2
3

∏

a

sin θa .

Recalling (31) and noticing that

cot θa =
√

3
3n̄(1)

a n̄(2)
a + n̄

(1)
a+1n̄

(2)
a+1

n̄
(1)
a n̄

(2)
a+1 − n̄

(1)
a+1n̄

(2)
a

,

the two coupling can also be written as

αeven = 2π
∏

a

√
3
(

3n̄(1)
a n̄(2)

a + n̄
(1)
a+1n̄

(2)
a+1

)

,

αodd = 2π
∏

a

(

n̄(1)
a n̄

(2)
a+1 − n̄

(1)
a+1n̄

(2)
a

)

. (36)

As expected, the orientation of the 3-branes in 10 dimensions affects the effective electric

and magnetic couplings of the correspondig 0-branes in 4 dimensions. Notice that the Dirac

quantization condition for the off-diagonal coupling αodd, which is satisfied in 10 dimensions

with the minimal allowed charges [1], remains satisfied in 4 with an integer which depends

on the branes’ orientation. This result can also be understood in terms of the relevant N = 8

supergravity. Notice in fact that

∏

a

cos θa =
1

4

4
∑

i=1

cosφi ,

∏

a

sin θa = −1

4

4
∑

i=1

sin φi ,

with φi ≡ φ
(1)
i − φ

(2)
i and

φ
(1,2)
1 = θ

(1,2)
4 + θ

(1,2)
6 + θ

(1,2)
8 , φ

(1,2)
2 = −θ(1,2)

4 − θ
(1,2)
6 + θ

(1,2)
8 ,

φ
(1,2)
3 = θ

(1,2)
4 − θ

(1,2)
6 − θ

(1,2)
8 , φ

(1,2)
4 = −θ(1,2)

4 + θ
(1,2)
6 − θ

(1,2)
8 .
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The effective couplings can thus be rewritten as

αeven =
4
∑

i=1

(

e
(1)
i e

(2)
i + g

(1)
i g

(2)
i

)

,

αodd =
4
∑

i=1

(

e
(1)
i g

(2)
i − g

(1)
i e

(2)
i

)

, (37)

with

e
(1)
i =

µ̂3

2
cosφ

(1)
i , e

(2)
i =

µ̂3

2
cosφ

(2)
i ,

g
(1)
i =

µ̂3

2
sinφ

(1)
i , g

(2)
i =

µ̂3

2
sinφ

(2)
i . (38)

This second consideration allows to keep track of the coupling to the various vector fields.

In fact it happens that the ten vectors fields arising from dimensional reduction of the RR 4-

form, couple to the brane only through four independent combinations of fields, with electric

and magnetic charges parametrized by the four angles φ
(1,2)
i . Since the electric and magnetic

charges correponding to a given φ
(1,2)
i cannot vanish simultaneously, the 3-brane cannot

decouple from any of the four effective gauge fields, in agreement with a pure Supergravity

argument achieved in ref. [18]. From this point of view, the Dirac quantization condition,

emerging clearly in (36), is to be understood on the sum of the couplings corresponding to

the four independent φ
(1,2)
i , and not on the charges with respect to the single fields.

The whole picture determines therefore a 4-parameter family of dyons which are inequiv-

alent from the 4-dimensional point of view since they carry a different set of charges. Notice

finally that when two of these branes have equal φ
(1,2)
i ’s (yielding vanishing φi’s) their diago-

nal coupling no longer depends on the angles and the off-diagonal one vanish, as appropriate

for identical dyons in d = 4 dimensions.

Let us discuss finally the orbifold case. As explained in ref. [7], the only effect of the Z3

moding is to project the boundary state for T6 onto its Z3-invariant part. This projection

can be easily performed by first computing the amplitude on T6 with a relative twist za in

the orientations, θa → θa + 2πza, and then averaging finally on all the possible za’s
‡.

Since the bosonic zero modes’ contribution (30) does not depend explictly on the an-

gles, the only modification introduced by the Z3 moding is in the volume: Vol(T6/Z3) =

1/3Vol(T6). For the fermions, instead, one simply sets θa → θa + 2πza; under this relative

rotation one has correspondingly:

‡The twists za in the 3 a, a + 1 planes satisfy
∑

a za = 0 in order to preserve at least

one supersymmetry [14]. The allowed sets {za} of relative twits can be taken to be

{(0, 0, 0), (1/3, 1/3,−2/3), (2/3, 2/3,−4/3)}.
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φ1 → φ1 + 2π(z4 + z6 + z8) = φ1 ,

φ2 → φ2 + 2π(−z4 − z6 + z8) = φ2 + 4πz8 ,

φ3 → φ3 + 2π(z4 − z6 − z8) = φ3 − 4πz4 ,

φ4 → φ4 + 2π(−z4 + z6 − z8) = φ4 + 4πz6 .

The averaging procedure has the important consequence of projecting out the contribution

depending on the non invariant φ2, φ3, φ4, with respect to the T6 case. Indeed,

αeven = µ̂2
3

∑

{za}

∏

a

cos(θa + 2πza) =
µ̂2

3

4
cosφ1 ,

αodd = µ̂2
3

∑

{za}

∏

a

sin(θa + 2πza) = − µ̂
2
3

4
sinφ1 . (39)

where the 1/3 of the averiging has canceled with the 3 coming from the volume of T6/Z3.

Therefore, after the Z3 moding, only one pair of electric and magnetic charges survives,

consistently with the fact that, as already pointed out at the beginning of this section, only

one vector field survives to the projection in the low energy effective theory, namely the

graviphoton. The fact that the Dirac quantization condition still holds, like in the T6 case,

is due to the fact that (39) can be seen as the superposition of 3 pairs of 3-branes on T6,

with relative angles θa + 2πza instead of θa. For each pair (36) holds and so for their sum,

that is (39).

Summarizing, the net effect of the wrapping of the 3-brane on T6/Z3 is therefore to obtain

a 1-parameter family of dyons (rather than 4 as for T6) whose effective couplings depend

only on one combination of the relative angles between the whole 3-branes.

It is interesting to remark that the Z3 projection, which reduces the 4 independent gauge

fields to 1, is also responsible for the decoupling of the scalars fields from the 3-brane, as seen

in ref. [7]. Thus, the 3-brane wrapped on T6/Z3 looks like an extremal R-N configuration,

being a source of Gravity and Maxwell field only, the mass and the dyonic charge being

equal in suitable units, i.e. M2 = e2 + g2.
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[8] F. Hussain, R. Iengo, C. Núñez and C.A. Scrucca, “Aspects of D-brane dynamics on

orbifolds” (Proceedings, Neuchâtel 97), hep-th/9711020; “Interaction of D-branes on

orbifolds and massless particle emission” (Proceedings, Valencia 97), hep-th/9711021.
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