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Abstract: In real-time optimization, enforcing the constraints that need to be active is
important for optimality. In fact, it has been established in the context of parametric variations
that, if these constraints are not satisfied, the optimality loss would be O(η) – η denoting the
magnitude of the parametric variations. In contrast, the loss of optimality upon enforcing the
correct set of active constraints would be O(η2). However, no result is available when the set of
active constraints changes due to parametric variations, which forms the subject of this paper.
It is shown that, if the optimal solution is unique for each η, enforcing the constraints that are
strictly active in the nominal solution will lead to O(η2) loss in optimality, even when the other
active constraints of the perturbed system are different from that of the nominal system. This,
in turn, means that, in any input adaptation scheme for real-time optimization, the detection
of changes in active constraints is not important as long as it is possible to enforce the strictly
active constraints of the nominal solution.
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active set; input adaptation; optimality loss.

1. INTRODUCTION

Optimal steady-state operation in the presence of uncer-
tainty is an important objective in the process industries.
The idea is to adapt the nominal optimal inputs, which are
calculated using the available process model, to achieve
optimality and feasibility of plant operation. Numerous
real-time optimization (RTO) algorithms have been pro-
posed in the literature (Marlin and Hrymak [1997], Gao
and Engell [2005], Tatjewski [2008], Chachuat et al. [2009],
Woodward et al. [2010]).

Since perfect adaptation may not be possible in practice, it
becomes essential to be able to compare the performance
of a given set of adapted inputs with that of the perturbed
optimal inputs. This paper presents an analysis of the
performance loss associated with input adaptation by
focusing on the set of constraints that are kept active.

A few words are in order to explain the motivation behind
the focus on active constraints. For static RTO prob-
lems modeled in terms of parametric nonlinear programs
(NLP), in which uncertainty is described by parametric
variations, the necessary conditions of optimality (NCO)
include both constraint-seeking and sensitivity-seeking
components. The former require that certain constraints
are active, while the latter require that reduced gradients
are forced to zero (Bazaraa et al. [1993]). Accordingly,
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two sets of directions in input space can be identified
such that adaptation along directions in one set does
not affect the active constraints, while adaptation along
directions in the other set does (François et al. [2005]).
Furthermore, it has been shown that input adaptation
along the constraint-seeking directions has a larger effect
on the cost than adaptation along the sensitivity-seeking
directions (Chachuat et al. [2008]). Hence, if full adapta-
tion is not possible, adaptation that favors meeting the
active constraints should be preferred.

Note that the aforementioned arguments describe the sit-
uation only around the set of nominal optimal inputs.
Another object of interest, especially important from the
point of view of optimality, is the set of perturbed optimal
inputs. Since an iterative RTO algorithm will typically
start from the nominal solution, the resulting adapted in-
puts might share only certain features with the perturbed
optimal solution. One such feature is the set of active
constraints. Hence, the following question arises naturally:
if different algorithms yield different adapted inputs, can
the effect of these inputs on the cost be inferred from the
features they share with the perturbed optimal inputs?
In other words, it is essential to perform a joint analysis
of the features of the nominal optimal inputs, the adapted
inputs and the perturbed optimal inputs. This is the spirit
of the present work, which investigates optimality loss due
to different sets of adapted inputs that conserve some or
other elements of the nominal active constraint set and
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thus share only a few features of the perturbed optimal
solution.

This investigation will try to underscore the importance
of the strict active set of constraints in designing RTO
schemes for static optimization. More specifically, the
following important result is proved under reasonable
conditions: the optimality loss incurred by enforcing only
the constraints that are strictly active in the nominal
solution is only O(η2), regardless of whether or not the
optimal active set changes.

The paper is organized as follows. Section 2 gives the
mathematical formulation of the parametric NLP, followed
by two useful lemmas. Section 3 investigates the optimality
loss associated with input adaptation for the case of small
parametric variations. Section 4 presents an example that
illustrates optimality loss as a function of the magnitude
of the parametric variations. Finally, Section 5 summarizes
the results and proposes some topics for future research.

2. REAL-TIME OPTIMIZATION UNDER
UNCERTAINTY

2.1 Problem Formulation and Optimality Conditions

We consider the following parametric NLP problem:

min
u

J(u, θ)

s.t. Gi(u, θ) ≤ 0, i = 1, . . . , nG,

u ∈ IR
nu , θ ∈ IR

nθ .

(1)

where u is the input vector, J the cost function and Gi the
ith constraint. J and all Gi are assumed once continuously
differentiable in all arguments. The nominal value of the
parameters is θ0.

We assume linear independence of the gradients of the
active constraints at the nominal solution (constraint
qualification) so that the Karush-Kuhn-Tucker NCO hold
at the nominal optimal solution (Bazaraa et al. [1972],
Peterson [1973]):

∂J

∂u
+ λT ∂G

∂u
= 0,

λiGi(u, θ) = 0, i = 1, . . . , nG,

λi ≥ 0, i = 1, . . . , nG.

(2)

Let the nominal solution (u∗, λ∗) be such that:

λ∗
i > 0 & Gi(u

∗, θ0) = 0, i ∈ I∗,

λ∗
i = 0 & Gi(u

∗, θ0) = 0, i ∈ J ∗,

λ∗
i = 0 & Gi(u

∗, θ0) < 0, i ∈ K∗,

I∗ ∪ J ∗ ∪ K∗ = {1, . . . , nG}.

(3)

In terms of the notation above, the constraint qualifica-
tion means the independence of the column vectors of
∂GI∗∪J ∗

∂u
.

In practice, knowledge of (3) is available via off-line
numerical optimization. Note that there are no elements
common in I∗,J ∗ and K∗. Also, define A∗ = I∗ ∪J ∗. A∗

is the active constraint set, I∗ the strictly active constraint
set, J ∗ the marginally active set, and K∗ the inactive set.

The main difference between the two parts of the active set
is that non-satisfaction of the strictly active constraints I∗

would cause a more significant impact on the cost function
than non-satisfaction of the marginally active constraints
J ∗. This aspect will be quantified later.

2.2 Uncertainty Description

The following type of parametric variations is considered:

θ̃ = θ0 + η ξθ, η ∈ Bη, (4)

where ξθ is a vector – of unit Euclidean norm – in the
parameter space IR

nθ , and Bη is a small ball around zero.

Let ũ denote the perturbed optimal inputs. Henceforth,
we will assume that the perturbed optimal solution (ũ, λ̃)
also satisfies the NCO (2) for each η. Hence, the perturbed
optimal solution for a given η satisfies:

λ̃i > 0 & Gi(ũ, θ̃) < 0, i ∈ Ĩ,

λ̃i = 0 & Gi(ũ, θ̃) < 0, i ∈ J̃ ,

λ̃i = 0 & Gi(ũ, θ̃) = 0, i ∈ K̃,

Ĩ ∪ J̃ ∪ K̃ = {1, . . . , nG}.

(5)

The index sets Ĩ, J̃ and K̃ can, in general, be different
from I∗,J ∗ and K∗. Without loss of generality, suppose
that there is a change in active set around η = 0, with
three possible active sets: At η = 0, the strictly active,
marginally active and inactive sets correspond to I∗, J ∗,
and K∗, respectively; at η = 0+, these sets are Ĩ+, J̃+,

and K̃+, while at η = 0−, these sets are Ĩ−, J̃−, and K̃−.
The relationship between them is studied next.

Toward this end, three lemmas are introduced to show
that, if the solution is unique, then the inputs and the
Lagrange multipliers are indeed continuous. The proofs are
presented in the Appendix A.

Lemma 1. (Continuity of ũ with respect to η). Consider
the NLP problem (1) with the cost and constraints being
differentiable with respect to the inputs and parameters.
If ũ(η) is unique for all η ∈ Bη, then it is continuous with
respect to η. Hence, ũ(η) − u∗ = O(η).

Lemma 2. (Relation between I∗, Ĩ and J ∗).
Consider the NLP problem (1) with the cost and con-
straints being differentiable with respect to the inputs and
parameters. If Lemma 1 holds, then I∗ ⊆ Ĩ. Further,
Ĩ \ I∗ ⊆ J ∗.

Lemma 2 essentially states that, due to the continuity of
optimal inputs, the strict active set will still remain strictly
active, and the inactive set will remain inactive. Only the
elements in the marginally active set can change sides,
i.e., they can either stay marginally active, become strictly
active or become inactive.

Hence, we can write:

I∗ ⊆ Ĩ, K∗ ⊆ K̃, J̃ ⊆ J ∗, Ã ⊆ A∗. (6)

Note that I∗ is the minimal strict active set, i.e. smaller
than or equal to Ĩ+ and Ĩ−, while A∗ is the maximal active

set, i.e., larger than or equal to Ã+ and Ã−.

Lemma 3. (Continuity of λ̃ with respect to η). Consider
the NLP problem (1) with the cost and constraints being



differentiable with respect to the inputs and parameters.
If Lemma 1 holds, then the adjoint variables λ̃(η) are

continuous with respect to η. Hence, λ̃(η) − λ∗ = O(η).

In summary, there are no discontinuities in the optimal so-
lution, and the Lagrange multipliers and thus the optimal
cost and optimal constraint functions are also continuous
in η.

2.3 Optimality Loss

Definition 4. (Optimality Loss). For parametric variations
given by (4), the difference between the cost resulting from
a given set of inputs u and the perturbed optimal cost is
called optimality loss and is denoted by δJ :

δJ(u) := J(u, θ̃) − J(ũ, θ̃), (7)

where ũ denotes the perturbed optimal inputs.

Theorem 5. Consider the NLP problem (1) with the cost
and constraints being differentiable with respect to the
inputs and parameters. If no adaptation is done, the
optimality loss is O(η).

Proof:

Using the differentiability properties of J with respect to
u, it is possible to consider the first-order Taylor series
expansion of J(u, θ̃) around (ũ, θ̃):

δJ(u) =
∂J

∂u
(ũ, θ̃) {u− ũ} + O({u− ũ}2

). (8)

From (2) and (5), one can write:

∂J

∂u
(ũ, θ̃) + λ̃

T

Ĩ
∂GĨ
∂u

(ũ, θ̃) = 0. (9)

Using (9) in (8), gives:

δJ(u) = − λ̃
T

Ĩ
∂GĨ
∂u

(ũ, θ̃) {u − ũ} + O({u − ũ}2).

(10)

When the nominal optimal inputs are applied, Lemma 1
says that u∗−ũ = O(η), which implies δJ(u∗) = O(η). 2

3. OPTIMALITY LOSS WHEN ACTIVE
CONSTRAINTS ARE MET

This section investigates the optimality loss when the
nominal active constraints are kept active using input
adaptation.

3.1 Optimality Loss with Same Optimal Active Set

The simplest case is when there is no change in the active
constraints, i.e. I∗ = Ĩ+ = Ĩ−, J ∗ = J̃+ = J̃−, and

K∗ = K̃+ = K̃−

We consider adapting the inputs so as to conserve the
active sets. Let û = u∗+η ξu represent the adapted inputs
that keep the set A∗ active without violating any other
constraint, i.e., they satisfy the following conditions for
the perturbed system: 1

1 Note that the value of η used for constructing û is the same as the
magnitude of parametric variations in (4).

Gi(û, θ̃) = 0, ∀ i ∈ I∗,

Gi(û, θ̃) = 0, ∀ i ∈ J ∗,

Gi(û, θ̃) ≯ 0, ∀ i ∈ K∗.

(11)

We assume that, for the given NLP (1) and θ̃ under
consideration, there exist solution(s) to the system of
equations (11).

Theorem 6. If the perturbed optimal solution ũ(η) is
unique for each η and the active set does not change, i.e.
A∗ = Ã, then the optimality loss associated with an input
adaptation that keeps the constraints A∗ active is O(η2).

Proof: Using the Taylor series expansion of GĨ(û, θ̃)

around (ũ, θ̃) yields:

GĨ(û, θ̃) = GĨ(ũ, θ̃)+
∂GĨ
∂u

(ũ, θ̃) {û− ũ}+O({û− ũ}2
).

(12)

Note that GĨ(û, θ̃) = 0 by the definition of û since Ĩ = I∗.

Also, GĨ(ũ, θ̃) = 0 by definition of the active set of the
perturbed optimum. Since û− u∗ = O(η) by construction
and ũ − u∗ = O(η) from Lemma 1, û − ũ = O(η). Using
all these facts, (12) becomes:

∂GĨ
∂u

(ũ, θ̃) {û − ũ} = O(η2), (13)

which, when combined with (10), leads to δJ(û) =
O(η2). 2

Remark: Note that keeping GJ ∗(û, θ̃) = 0 does not
help toward optimality. This makes sense as the Lagrange
multipliers corresponding to these constraints are zero,
i.e., these constraints though active do not contribute to
the cost. Hence, they could indeed be relaxed to become
inactive.

3.2 Optimality Loss with Change in Optimal Active Set

For this scenario, several possibilities can be considered.
One could use input adaptation to keep either A∗, or Ã+

or Ã−, active over the ball Bη. Also, as noted in the remark
above, it is sufficient to keep the smallest of these sets,
namely I∗ or equivalently Ĩ+ or Ĩ−, active. Of course, in
all these adaptation strategies it is assumed that feasibility
of the other constraints is guaranteed.

The next result proves that all these strategies are equiv-
alent.

Theorem 7. Let the perturbed optimal solution ũ(η) be
unique for each η. Consider Strategy (i) that adapts the
input to keep the constraints A∗ active, Strategy (ii) that

keeps constraints Ã+ active, Strategy (iii) that keeps con-

straints Ã− active, Strategy (iv) that keeps constraints I∗

active, Strategy (v) that keeps constraints Ĩ+ active and

Strategy (vi) that keeps constraints Ĩ− active. The opti-
mality loss associated with all these adaptation strategies
is O(η2).

Proof:

Let S be the set of constraints enforced by the adopted
strategy under consideration. It follows from (10) that the
constraint enforcement of interest from the point of view



of optimality loss is only S ∩ Ĩ. Let us denote C = S ∩ Ĩ.
Though other constraints are enforced, they do not have a
first-order influence on the cost. Also note that all of the
adopted strategies ensure that I∗ ⊆ C.

On the other hand, there are other elements in Ĩ that are
not enforced to zero. Let us denote them by D = Ĩ \ C.
Note that D does not contain any elements of I∗.

Hence (10) can be written as

δJ(û) = − λ̃
T

C
∂GC
∂u

(ũ, θ̃) {û− ũ}

− λ̃
T

D
∂GD
∂u

(ũ, θ̃) {û− ũ} + O(η2)

(14)

Following the same arguments as in the proof of Theorem
6, the first term of the expression can be shown to be
O(η2).

From Lemma 3, λ̃D − λ∗
D = O(η). However, since D does

not contain any elements of I∗, λ∗
D = 0. This leads to

λ̃D = O(η). Also, (û− ũ) = O(η) as discussed in the proof
of Theorem 6, and so (14) becomes:

δJ(û) =O(η2) + O(η)
∂GD
∂u

(ũ, θ̃)O(η) + O(η2) = O(η2)

(15)
2

Remark: As noted earlier, I∗ is the minimal of the
sets characterizing the six strategies under consideration
in Theorem 7. The implication of all six strategies being
equal in terms of optimality loss is the following: I∗ is
the constraint set that needs to be kept active under
parametric variations, even when the perturbed active
set is different from the nominal one, to guarantee an
optimality loss of no more than O(η2).

In summary, when there is a unique perturbed optimal
solution ũ(η) for each η, the optimality loss associated with
keeping the nominal active set is always O(η2), irrespective
of whether the active set for the plant, which in practice
is unknown, is the same as that of the model or not.
The practical implication of this result is that, at least
locally, static RTO methods are better off in terms of
cost by simply striving to maintain the active set found
with the nominal model. As long as the adapted solution
remains feasible, there is no need for any mechanism to
detect which constraints become active from inactive and
vice versa. 2 On the other hand, failure to maintain the
active set in RTO will result in an optimality loss of the
order of O(η).

4. ILLUSTRATIVE EXAMPLE

The following parametric NLP from Chachuat et al. [2008]
is considered:

2 Note, however, that such a mechanism might be necessary to
ensure feasibility.

min
u

J(u, θ) = (u1 − θ1)
2 + (u2 − θ1)

2,

s.t. G1 = u1 − θ2(1 − u2) ≤ 0,

G2 = u2θ3 − 2(1 − u1) ≤ 0,

G3 = u1 ≥ 0,

G4 = u2 ≥ 0.

(16)

Two different values of the nominal parameters θ0 will
be chosen to illustrate the results of two of the possible
scenarios mentioned in Section 3, namely no change in
optimal active set and decrease in the number of active
constraints after parametric variations. It is possible to use
different methods such as modifier adaptation (Marchetti
et al. [2009]) or constraint control (Maarleveld and Ri-
jnsdorp [1970], Marchetti et al. [2008], Woodward et al.
[2010]) to keep the nominal active set active. This work
uses the modifier-adaptation method.

4.1 No Change in Active Set

Let θ0 =
[

0.75 1.4 1
]T

and the direction of parametric

variation be ξθ = 1√
3

[

1 1 1
]

. Let the range of uncer-

tainty be quantified by Bη = [−0.05, 0.05].

The nominal optimal solution is (u∗
1, u

∗
2) =

(0.6149, 0.5608). Figure 1 plots the iso-cost contours for
η = −0.01, the nominal optimal solution, the adapted
inputs generated by modifier adaptation that conserve
the nominal active set and the perturbed optimal inputs.
The nominal optimal inputs are on the G1(u, θ0) = 0
curve, whereas the perturbed optimal inputs are on the
G1(u, θ̃) = 0 curve. Hence, the active set remains un-
changed under parametric variations. The same is verified
for all η ∈ Bη.

0.6 0.605 0.61 0.615 0.62 0.625 0.63

0.55

0.555

0.56

0.565

0.57

0.575

η = −0.01

u
2

u1

Fig. 1. Iso-cost contours for η = −0.01 depicting the nomi-
nal optimal inputs, the perturbed optimal inputs, and
the adapted inputs. Refer to Appendix B for legend.

Figure 2 shows the optimality loss associated with input
adaptation as a function of η (Theorem 6). The O(η2) fit
of the plot agrees with the result of Theorem 6.
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Fig. 2. Optimality loss associated with input adaptation
that keeps the nominal active set active.

4.2 Smaller Strict Active Set

Let θ0 =
[

1.517 1.417 1.017
]T

and the direction of

parametric variation be ξθ = 1√
3

[

1 1 1
]

. Let the range

of uncertainty be quantified by Bη = [−0.005, 0].

The nominal optimal solution is (u∗
1, u

∗
2) =

(0.7666, 0.4590). For η ≤ −0.0032, the constraint G2 is no
longer active, and the strict active set is smaller.

Figure 3 shows the iso-cost contours for η = −0.026.
The nominal optimal inputs are at the intersection of the
G1(u, θ0) = 0 and G2(u, θ0) = 0 curves and, similarly,
the perturbed optimal inputs are at the intersection of the
G1(u, θ̃) = 0 and G2(u, θ̃) = 0 curves.
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Fig. 3. Iso-cost contours for η = −0.0026 depicting the
nominal optimal inputs, the perturbed optimal inputs
and the adapted inputs. Refer to Appendix B for
legend.

Figure 4 shows the iso-cost contours for η = −0.004. The
perturbed optimal inputs are only on the G1(u, θ̃) = 0
curve.
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η = −0.004
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Fig. 4. Iso-cost contours for η = −0.004 depicting the
nominal optimal inputs, the perturbed optimal inputs
and the adapted inputs. Refer to Appendix B for
legend.

On both contour plots, the adapted inputs generated
using modifier adaptation lie at the intersection of the
G1(u, θ̃) = 0 and G2(u, θ̃) = 0 curves. Thus, the adapted
inputs keep the nominal active constraints active after
parametric variations.

Finally, Figure 5 shows the optimality loss associated with
input adaptation that conserves the nominal active set as
a function of η (Theorem 7). Note that the adapted inputs
generated using modifier adaptation method coincide with
the perturbed optimal solution for η > −0.0032.
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Fig. 5. Optimality loss associated with input adaptation
that conserves the nominal active set.



5. CONCLUSIONS

Input adaptation methods have become the cornerstone
of static RTO. Any analysis of the performance of input
adaptation methods must be based on the (properties of
the) set of perturbed optimal inputs.

We have studied input adaptation strategies that counter
parametric variations by keeping the nominal active set ac-
tive, while still being feasible. For small parametric varia-
tions, the difference between the cost associated with adap-
tation and the perturbed optimal cost can be quantized as
a function of η, the magnitude of the parametric varia-
tions. Under conditions that are standard for parametric
NLP, the following important result has been proved: the
optimality loss associated with adaptation that keeps the
nominal active set is O(η2), even when there is a change in
the set of active constraints. In addition, it is shown that
conservation only of the minimal strict nominal active set
(I∗) is what really matters to limit the optimality loss to
order of O(η2).

The practical implication of this result is that static RTO
methods are sub-optimal by order of only O(η2) by simply
striving to maintain the nominally active set. On the other
hand, failure to maintain the strict active set in an RTO
will certainly result in a larger optimality loss – at least of
the order of O(η).

A limitation of the present results is the assumption of
unique ũ(η) for each η. There exist examples of NLPs
of type (1) for which this assumption does not hold.
It is envisaged to extend the present analysis to such
pathological cases in future research.

It is hoped that the results presented here will help analyze
and compare the performance of existing static RTO
methods and will also inspire the design of additional RTO
schemes.
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Appendix A. PROOF OF LEMMAS

Proof of Lemma 1: Due to the differentiability assump-
tions (with respect to u and θ) on J and Gi, Theorem
1 in Robinson and Day [1974] implies that the solution
set {ũ(η)} of the parametric NLP (1) is upper semi-
continuous, despite changes in the active set. Since ũ(η) is
unique for each η by assumption, the solution set {ũ(η)}
is a singleton. Since upper semi-continuity and continuity
coincide when the solution mapping is a singleton (Berge
[1963]), ũ(η) is continuous with respect to η. Hence, we
have ũ(η) − u∗ = O(η). 2

Proof of Lemma 2:

We will prove the result for η = 0+ in the following three
steps:

Step 1: (Impossibility of Inactive Constraints becoming
Strictly Active)
First, it is easy to observe that no element of K∗ can switch
to Ĩ+. To see this, let us assume the contrary, namely, that

there exists an index k ∈ Ĩ+ ∩K∗. Hence,

Gk(u∗, θ0) 6= 0; but Gk(ũ(0+), θ̃(0+)) = 0.

The last statement, however, is a contradiction since
Lemma 1 holds and Gk is continuous in both its arguments
by assumption. Hence, it must be that Ĩ+ ∩ K∗ = ∅.

Step 2: (Impossibility of Decrease in Strict Active Set)

Let us assume the contrary, viz., I∗ ⊃ Ĩ+. Hence, I∗ =

Ĩ+ ∪ Z, for some index set Z. The NCO (2) at η = 0 and
(5) at η = 0+ read, respectively,

0 =
∂J

∂u
(u∗, θ∗) + λ∗

I∗

T ∂GI∗

∂u
(u∗, θ∗),

0 =
∂J

∂u
(ũ, θ̃)

∣

∣

∣

∣

η=0+

+ λ̃
T

Ĩ (η = 0+)
∂GĨ
∂u

(ũ, θ̃)

∣

∣

∣

∣

η=0+

.

(A.1)
The continuity of the derivatives of J and G w.r.t. u and
θ, and of the latter two w.r.t. η implies



∂J

∂u
(ũ, θ̃)

∣

∣

∣

∣

η=0+

=
∂J

∂u
(u∗, θ∗),

∂GĨ
∂u

(ũ, θ̃)

∣

∣

∣

∣

η=0+

=
∂GI∗

∂u
(u∗, θ∗).

Using the last relations, (A.1) yields

0 =
{

λ∗
Ĩ − λ̃Ĩ(η = 0+)

}T ∂GĨ
∂u

(u∗, θ∗)

+ λ
∗
Z

T ∂GZ
∂u

(u∗, θ∗).

The last equation is, however, a contradiction since λ∗
Z 6= 0

by definition of Z, and column vectors of
∂GĨ
∂u

(u∗, θ∗) and

∂GZ
∂u

(u∗, θ∗) are independent by the assumed constraint

qualification. Hence, I∗ ⊃ Ĩ+ is impossible.

Step 3: (Impossibility of Replacement in Strict Active Set)
Let us assume the contrary, viz., only a part of I∗ belongs
to Ĩ+ while there are some new indices in the latter that
are not present in I∗. That is,

I∗ = C ∪ Z1, Ĩ+ = C ∪ Z2, C ∩ Z1 ∩ Z2 = ∅.

Thus, this case is a combination of decrease by some
indices and increase by some other indices of I∗. Following
a line of reasoning similar to that of Step 2, it can be
shown that this leads to contradictions. Thus, replacement
of constraints in the strict active set is also impossible.

Hence, the only possibility that remains is I∗ ⊆ Ĩ+.
Moreover, from the result of Step 1, it is evident that
Ĩ+ \ I∗ ⊆ J ∗.

The same arguments can be applied for the case η = 0−
and so the same result holds for Ĩ− too. 2

Proof of Lemma 3: Continuity of the Lagrange multipli-
ers corresponding to marginally active and inactive con-
straints is trivial since they stay at zero. To compute λ̃Ĩ at
η = 0+, recall from the proof of Lemma 2 that the system
of equations (A.1) holds at η = 0 and 0+, respectively.

Since Lemma 1 holds, results of Lemma 2 hold. Hence,
using the fact that Ĩ+ = I∗ ∪ L, L ⊆ J ∗, the system
above leads to

0 =
{

λ∗
I∗ − λ̃I∗(η = 0+)

}T ∂GI∗

∂u
(u∗, θ∗)

+ λ̃L(η = 0+)
T ∂GL

∂u
(u∗, θ∗).

Since
∂GI∗∪J ∗

∂u
(u∗, θ∗) is full rank due to constraint

qualification assumption, column vectors of
∂GI∗

∂u
(u∗, θ∗)

and
∂GL
∂u

(u∗, θ∗) are independent. Hence, it must hold

that
λ∗
I∗ − λ̃I∗(η = 0+) = 0,

λ̃L(η = 0+) = 0 = λ∗
L.

In summary,

λ̃I∗∪L(η = 0+) = λ̃Ĩ(η = 0+) = λ∗
Ĩ .

A similar argument can be put forward for η = 0−. Hence,

λ̃Ĩ(η) is continuous at η = 0, and so, as in Lemma 1, we

have
λ̃Ĩ(η) − λ∗

Ĩ = O(η). 2

Appendix B. LEGEND FOR THE CONTOUR PLOTS

The legend for all contour plots is as follows:

• Curves in magenta : iso-cost contours (at perturbed
parameters)

• Blue dashed line : G1(u, θ0) = 0 curve

• Red dashed line : G1(u, θ̃) = 0 curve
• Blue line : G2(u, θ0) = 0 curve

• Red line : G2(u, θ̃) = 0 curve
• Blue arrow : direction of Ju at nominal optimal

solution
• Black arrow : direction of Ju at solution of modifier

adaptation
• Red arrow : direction of Ju at perturbed optimal

solution
• Origin of blue arrow (blue ⋄) : nominal optimal

solution
• Origin of black arrow (black △) : solution of modifier

adaptation
• Origin of red arrow (red *) : perturbed optimal

solution


