
ParaLog: Enabling and Accelerating Online Parallel
Monitoring of Multithreaded Applications

Evangelos Vlachos,1 Michelle L. Goodstein,1 Michael A. Kozuch,2 Shimin Chen,2

Babak Falsafi,3 Phillip B. Gibbons,2 and Todd C. Mowry1

1Carnegie Mellon University 2Intel Labs Pittsburgh 3École Polytechnique Fédérale de Lausanne

evlachos@ece.cmu.edu, {mgoodste, tcm}@cs.cmu.edu,
{michael.a.kozuch, shimin.chen, phillip.b.gibbons}@intel.com, babak.falsafi@epfl.ch

Abstract
Instruction-grain lifeguards monitor the events of a running appli-
cation at the level of individual instructions in order to identify and
help mitigate application bugs and security exploits. Because such
lifeguards impose a 10–100X slowdown on existing platforms, pre-
vious studies have proposed hardware designs to accelerate life-
guard processing. However, these accelerators are either tailored to
a specific class of lifeguards or suitable only for monitoring single-
threaded programs.

We present ParaLog, the first design of a system enabling fast
online parallel monitoring of multithreaded parallel applications.
ParaLog supports a broad class of software-defined lifeguards. We
show how three existing accelerators can be enhanced to support
online multithreaded monitoring, dramatically reducing lifeguard
overheads. We identify and solve several challenges in monitoring
parallel applications and/or parallelizing these accelerators, includ-
ing (i) enforcing inter-thread data dependences, (ii) dealing with
inter-thread effects that are not reflected in coherence traffic, (iii)
dealing with unmonitored operating system activity, and (iv) en-
suring lifeguards can access shared metadata with negligible syn-
chronization overheads. We present our system design for both Se-
quentially Consistent and Total Store Ordering processors. We im-
plement and evaluate our design on a 16 core simulated CMP, us-
ing benchmarks from SPLASH-2 and PARSEC and two lifeguards:
a data-flow tracking lifeguard and a memory-access checker life-
guard. Our results show that (i) our parallel accelerators improve
performance by 2–9X and 1.13–3.4X for our two lifeguards, re-
spectively, (ii) we are 5–126X faster than the time-slicing approach
required by existing techniques, and (iii) our average overheads for
applications with eight threads are 51% and 28% for the two life-
guards, respectively.

Categories and Subject Descriptors C.0 [General]: [System Ar-
chitectures]; D.2.5 [Software Engineering]: Testing and Debugging—
Monitors

General Terms Design, Performance, Reliability, Security

Keywords Online Parallel Monitoring, Hardware Support for De-
bugging, Instruction-grain Lifeguards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

1. Introduction
Given the industry-wide shift to chip multiprocessors (CMPs), the
path to high performance in the immediate and foreseeable future is
through parallel processing. Perhaps the key limitation to exploit-
ing this raw performance potential is the ability of programmers
to successfully write parallel software. Unfortunately, parallel pro-
gramming is a notoriously difficult task: history has taught us that
as difficult as it is to avoid software bugs in single-threaded1 code,
bugs are even more problematic in multithreaded (parallel) code.

There is a large body of work on tools that help diagnose and
fix software bugs, including tools that run before [3, 11, 13], dur-
ing [2, 12, 21, 31, 37], and after [27, 45, 46] software execution.
Many of these tools are complementary, and each has its own
strengths and weaknesses. One particularly promising class of tools
is instruction-grain lifeguards [29,31,32,35,37]: these tools run dy-
namically (online) with the application, performing sophisticated
instruction-by-instruction analysis in software to identify bugs and
sometimes even repair them (or limit their damage). Compared
with static tools that analyze code before it executes [3,11,13], life-
guards typically report fewer false-positives, because they can di-
rectly observe the monitored application’s dynamic behavior (e.g.,
pointers, control flow, run-time inputs, etc.). Compared with post-
mortem tools that analyze code after it crashes [27, 45, 46], life-
guards may be able to capture software bugs earlier (i.e. before a
crash) and more accurately (based upon instruction-grain dynamic
behavior from the start of execution, and not just from a recent win-
dow of activity).

While instruction-grain lifeguards offer compelling advantages,
their main disadvantage is run-time overhead. Fortunately, we re-
cently demonstrated [5, 6] that in the case of monitoring single-
threaded applications, a set of hardware-based lifeguard accelera-
tors can dramatically improve performance to the point where the
remaining overheads are relatively modest. Namely, the overhead
drops from 3–5X to 1.02–1.5X for a number of diverse lifeguards.
In this study, we explore how this accelerator framework can be
extended to efficient parallel monitoring of multithreaded (paral-
lel) applications.

1.1 Challenges in Online Parallel Monitoring of
Multithreaded Applications

Today, the only practical way to use instruction-grain lifeguards
to monitor a parallel application is to time-slice the multiple ap-
plication threads onto a single processor and analyze the resulting
interleaved instruction stream sequentially. As we observe later in
our experimental results, the performance of this state-of-the-art
approach is unacceptably poor because neither the application nor

1 In this paper, we use “single-threaded” as a shorthand for any execution
with at most one active application thread at a time.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147963668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the lifeguard can enjoy parallel speedups. To enable both the ap-
plication and the lifeguard to operate in parallel with high perfor-
mance, we must overcome three key challenges: (i) adapting the
three hardware accelerators from our earlier study [5, 6] to work
for multithreaded applications, (ii) capturing inter-thread data de-
pendences between the application threads and reproducing their
effects appropriately in the lifeguard processing, and (iii) ensuring
the multiple lifeguard threads atomically access their shared view
(called metadata) of the application’s state at negligible cost.
Parallelizing Lifeguard Hardware Accelerators. The three life-
guard accelerators described in our earlier study [5, 6] are inheri-
tance tracking, idempotency filters, and metadata-TLBs. These ac-
celerators, which are applicable to stream-based lifeguard frame-
works such as LBA [4] and DISE [8], are a key enabler for on-
line, instruction-grain monitoring. Each showed significant perfor-
mance gains, and in combination they improved lifeguard perfor-
mance by a factor of 2–3X when monitoring single-threaded ap-
plications. However, because of remote conflicts by other threads,
the three accelerators require significant modifications to monitor
multithreaded applications correctly.
Capturing and Enforcing Inter-Thread Data Dependences.
A second major challenge in using lifeguards to monitor mul-
tithreaded software is capturing the interactions between appli-
cation threads and translating them into appropriate synchro-
nization amongst the parallel lifeguard threads. While there has
been a significant body of work on capturing inter-thread depen-
dences for the sake of deterministic replay and post-mortem analy-
sis [14,18,22,26,27,45,46], our requirements for lifeguard analysis
are somewhat different. For example, our key metric is end-to-end
performance of the online lifeguard analysis (as opposed to stor-
age size of the compressed log). In addition, as highlighted later in
the paper by our accelerator modifications, we must also solve the
problem of logical races—inter-thread effects that are not reflected
in coherence traffic (e.g., a race between a memory access and a
free()).
Ensuring Metadata Access Atomicity. The third major challenge
in using parallel lifeguards to monitor multithreaded software is
that the lifeguard threads maintain shared metadata corresponding
to the application’s state, and these metadata must be atomically
read and updated by the parallel threads. Because nearly every
application instruction may dictate that a lifeguard read and/or
update these metadata, the cost for this atomicity must be nearly
free.

1.2 Related Work
While there have been a number of hardware proposals for accel-
erating specific classes of lifeguard analysis algorithms [9, 10, 39,
41,42,47], our goal is to provide a flexible framework that supports
parallel execution for a diverse range of lifeguards.

Chung et al. [7] enhances DBI with transactional memory
for monitoring multithreaded applications. It shows that software
transactional memory (STM) incurs 41% more overhead than the
DBI overhead. In other words, given typical DBI slowdowns of
10-100X, STM incurs another 4.1-41X slowdowns. Nagarajan and
Gupta [25] proposes enhancing DBI with hardware modifications
to cache coherence so that an application operation and its corre-
sponding lifeguard handler may be executed atomically. Similar to
Chung et al. [7], this work suffers from the high overhead of DBI,
reporting 5-10X overhead.

Regarding capturing and enforcing inter-thread dependences,
while our approach builds upon the central insight of previous
designs [14, 18, 20, 22, 26, 27, 34, 45, 46] that coherence traffic
can help us track inter-thread dependences, our final design is
optimized for the requirements of lifeguards, as described later in
this paper, including the need to handle logical races. Our solution

to the logical race problem uses a mechanism similar to one used
in Capo [23] for a completely different purpose (i.e., avoiding
monitoring during system calls).

Concurrent with this work, Goodstein et al. [16] explored an
alternative approach to parallel monitoring that requires little or no
hardware support, but which can result in some number of false
positives.

Finally, there has also been work on parallelizing a lifeguard
that is monitoring a single-threaded application [33, 36]; these ap-
proaches are orthogonal and complementary to our focus on moni-
toring multithreaded applications.

1.3 Contributions
This paper makes the following research contributions:

• We present ParaLog, the first design of a system enabling
fast online parallel monitoring of multithreaded parallel ap-
plications. Our design, which builds upon LBA [4], enables
software-defined lifeguards to be ported from single-threaded
to multithreaded monitoring with minimal effort.

• We demonstrate how the three hardware accelerators that we
proposed earlier [5,6] as key enablers of online single-threaded
monitoring can be modified to support online multithreaded
monitoring. We present our system design (including its accel-
erators) for both Sequentially Consistent and Total Store Order-
ing processors.

• We identify the problems of logical races, remote conflicts, and
metadata access atomicity, and present novel solutions based
on techniques we call conflict alerts, delayed advertising, and
synchronization-free fast paths.

• We implement and evaluate our design on a 16 core simulated
CMP, using benchmarks from SPLASH-2 and PARSEC and
two lifeguards: a data-flow tracking lifeguard and a memory-
access checker lifeguard. Our results show that (i) our parallel
accelerators improve performance by 2–9X and 1.13–3.4X for
our two lifeguards, respectively, (ii) we are 5–126X faster than
the time-slicing approach required by existing techniques, and
(iii) our average overheads for applications with eight threads
are 51% and 28% for the two lifeguards, respectively.

2. Background: Online Sequential Monitoring
This section presents background material on instruction-grain life-
guards, general-purpose (sequential) lifeguard platforms, and hard-
ware accelerators for sequential monitoring.
Instruction-Grain Lifeguards. Instruction-grain lifeguards often
have common structures, as observed by previous works [5,6,30,
31]. First, a lifeguard often maintains a piece of state (called meta-
data or shadow state) for every memory location (and/or register)
in the application. Second, if executed application instructions are
regarded as events, then the lifeguard is composed of a set of event
handlers that are triggered by certain application events. Third, life-
guard event handlers usually center around the metadata: updating
the metadata as a result of an event, or reading the metadata for
invariant checking.

For example, the TAINTCHECK lifeguard detects memory-
overwrite-based security exploits (e.g., buffer overflow attacks) by
monitoring suspect data in the application’s address space [32]. It
maintains for every memory location a 1-bit “tainted” state, which
is initialized to untainted. Unverified input data, such as those from
the network or from untrusted disk files, are marked as tainted.
TAINTCHECK tracks the propagation of tainted data: For each ex-
ecuted application instruction, TAINTCHECK computes the tainted
state of the destination of the instruction by performing a logi-
cal OR operation on the tainted states of all the source operands.

rare events

update events

event-capture
runtime

(e.g., DISE, LBA)

application

event
mux

malloc/free - R
lock/unlock - R
syscalls, etc - R
addr. computation - C
memory access - C
data movement - U
computation - U

ra
re

fr
eq

ue
nt

event stream lifeguard

rare events

update metadata

check metadata

handlers

IT

IF

metadata

alloc/init

R

C
U

M-TLB

Figure 1. General-purpose online sequential monitoring platform. The left and right halves may run on different cores (as in LBA).

TAINTCHECK reports a security violation if tainted data are used
in critical ways, such as in jump target addresses or in the format
strings of printf-like calls.

General-Purpose Sequential Lifeguard Platforms. In software-
only solutions, lifeguards are implemented on top of dynamic bi-
nary instrumentation (DBI) systems [2, 21, 31]. However, these
software-only solutions often incur 10–100X slowdowns [28, 31,
40]. The large slowdowns result from two orthogonal types of
overheads: (i) the DBI cost, such as extracting and delivering in-
struction events; and (ii) the overhead of lifeguard event handlers,
which are invoked on (nearly) every application instruction. Be-
cause software-only solutions are far too slow, several recent stud-
ies exploit hardware designs that address these overheads. In this
paper, we are mainly interested in general-purpose hardware so-
lutions, which efficiently support a wide range of lifeguards, as
opposed to hardware proposals that focus only on specific life-
guards [9, 10, 38, 42, 47, 48]. We believe that both flexibility and
efficiency are important for making an impact on future processors.

Figure 1 depicts a general-purpose lifeguard platform for moni-
toring sequential applications [6]. On the left, as the monitored ap-
plication executes, the event-capture hardware extracts information
of dynamic instructions and creates a stream of event records. The
dashed box illustrates examples of application events. On the right,
the event delivery hardware retrieves records from the event stream,
and issues lifeguard event handlers that are registered by the life-
guard software for the corresponding event types. These hardware
components significantly reduce overhead (i) above. However, the
remaining overhead is still significant (e.g., 3–5X slowdowns [4]).

Three Hardware Accelerators for Sequential Monitoring. To
reduce overhead (ii) above, in an earlier study [5, 6] we identi-
fied three common sources of lifeguard event handlers’ overhead
by studying a wide range of lifeguards, and proposed three hard-
ware accelerators for addressing them, as shown in Figure 1. First,
propagation tracking (e.g., in TAINTCHECK), which often requires
frequent metadata updates, is accelerated by Inheritance Track-
ing (IT). IT tracks the inherits-from information for application
registers in hardware, significantly reducing the number of deliv-
ered metadata update events. Second, invariant checks using meta-
data can be very frequent. However, if the metadata have not been
changed since a previous check, a later check on the same metadata
can be idempotent. Idempotent Filters (IF) cache a small number
of recently seen checks to filter out idempotent (thus redundant)
checks. Third, metadata address computation is performed in al-
most all handlers, and may cost more than half of the total instruc-
tions in a simple handler. Metadata-TLB (M-TLB) provides a fast
lookup table to speed up this operation. These three accelerators are
useful for a wide variety of lifeguards [6], including those detect-
ing memory-access violations [29,31], data races [37], and security
exploits [32, 35].

In our earlier work [5, 6], we implemented the three hardware
accelerators in a Log Based Architectures (LBA) lifeguard plat-
form. LBA augments every core in a chip multiprocessor with life-
guard monitoring hardware, including event capture, event deliv-
ery, and hardware accelerators, as shown in Figure 1. Given users’
relative preferences of performance, power, and correctness, life-
guard monitoring can be dynamically enabled. A monitored appli-
cation, which must be single-threaded, runs on one core, and the
lifeguard runs on another core. The event stream is instantiated as
a log buffer (e.g., 64KB) in the last level on-chip cache. Compres-
sion techniques can successfully reduce the average size of an event
record to less than 1 byte [4]. If the log buffer is full, then the ap-
plication core stalls; if the log buffer is empty, then the lifeguard
core stalls. LBA supports damage containment at the system call
boundary by stalling the application at (specified) system calls un-
til the lifeguard finishes processing/checking the remaining records
in the log buffer. Combining the three hardware accelerators, LBA
achieves lower than 50% slowdowns for a number of diverse life-
guards.

Naturally, the constraint that the framework described above
is unable to handle multithreaded applications presents a serious
limitation in modern multicore environments.

3. Online Parallel Monitoring: Design Overview
In this paper, we propose ParaLog, a general-purpose platform
for online monitoring of multithreaded parallel applications, as
shown in Figure 2. Compared to Figure 1, components with new
features for parallel monitoring are highlighted. Our goal is to
support correct and efficient parallel monitoring while minimizing
the lifeguard developers’ efforts to port a single-threaded lifeguard.
To achieve this goal, our design addresses the following three major
challenges.
Application Event Ordering. Every application thread is moni-
tored by a corresponding lifeguard thread. To reduce delays, each
lifeguard thread greedily processes its application thread’s event
stream asynchronously with respect to other event streams, ex-
cept where necessary to preserve lifeguard correctness. Specifi-
cally, because multiple application threads share the same address
space, their data sharing and synchronization activities will result
in dependences among instruction events. To maintain the correct
view of the application’s state, the lifeguard must process applica-
tion events in an order that reflects these dependences. In TAINT-
CHECK, for example, if one application thread taints a memory lo-
cation that is read by another application thread, the corresponding
lifeguard threads must process the former event prior to the latter
event, in order to ensure lifeguard correctness. We propose two new
hardware components that capture event orders at the application
side, and enforce event orders at the lifeguard side, respectively.

Our order capturing component is inspired by previous work on
system-wide deterministic replay in multi-processor systems [18,

event stream

event capturing
application
thread 1 application-only

order capturing

lifeguard
thread 1order enforcing

event delivery

accelerators: IT, IF, MTLB

event stream

event capturing
application
thread K application-only

order capturing

lifeguard
thread Korder enforcing

event delivery

accelerators: IT, IF, MTLB

application lifeguardonline parallel monitoring platform

global
metadata

dependence arcs

Figure 2. General-purpose online parallel monitoring platform, highlighting components with new features.

22, 26, 27, 45, 46]. It captures event dependences by observing and
augmenting cache-coherence messages, and records inter-thread
dependence arcs in the event streams, as shown in Figure 2. In par-
ticular, the starting point (thread ID, record ID) of a dependence arc
is recorded in the event stream associated with the receiving end of
the arc. Unlike most previous studies, our design focuses on order
capturing at the application level within a monitored application,
rather than for the entire system, for two reasons: (i) user-mode
lifeguard code should not have visibility into OS kernel state; and
(ii) multiple separate applications can be monitored at the same
time with little interference. However, it entails that dependence
arcs related to OS kernels will be lost. We describe our mechanism
to compensate for this in Section 5.4. While we primarily focus
on detailed FDR-style [45] dependence capturing, our results show
that less detailed dependence capturing can reduce hardware com-
plexity with only a minimal loss in lifeguard performance.

Our order enforcing component enforces the captured arcs,
without modification to the lifeguard-specific code. If there is a
dependence arc from event i in event stream t to event i′ in event
stream t′, the order enforcing components collaborate to ensure that
only after lifeguard thread t finishes processing event i can event i′

be delivered to lifeguard thread t′. Thus, each lifeguard thread can
safely process its delivered event stream, without concerns with
inter-thread application dependences. The basic idea is as follows,
illustrated with the above example. The order enforcing component
for any lifeguard thread t publishes globally a progress indicator,
progresst, indicating the record ID of the last event record pro-
cessed by t. Because of the above dependence, event i′ has an as-
sociated dependence record (t, i). Upon seeing dependence (t, i),
the order enforcing component for thread t′ reads progresst, and
only delivers event i′ if progresst > i. If the condition is false, a
generic “dependence stall” event is delivered to thread t′ instead.
We will describe more details in Sections 5.1 and 5.2, including
how to efficiently implement the globally advertised progress indi-
cators.

Moreover, we mainly assume the Sequential Consistency (SC)
memory model in our discussions. However, our solution can be
extended to Total Store Ordering (TSO), as will be detailed in
Section 5.5.

Accurate Asynchronous Analysis. As mentioned above, each
lifeguard processes asynchronously its application thread’s event
stream, with respect to other lifeguards, but also with respect to the
execution of the application. While the event transport mechanism
introduces a delay between fault exercise and error detection, we
contain the impact of any faults or vulnerabilities in the application
space by enhancing the OS to suspend the application threads on
system call boundaries and permitting execution to continue only

after the lifeguard determines that the system call inputs are safe,
similar to [6].
Metadata Access Atomicity. As discussed in Section 2, lifeguards
typically maintain metadata state for every memory location in the
application’s address space. In parallel monitoring, this means that
all lifeguard threads share a global data structure containing meta-
data, as shown in Figure 2. Therefore, all metadata accesses must be
properly synchronized. Note that metadata accesses are performed
in nearly all lifeguard event handlers. A naive approach is to apply
synchronization primitives to all metadata accesses. However, fre-
quent lifeguard event handler code paths are typically composed of
only a few instructions (e.g., less than ten instructions) [6], while an
atomic x86 instruction (e.g., xchg) locks the off-chip memory bus,
often requiring over a hundred cycles. Thus, such a naive approach
can lead to prohibitively high overhead. Fortunately, our design for
capturing and enforcing dependence arcs provides the key ingre-
dients for avoiding synchronization overheads. This is detailed in
Section 5.3, where we show that for a wide range of lifeguards (as
characterized by properties we define), no explicit synchronization
is required to preserve metadata access atomicity in an event han-
dler’s frequent “fast path” (synchronization-free fast paths).
Local Hardware Accelerators with Possible Remote Conflicts.
The hardware accelerators all maintain monitoring states: Inheri-
tance Tracking (IT) keeps inherits-from information, Idempotent
Filters (IF) cache recently seen check events, and Metadata TLB
(M-TLB) caches frequently used metadata page mappings. Note
that some events may conflict with (i.e., invalidate) an accelerator’s
state. For example, a malloc/free event may significantly change
metadata, thus conflicting with an accelerator’s state. Moreover, if
A is an inherits-from address recorded in IT (implying that a reg-
ister’s metadata is inherited from A’s current metadata), then any
instruction that overwrites A is a conflicting event (because it may
change A’s metadata) [6]. In the sequential setting, an accelerator
is able to observe all the events and detect all the conflicts. It flushes
or invalidate its state upon seeing a conflicting event.

However, detecting conflicts is a major challenge in the paral-
lel setting. As shown in Figure 2, an accelerator can only observe
events local to a lifeguard thread, while a remote event may be con-
flicting. In Section 4, we propose two mechanisms (delayed adver-
tising and conflict alerts) for dealing with remote conflicts by ex-
ploiting the existing dependence arcs and employing a broadcasting
mechanism, respectively.

4. Accelerating Online Parallel Monitoring
Hardware accelerators are essential to achieve low overhead life-
guard monitoring, as described in Section 2. The three hardware ac-

reg src
addr RID

%eax A i
%ebx - -
Global RID: i -1

after i:

Lifeguard Thread 0 Lifeguard Thread 1

(a) Example instruction event streams to be
consumed by two lifeguard threads

reg src
addr RID

%eax A i
%ebx A i
Global RID: i -1

after i+1

reg src
addr RID

%eax A i
%ebx A i
Global RID: i -1
after i+2: deliver

mem_to_mem(B, A)
reg src

addr RID
%eax C i+3
%ebx A i
Global RID: i -1

after i+3

reg src
addr RID

%eax C i+3
%ebx D i+4
Global RID: i + 2

after i+4

i: mov %eax ← A

i+1: mov %ebx ← %eax

i+2: mov B ← %ebx

i+3: mov %eax ← C

i+4: mov %ebx ← D

j: mov A ← %edx
depend_on(0, i)

(b) IT state and event delivery at thread 0 (RID: Record ID)

progress: i progress: i progress: i

progress: i progress: i + 3

IT state

Figure 3. Handling instruction-level remote conflicts for IT, by setting progress to be the minimum RID in the table.

celerators (IT, IF, M-TLB) were shown to improve the performance
of a number of interesting lifeguards [5, 6]. However, these tech-
niques do not immediately translate to the parallel world. In Sec-
tion 4.1, we analyze the hardware accelerators to illustrate the ma-
jor challenge: efficiently detecting and handling remote conflicts.
We describe two mechanisms that target instruction-level remote
conflicting events and high-level remote conflicting events in Sec-
tion 4.2 and 4.3, respectively. In Section 4.4, we describe how to
support IT, IF, and M-TLB with these mechanisms.

4.1 Key Challenge in Accelerating Parallel Monitoring:
Remote Conflicts

The three hardware accelerators all maintain monitoring states for
accelerating lifeguard operations. For correctness, all or parts of
monitoring states must be flushed or invalidated upon certain con-
flicting events; otherwise the monitoring states may be corrupted.
In a sequential setting, all the events are seen by an accelerator and
therefore it is able to detect conflicts locally. However, in parallel
monitoring, an accelerator can only see events local to a lifeguard
thread, thus posing the challenge of efficiently handling instruction-
level and high-level remote conflicts.
IT (Inheritance Tracking). Figure 3 depicts a scenario where
monitoring correctness of TAINTCHECK is violated because of an
instruction-level remote conflict for IT. As shown in Figure 3(a),
two event streams are being consumed by two lifeguard threads.
Figure 3(b) shows the monitoring states maintained in hardware at
thread 0. We begin by describing how IT works. Let us focus on
event stream 0 and ignore the RID-related fields. As described in
Section 2, TAINTCHECK maintains 1 tainted bit per memory loca-
tion and tainted state for every register of the application. It tracks
the propagation of tainted states and detects critical uses of tainted
locations as security violations. Therefore, for every event in event
stream 0, TAINTCHECK must perform a corresponding metadata
operation. For example, for event i, metadata of A must be copied
to metadata of %eax. Similarly, for event i + 2, metadata of %ebx
must be copied to metadata of B. It is easy to see that events i to
i + 2 actually propagate tainted state from A to B. Without IT,
the event delivery component invokes a TAINTCHECK event han-
dler for every event, performing the above metadata operations. IT
aims to reduce the number of delivered events by tracking inherits-
from addresses for all the application registers. There is one row
per register in the hardware IT table. For simplicity, Figure 3(b)
shows only the relevant IT table rows. After i, IT records A in row
%eax, without delivering the actual event to TAINTCHECK. Af-
ter i + 1, the IT row %eax is copied to row %ebx, also without
event delivery. After i + 2, IT finds out that A is copied to B, and
delivers to TAINTCHECK a single memory to memory copy event,
mem to mem(B,A). In this way, IT delivers a smaller number of
events instead of one for each record, significantly reducing the

amount of work for the lifeguard. However, because the read of
metadata associated with A is delayed, the system must compen-
sate for potential conflicting events that intervene.

As shown in Figure 3(a), j represents a conflicting event: it over-
writes an inherits-from location recorded in the IT table. If event j
were delivered before i+2, then TAINTCHECK would overwrite the
metadata state for A. By the time that mem to mem(B,A) were
delivered, the original metadata state for A would have been lost
and TAINTCHECK would copy A’s new state to B’s metadata. This
is a wrong operation! In a sequential setting, this problem is solved
by checking every store address against all the recorded inherits-
from locations for conflicts [6]. Upon detecting a conflict, the af-
fected IT rows are flushed: delivered to the lifeguard then cleared.
For example, in the above conflicting scenario, event i and i + 1
will be delivered before j, leading to correct TAINTCHECK oper-
ations. However, this proposed solution is incomplete for parallel
monitoring because IT at thread 0 does not see event j at thread 1.

Besides instruction-level conflicts, a lifeguard may require
flushing the IT table upon high-level events (such as malloc/free).
An example is MEMCHECK [31], a memory checking lifeguard
that tracks the propagation of the initialized states of memory loca-
tions [31]. Therefore, IT requires handling of both instruction-level
and high-level remote conflicts.

IF (Idempotent Filters). IF caches recently seen check events,
whose types are configurable by lifeguards. If an incoming event
hits in the IF cache, the event is regarded redundant and not deliv-
ered to the lifeguard. IF cache entries are invalidated upon certain
events that are also configurable. For example, ADDRCHECK [28]
is a lifeguard that checks whether the memory location in every
read/write has been allocated. Two checks to the same address are
idempotent if there is no malloc/free in between. Therefore,
IF can be configured to cache memory events, and invalidated upon
high-level malloc/free events. Moreover, in general, it is pos-
sible that instruction-level events that change metadata states may
also trigger IF cache invalidation. Therefore, IF also requires han-
dling of both instruction-level and high-level remote conflicts.

M-TLB (Metadata TLB). M-TLB uses a fast hardware lookup ta-
ble to maintain the most frequently used mappings between appli-
cation virtual page addresses and metadata virtual page addresses.
Given an application data address in an event, the metadata address
can be efficiently computed using M-TLB. Typically, a lifeguard
dynamically allocates metadata pages when the corresponding data
addresses are first used (e.g., by malloc). Simple lifeguard im-
plementations do not need to worry about de-allocating metadata
pages; they simply mark the metadata states to be invalid. In such
cases, M-TLB entries will always be valid. However, more sophis-
ticated lifeguard implementations may de-allocate metadata pages
for saving system space. De-allocations can only happen after high-

level application events, such as free. In this situation, remote
high-level events may conflict with M-TLB states.

4.2 Delayed Advertising for Instruction-Level Remote
Conflicts

We make the following observations regarding the relationship of
dependence arcs and instruction-level remote conflicts. If an accel-
erator keeps monitoring state related to event i and a remote event
j conflicts with this state, event i and event j must access the same
application address and one of them must be a write. Therefore,
event i and event j must be ordered by dependence arc(s), as illus-
trated by Figure 3. However, event j may not be ordered relative to
the later event (e.g., i + 2) that manifests the remote conflict. To
make matters worse, dependence arcs are recorded at the receiving
ends because of the nature of the order capturing mechanism. As a
result, an accelerator may never be aware of the dependence event
that causes the conflict.

Our solution exploits the enforced order for the dependence
arc(s) from i to j. As described in Section 3, the order enforcing
component for a lifeguard thread t publishes globally progresst,
indicating the record ID of the last event processed by t. In the
example of Figure 3, thread 1 checks the progress of thread 0 by
reading progress0, and delivers event j only if progress0 > i.
Therefore, we can control thread 1’s progress by delaying the
advertising of progress0. Intuitively, if the monitoring state related
to event i is kept in an accelerator, we can regard event i as still
being processed. Only after the state of i is no longer kept by
accelerators do we report globally that all lifeguard processing
related to event i completes.

Our solution is illustrated in Figure 3(b). We add an RID
field for every IT table row to record the RID associated with
the inherits-from address. The field is copied along with other
fields for a register-to-register copy operation (e.g., i + 1). The
progress indicator progress0 is computed as the minimum of all
the recorded RIDs. In this way, thread 1 will deliver j only after
i + 4, thus successfully avoiding the remote conflict from causing
any problem.

Once an RID is recorded in an IT row of register R, it stays
until the row is overwritten or flushed under one of the following
situations. First, register R is overwritten in a later event. Second,
because we continue to monitor local conflicts as in the sequential
setting, if a local event conflicts with the row of R, then we flush
the row by delivering an event to the lifeguard. Third, in case of a
dependence stall (waiting for a remote thread), we flush all the IT
entries, and publish an accurate progress. In this way, we guarantee
that there is no deadlock resulting from delayed advertising. Fi-
nally, we support an optional threshold. If progresst for a lifeguard
thread t is smaller than the record ID of the last event processed
by t by more than the threshold, we forcefully flush IT entries to
refresh progresst.

Regarding the computation of the minimum of the RIDs in
the IT table, this operation is not in the critical path. Because our
purpose is to delay the delivery of event j, it is always correct to
report an older (smaller) minimum as progress. Therefore, we just
need a reasonably fast mechanism for this computation. Moreover,
we can reduce the frequency of the computation by checking to see
whether or not the IT table row containing the previous minimum
RID has been overwritten or flushed.

4.3 ConflictAlert Messages for High-Level Remote Conflicts
High-level remote conflicts have different characteristics from
instruction-level remote conflicts. Consider the case of a free
high-level event F and a memory read event M that accesses a lo-
cation in the freed address range. If an accelerator maintains moni-
toring states related to M , then F may be a conflict (depending on

the lifeguard). However, unlike instruction-level remote conflicts,
F may not be ordered relative to M by any dependence arc. The
free library call often creates free block information close to the
boundaries of the address range, while M may access a location
far away from the boundaries. Therefore, there may be no cache
coherence messages linking the two events although F and M are
logically related, creating a logical race. In such cases, the solution
in Section 4.2 does not apply. On the other hand, high-level events
are much less frequent than instruction-level events, opening new
opportunities for solving the problem.

We propose to employ a mechanism that broadcasts alert mes-
sages for specified high-level events, called ConflictAlert messages.
The basic idea is as follows. The event capturing component at the
application side provides the mechanism for sending ConflictAlert
messages. Consequently, a customized wrapper library can inter-
cept important high-level library calls and broadcast ConflictAlert
messages. Upon receiving such a broadcast message, the event cap-
turing component associated with each executing thread creates a
record in its event stream. At the lifeguard side, such a Conflict-
Alert record triggers invalidation or flushing of accelerator states.
Our design enables the lifeguard to configure the set of interesting
high-level events at lifeguard initialization time. The details of the
ConflictAlert mechanism will be described in Section 5.4.

4.4 Supporting Three Hardware Accelerators
As discussed in Section 4.1, in general, IT and IF require handling
both instruction-level and high-level remote conflicts, while M-
TLB requires handling only high-level remote conflicts. For IT and
IF, we employ Delayed Advertising for avoiding instruction-level
remote conflicts from corrupting metadata states. For IT, IF, and
M-TLB, we employ ConflictAlert messages for high-level remote
conflicts. Upon seeing a ConflictAlert record, IT may flush the
IT table according to the configuration specified by the lifeguard.
Likewise, IF may invalidate its cache, and M-TLB may flush its
fast lookup entries.

5. Capturing and Enforcing Event Ordering
To handle fine-grain dependence events, ParaLog makes use of
cache-coherence messages. However, it differs from FDR [45] and
related work in that (i) dependences are tracked per-application
rather than system-wide, (ii) the sequence of dependence events are
gathered per application-thread rather than centralized, and (iii) the
dependence information is consumed online (ideally on other cores
from the same die as the application cores). While recent work [23]
investigated property (i) in the context of special hardware, we
assume a conventional cache-coherent multicore processor.

5.1 Capturing Fine-Grain Application Dependence Events
The event capturing components on which the monitored applica-
tion runs (Figure 2) collect information on every dynamic event
in the monitored application, including retired instructions, sys-
tem calls, and important library calls (such as malloc/free) as
in [5,6]. We extend this design with an order capturing component
to record happened-before dependences exposed by cache coher-
ence activities, as depicted in Figure 4(a).

Similar to FDR, we augment each processor core with a counter
that is incremented by one when an instruction/µop retires. (This
counter is used as the aforementioned record ID for the corre-
sponding event.) We also augment every L1 cache block with a
field to record the counter value when the cache block was last
accessed. The counter value is piggy-backed onto cache coher-
ence messages. In our system, however, these counter values are
(thread id, counter) tuples, and the processor maintained tuple is
saved and restored by the OS during context-switch events. Further,

L1 Cache

Decompress Core Progress Base Reg

+

Event Record
(thread t, counter i)
DependenceArc

t

progresst > i?
no arc

enable
Coherence ack?

or
ConflictAlert

Compress

Event
Stream
Buffer

coherence acks
to other cores

L1 Cache
Producing

Core

inst counter Consuming
Core

(a) (b)

Event Record DependenceArc

L2 Cache

(thread t, counter j)

Figure 4. (a) Components for producing dependence arcs. As coherence messages arrive, they may generate dependence arcs, which are
associated with pending events. As instructions retire, their associated records are committed to the stream. (b) Components for coordinating
consumption of dependence arcs. As events are decompressed from the stream, each is checked if it has an associated dependence arc. If not,
it may be dispatched for consumption; otherwise, a check determines if the dependence has been resolved.

the dependence arcs generated by coherence messages are stored
into the event stream of the thread running on the core that caused
the coherence event. Logically then, at least, the event stream con-
tains both per-thread application operations (e.g. instructions) and
per-thread dependence events.

We also consider an alternative design that reduces hardware
complexity by not tagging cache blocks; the current per-core
counter is (conservatively) sent in coherence messages instead of
the more accurate per-cache block counter value of the preced-
ing scheme. Because the per-core counter is often larger than the
per-block counter, this may introduce artificial delays in lifeguard
processing. However, our results in Section 7 show that the loss in
lifeguard performance may be minimal.

5.2 Enforcing Event Ordering During Lifeguard
Consumption

To see how dependence events are consumed online, assume that
the event stream includes a dependence event indicating that appli-
cation thread t’s instruction i happened before application thread
t′’s instruction i′. In this case, the lifeguard monitoring thread t′

(i.e., Lifeguardt′) will wait until the lifeguard monitoring thread t
(i.e., Lifeguardt) has completed its work associated with i before
Lifeguardt′ begins processing i′.

To support the checking of Lifeguardt’s progress, we propose
the hardware coordination mechanism shown in Figure 4(b) and
inspired by CNI [24]. The threads share a memory-mapped table
of progress counters, indexed by thread id; progresst contains the
counter value corresponding to the last advertised progress made
by thread t. Each core maintains a hardware pointer to this table
(the Core Progress Base Register). When the consumer hardware
processes a dependence arc, it extracts the thread id, t, and counter
value, i. Using t as an offset into the table, the hardware can de-
termine the current counter value for thread t, progresst, and deter-
mine whether it is greater than i. If so, the local event is delivered.
If not, the consumer spins, re-reading progresst periodically, until
the desired progress value is reached. A “dependence stall” event
is delivered to Lifeguardt′ in the meantime. Note that each core’s
counter will be maintained on a separate cache line to avoid exces-
sive coherence traffic.

5.3 Enforcing Metadata Access Atomicity
While the mechanism described above ensures that lifeguards will
process individual instructions in an order consistent with the mon-
itored application, there is one other synchronization requirement

for proper lifeguard execution: we must ensure that concurrently-
executing lifeguards do not inadvertently corrupt their metadata
due to a lack of mutual exclusion. If we were running the life-
guards on a machine that supported transactional memory [17],
this requirement would be trivially satisfied if each lifeguard event
handler was executed as a separate transaction. Because hardware
transactional memory support is not widely available today (and
was not assumed in our experiments), we also need a solution that
works on conventional machines.

The good news is that in the simple case where application reads
and writes translate only into corresponding reads and writes of
the associated metadata by the lifeguard, the event ordering mech-
anism described in Section 5.2 is sufficient to satisfy all lifeguard
synchronization concerns, since the read-after-write (RAW), write-
after-read (WAR), and write-after-write (WAW) dependences for
the metadata accesses will already be handled properly by the de-
pendence orders captured from the application. In practice, how-
ever, lifeguards may perform not only a read but also a write or a
read-modify-write of metadata in response to an application read.
Because cache coherence does not dictate an ordering between
application reads on separate processors, their corresponding life-
guard handlers may run concurrently, possibly resulting in simulta-
neous read-modify-write attempts to the same metadata locations.
To prevent these unsafe scenarios from corrupting metadata, we
need additional synchronization in certain cases, as discussed be-
low.

Note that another characteristic of metadata can potentially
cause a surprising data corruption problem: when the metadata
is much smaller than its corresponding application data (e.g., a
single bit of metadata tracks a byte of application data), writing
to a metadata location may require a read-modify-write to update
individual bits within a byte. Hence the seemingly benign case of
performing concurrent metadata writes in response to concurrent
application writes to separate memory locations (A and B) may
cause a data hazard if metadata(A) and metadata(B) fall within
the same byte (or minimal granularity of data access). We refer to
this problem as a bit-manipulation data race. Fortunately, we are
able to avoid this problem for the lifeguards and architecture we
study by mapping the metadata such that whenever metadata(A)
and metadata(B) fall within the same byte, A and B fall within
the same cache line (and hence any write conflicts across applica-
tion threads are already captured by the mechanism described in
Section 5.2).

In summary, the order-enforcing mechanism described in Sec-
tion 5.2 automatically guarantees metadata access atomicity with-

out any lifeguard modifications provided that the following three
conditions are met:

1. there is a one-to-one mapping from application data accesses
to lifeguard metadata accesses (e.g., a handler for a write to A
accesses only metadata(A));

2. application reads translate only into metadata reads; and

3. metadata bit-manipulation races are prevented as described
above.

Note that conditions 1 and 3 are true for typical lifeguards. Condi-
tion 3 is typically satisfied because even if just a single metadata bit
is used to track a 4-byte application word, with cache line sizes of
32 bytes or larger, accesses to different cache lines typically result
in accesses to different metadata bytes.

Condition 2 is true for a large number of lifeguards, including
TAINTCHECK and ADDRCHECK. However, some lifeguards (e.g.,
the data race detector LOCKSET [37]) violate condition 2: i.e., the
lifeguards may perform metadata writes in response to application
reads. To avoid potential data races to metadata, the lifeguard de-
velopers must use additional software synchronization (e.g., locks)
to protect the metadata writes in read handlers. For example, one
approach is to divide read handlers into a fast, frequent code seg-
ment and a slow, infrequent code segment, where the fast segment
performs read-only metadata accesses, while the slow segment may
perform read-write metadata accesses. If the slow segment acquired
a lock and only performed a single write to metadata, then two read
handlers (denoted Ha and Hb) would be properly synchronized, as
follows. If both Ha and Hb perform writes in the slow segment,
then the lock serializes Ha and Hb. If Ha performs reads in the
fast segment but Hb performs a single metadata write to the same
location in the slow segment, then Ha may see the value either
before or after it is written by Hb, but both values are acceptable
because the corresponding application reads are not ordered. Thus,
we can use this synchronization-free fast paths approach to obtain
good performance without sacrificing atomicity.

In practice, we observed that a wide range of lifeguards [29,
30, 32]—including TAINTCHECK—can be easily ported to sat-
isfy these conditions, thereby preserving metadata access atomicity
while also achieving reasonably high performance.

5.4 Implementing ConflictAlert to Effectively Handle System
Calls and Logical Races

We extend the baseline mechanisms described in Section 5.1 to
handle cases where dependence arcs are missing: (i) system calls
because we do not capture OS kernel activity; and (ii) logical races
because such races are not reflected in cache coherence traffic
(as described in Section 4.3). Because these high-level application
events are infrequent, we propose to implement a message broad-
casting mechanism, called ConflictAlert, to handle these cases.

The order capturing components provide support for sending
and receiving ConflictAlert messages. The send action is controlled
by software. Note that previous work (e.g., LBA) already provides
a way to instrument system calls and important library calls (via a
wrapper library) for the purpose of obtaining event records for these
high level events. Here, we extend this mechanism to issue requests
for sending ConflictAlert messages. A ConflictAlert message con-
tains information about the related high-level event, including event
type and optionally event parameters (e.g., the affected memory
range as discussed below). Upon receiving a ConflictAlert message,
an order capturing component creates a ConflictAlert record that
contains all the information in the message. A broadcasting mes-
sage can be sent before (after) a system/library call; we call such a
message a CA-Begin (CA-End) message. Note that these messages
act as a serializing event for the issuing thread; it will not proceed

past the message send until it receives an acknowledgement from
the order-capturing components associated with all the other exe-
cuting threads.
Handling Logical Races. For high-level events, such as malloc
and free, lifeguards often only care about the begin or the end
of the events but not both. For example, lifeguards mainly care
about the end of malloc and the begin of free. Our solution
enables lifeguards to specify which types of high-level events they
care about and whether they care about the beginning or ending of
such events. The lifeguards can also specify whether a CA-Begin
or CA-End record with a particular event type should invalidate or
flush IT, IF, and/or M-TLB. As described in Section 4.3, this will
ensure the accelerators correctly handle high-level remote conflicts.
Handling System Calls. For a system call, we typically issue
both CA-Begin and CA-End messages. Because these messages
appear in the event streams of all executing threads, lifeguards are
able to determine precisely whether a memory access in thread t
occurs before, during, or after a system call issued by thread t′.
Such determinations are important in many lifeguards; for example,
ordering memory accesses with respect to read system calls is
crucial in TAINTCHECK. Suppose that thread t issues a memory
load from an address that corresponds to a read buffer. If the
access occurs after the read, the destination will be tainted; if it
occurs before, it may not be. If it is concurrent to the system call,
the lifeguard will probably conservatively consider the destination
to be tainted and possibly warn of the race condition. To enable the
detection of such races, the wrapper library includes memory range
information in the ConflictAlert messages for appropriate system
calls, as discussed next.
Memory Range Parameters. The optional memory ranges associ-
ated with ConflictAlert messages typically may be calculated from
the calling parameters of system/library calls. Given such informa-
tion, for logical races, accelerators’ states can be selectively flushed
or invalidated. For system calls, we can use these ranges to detect
racing conditions between application threads and the OS kernel.

Race detection can be performed in hardware or software. For
hardware-based detection, we add a hardware range table per
thread, which is leveraged at the lifeguard side. Upon seeing a
CA-Begin (CA-End) record, the recorded memory range is inserted
into (removed from) the table. The table has one entry per core in
the system, and always maintains the information for the actively
running application threads. Information for threads that are sched-
uled off can be flushed to memory. Given such a table, the order
enforcing component can detect race conditions by checking event
records against the table.

5.5 Supporting Total Store Ordering (TSO)
In a non-SC memory model, using cache coherence activities to
infer the ordering of concurrent events may result in cycles of
dependences, thus leading to deadlocks in deterministic replay and
when delivering lifeguard events. In this subsection, we describe
how we support TSO, overcoming these challenges.

Previous work on deterministic replay provided an extension to
handle TSO that records data values when a processor observes a
SC-violating behavior [46]. For every pair of R→W conflicting in-
structions where the load violates SC, the corresponding coherence
message is not recorded. Instead, the value of the load instruction
is saved in the log. This ensures that replay remains deterministic,
as the load instruction acquires the correct value from the log. Un-
fortunately, recording data values is insufficient for parallel moni-
toring. In TAINTCHECK, for example, the data value alone fails to
record the propagation behavior, and hence is insufficient for deter-
mining taint status. However, as long as we ensure that the correct
metadata is always available to non-SC reads, our lifeguards re-
main accurate.

vi = <tidi, counteri>

P(v1, A)

C(v0, B)

P(vi, X) = produce version vi for address X

C(vi, X) = consume version vi for address X

P(v0, B)

C(v1, A)

Thread 0 Thread 1

0 Wr(A) Wr(B)

1

2 Rd(B) Rd(A)

Commit
Order

‹ ›

fifl
Log 0 Log 1

Wr(A)

Rd(B)

Wr(B)

Rd(A)

Lifeguard 0 Lifeguard 1

produce_version(v1, A);

process_log(“write”, A);

wait_for_version(v0, B);

process_log(“read”, B, v0);

produce_version(v0, B);

process_log(“write”, B);

wait_for_version(v1, A);

process_log(“read”, A, v1);

(a) (b) (c)

Figure 5. Supporting TSO. (a) An example of accesses that generate a cycle of dependences when coherence activity is used to infer ordering.
(b) The contents of the event stream logs with entries for application instructions and annotations. (c) Actions taken by the lifeguards when
processing their respective logs.

Table 1. Experimental Setup
Simulator description

Simulator Virtutech Simics 3.0.22
Extensions Log capture and dispatch
Target OS Fedora Core 5 for x86
Cache simulation g-cache module

Simulation parameters
Cores 2, 4, 8, 16 cores, 1 GHz clock cycle, in-order scalar, 65nm
Private L1-I 64KB, 64B line, 4-way assoc, 1-cycle access lat., LRU
Private L1-D 64KB, 64B line, 4-way assoc, 2-cycle access lat., LRU
Shared L2 2MB, 4MB, 8MB, 64B line, 8-way, 6-cycle access lat., 4 banks
Main Memory 90-cycle latency
Log buffer 64KB, assuming 1B per compressed record [4]

Benchmarks Input

barnes 16K bodies
ocean Grid size: 258 x 258
lu Matrix size: 1024 x 1024
fmm 32768 particles
radiosity Base problem: -room
blackscholes simlarge
fluidanimate simlarge
swaptions simlarge

Compiled for x86, pthread synchronization primitives

Our TSO solution enables us to reverse non-SC R → W arcs to
become SC W→ R arcs, enabling forward progress. We identify all
the pairs of R → W conflicting instructions where the load violates
SC, as proposed in [46]. The idea is that for each such arc from
thread t to thread t′, we require the lifeguard thread t′ (for the
writer) to create a copy of the previous metadata to be accessed
by lifeguard thread t. When lifeguard thread t sees such an arc,
it requests a copy of the correct metadata before analyzing the
read event. In other words, we require lifeguard threads to create
temporary versioned metadata for dealing with non-SC behaviors.

To implement this, at the application side, we do not record the
R → W dependence. We create a version for the access by combin-
ing thread IDs with the current event record ID at thread t. Thread t
records a “consume version” record in its event stream. The version
number is piggy-backed with cache coherence messages (e.g., with
the ack to a cache invalidation request). Upon seeing the version
number, thread t′ records a “produce version” record in its event
stream.

Figure 5 shows the scheme as it affects (a) the application, (b)
the event stream (log) and (c) the lifeguard, all under TSO. In Fig-
ure 5(a) we observe a memory ordering of ÊËÌÍ, a non-SC cy-
cle. Specifically, thread 0 reads address B first. Later, thread 0 re-
ceives an invalidation for address B. Hardware at the core where
thread 0 runs identifies the potential dependence cycle, and includes
in the coherence reply message a request for generating a version
(<0,2>) of metadata for address B. Additionally, the event record
for Rd(B) is annotated with the version (<0,2>) of metadata the
lifeguard should read before processing. The order capturing hard-
ware at the core where thread 1 runs receives the version number
in the coherence message and discards the dependence. Instead, it
inserts an annotation before the event record for the Wr(B) instruc-
tion so the lifeguard generates the versioned metadata for address
B before overwriting metadata. The event streams for threads 0 and

1 appear in Figure 5(b). Figure 5(c) shows the lifeguards process-
ing their event streams. Lifeguard 0 generates versioned metadata
for address A, processes Wr(A), waits for the versioned metadata
for address B to be generated, and then processes Rd(B). The R
→W dependence has logically been inverted, but the two lifeguard
threads remain correct.

Hardware Accelerators Revisited. Some of the accelerators de-
scribed in Section 4 require slight modifications to work in a TSO
environment. Specifically, both IT and IF are unable to differentiate
among different versions of the same memory location. We solve
this problem by always delivering both the event that accesses ver-
sioned metadata, as well as any pending state that inherits/caches
status of the same address. Given that the number of pairs of ac-
cesses from different threads that violate SC semantics is low [15],
we expect this solution to be the most simple and efficient.

6. Experimental Setup

Simulation Setup. We use the Simics [43] full-system simulator
to model different configurations of sequentially consistent shared-
memory CMP systems. We extend Simics with log record cap-
ture and event dispatch support. We assume a dependence track-
ing mechanism based on RTR [46], modified as described in Sec-
tion 5.1. Table 1 shows the simulation parameters, where all are
modeled under the same technology (65nm). Every benchmark is
run with 2, 4 and 8 application threads on a 4-core, 8-core, 16-core
machine, respectively, devoting half of the cores to the application
and half to the lifeguards. We simulate a two-level cache hierarchy
with private, split L1 caches and a shared, unified, and inclusive
L2. L1 parameters are maintained constant across configurations,
while for L2 we alter only the size as the number of cores increases
in the system. Associativity, access latencies, line size and num-

ber of banks utilized are provided by CACTI [19], as an optimum
configuration for the specific cache size.
Benchmarks. We choose a diverse set of CPU-intensive parallel
benchmarks to “stress test” instruction-grain monitoring. We in-
clude benchmarks from the SPLASH-2 [44] benchmark suite, as
well as from the recently released PARSEC [1] suite. Specifically
for PARSEC, we chose the benchmarks for which (i) the exact
number of generated threads can be controlled by an input param-
eter and (ii) the runtime is not prohibitively long. Although our
proposed technique is not limited by the number of threads running
on the system, it becomes complicated to identify bottlenecks on
the system, and report performance, when there are more applica-
tion and lifeguard threads than available cores. Table 1 shows the
benchmarks used to evaluate our system, along with their corre-
sponding input parameters.
Performance Measurements. For every CMP configuration, we
run every benchmark alone in the system, with monitoring turned
off. We perform functional simulation of the whole system and its
cache hierarchy, taking periodic checkpoints of the system state. In
parallel with the functional simulation, a log of the application is
produced for every interval between two checkpoints, and saved in
the local disk. A native version of the lifeguard we want to simulate
consumes each log in order to produce the metadata state at the
beginning of every interval. To take performance measurements,
we focus on the checkpoints that include the parallel phase of the
application, and we report results only for this phase. We first load
a checkpoint and instantiate the lifeguard we want to simulate. We
initialize the metadata state and start functional simulation of the
system in order to warm up the lifeguards’ L1 data caches. L1 data
caches for the cores that run application threads are already warm
due to the functional simulation of the first step. After the warming
up window, we turn on detailed performance simulation and run for
a given timing window.

Although functional warming of caches is not always safe, we
are confident that lifeguards’ L1 data cache states are warmed up
during performance measurements for two reasons: (i) the ratio
of metadata size per application byte is small (in our case 1 or
2 bits per byte), resulting in much smaller working sets; and (ii)
the measured lifeguard miss rates are consistently 10 to 100 times
lower than application miss rates. Even if our approach were not
accurate enough, this would only result in having a slow lifeguard,
which would make our performance results pessimistic.
Lifeguard Implementation. To evaluate the performance of our
approach, we implemented a parallel version of TAINTCHECK [32]
and a parallel version of ADDRCHECK [28]. Both of the life-
guards require instruction-grain monitoring, while utilizing the full
set of accelerators studied. For performance reasons, we modified
TAINTCHECK to associate 2 metadata bits per application byte, so
that frequent cases (application reads/writes 1 word/double) can
be handled efficiently (lifeguard reads/writes 1 byte/word), while
ADDRCHECK associates 1 metadata bit per application byte. The
metadata for both lifeguards are organized in a two-level data struc-
ture. The first level is a pointer array, pointing to chunks of meta-
data in the second level. The higher part of the application effective
address is used to index the first level table, while the second part
indexes the metadata chunk. This organization saves space, because
a chunk is allocated only when the corresponding virtual space is
used by the application. TAINTCHECK requires the ordering (out-
come) of all the application data races, as well as correct ordering
for all the high level events. Because TAINTCHECK maps appli-
cation reads to metadata reads and applications writes to metadata
writes, no special synchronization mechanism is required by life-
guard threads apart from the ordering provided by the dependence
arcs that are already included in the log. ADDRCHECK requires
only the correct ordering of all the high-level events of the allo-

cation library with respect to the rest of the application activity.
Because ADDRCHECK maps application reads and writes to meta-
data reads, no other synchronization mechanism is required, apart
from the ordering provided by the ConflictAlert messages already
included in the log.

7. Experimental Evaluation
We begin our evaluation of online parallel monitoring by examining
its impact on overall execution time. Figure 6 shows three different
cases: (i) the application without any monitoring (NO MONITOR-
ING), (ii) the state-of-the-art approach of timeslicing the applica-
tion threads onto one processor and performing the lifeguard anal-
ysis on another processor (TIMESLICED MONITORING), and (iii)
our technique (PARALLEL MONITORING). The x-axis indicates the
number of application threads for each benchmark, ranging from
one (i.e. sequential execution) to eight. Note that for k applica-
tion threads, the NO MONITORING, TIMESLICED MONITORING,
and PARALLEL MONITORING cases run on 2k, 2, and 2k cores,
respectively. The y-axis shows execution time normalized to the
application running sequentially without monitoring. (Recall that
the application stalls whenever the circular log buffer is full, and
hence the execution times for the application and lifeguard are the
same.) Both the TIMESLICED and PARALLEL monitoring schemes
use lifeguard accelerators (the former requires only the sequential
versions [5, 6]). ADDRCHECK utilizes the Metadata TLB and the
Idempotent Filters accelerators, while TAINTCHECK the Metadata
TLB and the Inheritance Tracking ones.

We organize our evaluation following this approach (k applica-
tion threads on 2k cores), as a way to isolate the slowdown in-
duced by monitoring, while maintaining the number of applica-
tion threads constant (Constant-Application-Size). However, this
assumes there are always cores available for lifeguard threads to
run on. A Constant-Resource comparison, where k lifeguard and
application threads in total run on k cores, would be appropri-
ate to show the opportunity cost of using cores for monitoring,
although it would make it hard to identify sources of overhead.
We present and discuss our results in the rest of the section un-
der the Constant-Application-Size approach. Data for the Constant-
Resource approach can be found in Figure 6, by comparing the 2k-
threaded NO MONITORING case against the k-threaded PARAL-
LEL MONITORING case (although this comparison is not discussed
here).

As we see in Figure 6, our PARALLEL MONITORING approach
is dramatically faster than today’s TIMESLICED approach, enabling
TAINTCHECK to achieve speedups ranging from 1.5X–4.1X with
two application threads (roughly twofold on average), and speedups
ranging from 5.3X–85X with eight application threads (roughly
24X on average). ADDRCHECK also achieves similar speedups
ranging from 1.4X–3.1X for two threads (2.2X on average), and
5.7X–126X for eight threads (36X on average). This result is not
surprising: our PARALLEL approach achieves these speedups rela-
tive to TIMESLICED because it can take advantage of the parallel
hardware threads on the CMP (as well as additional cache space,
which causes some superlinear effects) to accelerate both the appli-
cation and the lifeguard. Clearly this is a large improvement over
the state-of-the art.

Understanding Overheads. Another interesting question is how
PARALLEL MONITORING compares with NO MONITORING. As
we see in Figure 6 and in Figure 7, the relative slowdown when we
add PARALLEL MONITORING (given a fixed number of application
threads) is less than 1.5X in the majority of cases for TAINT-
CHECK. (In LU and OCEAN, it is less than 1.15X.) These numbers
are consistent with the relative slowdowns observed in our earlier
study [5, 6] for TAINTCHECK running on sequential applications.

TaintCheck

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 1 2 4 8 1 2 4 8 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 8

BARNES LU OCEAN BLACKSCH. FLUIDANIM. SWAPTIONS FMM RADIOSITY

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

No Monitoring
Timesliced Monitoring
Parallel Monitoring

2.1
4.6

11.5 12.9 1.7 1.9 10 15.7
1.7

1.9
2.9

6.6

AddrCheck

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 1 2 4 8 1 2 4 8 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 8

BARNES LU OCEAN BLACKSCH. FLUIDANIM. SWAPTIONS FMM RADIOSITY

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e No Monitoring

Timesliced Monitoring
Parallel Monitoring

2.3 6.1 6.7 1.71.9 2.9 9.5 15.4 2.1 6.2

Figure 6. Execution time for PARALLEL and TIMESLICED monitoring schemes for 1, 2, 4 and 8 application threads. The execution time for
the application alone is also shown (for 2, 4, 8 and 16 threads).

TaintCheck

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

BARNES LU OCEAN BLACKSCH. FLUIDANIM. SWAPTIONS FMM RADIOSITY

S
lo

w
d
o
w

n

Waiting for Application
Waiting for Dependence
Useful Work

AddrCheck

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

BARNES LU OCEAN BLACKSH. FLUIDANIM. SWAPTIONS FMM RADIOSITY

S
lo
w
d
o
w
n

Waiting for Application
Waiting for Dependence
Useful Work

3.0 6.0

Figure 7. Performance slowdown for 1, 2, 4 and 8 application threads when PARALLEL monitoring is enabled on the system. Slowdown
for every configuration is normalized with respect to the application with the same number of threads running alone on the system. The case
with 1 application thread is identical with the one from figure 6.

Furthermore, ADDRCHECK does not incur any practical overhead
in the majority of the cases (< 10%), and almost in all the cases the
overhead is less than 20%, with the exception of SWAPTIONS that
we will discuss shortly.

To provide more insight on these slowdowns, Figure 7 breaks
down the time into three components: time spent doing useful work,
time spent stalled waiting for data dependences from other life-

guard threads, and time spent stalled waiting for the application to
produce events in the log. The latter category indicates that there
are bursts of time when the lifeguard catches up with the appli-
cation. The WAITING FOR DEPENDENCE category indicates that
event ordering across the lifeguards is having an impact on their
performance; we observe this with 4 and 8 threads in SWAPTIONS,
and (to a lesser extent) with 8 threads in BARNES.

AddrCheck

3.9
3.2

1.0
1.4 1.1

8.4

1.0 1.41.1 1.0 1.0 1.0 1.0

6.0

1.0 1.0

0

1

2

3

4

5

6

7

8

9

BARNES LU
OCEAN

BLACKSCH.

FLUIDANIM.

SWAPTIONS FMM

RADIOSITY

S
lo

w
d

o
w

n
 (

8
th

re
ad

s)

Not Accelerated
Accelerated

TaintCheck

5.7

4.2 4.3

5.4

1.1 1.2 1.3 1.5

3.1

1.5 1.6

2.9

1.3
1.0 1.1

2.6

1.4

2.2

1.4 1.5

0

1

2

3

4

5

6

BARNES LU
OCEAN

BLACKSCH.

FLUIDANIM.

SWAPTIONS
FMM

RADIOSITY

S
lo

w
d

o
w

n
 (

8
 t

h
re

a
d

s
)

Not Accelerated (aggressive reduction)
Accelerated (limited reduction)
Accelerated (aggressive reduction)6.8

7.3 11.3
9.4

Figure 8. Variations of the PARALLEL scheme design with 8 application threads, normalized to NO MONITORING with 8 threads.

As we see in Figure 7, TAINTCHECK slows down BARNES by a
factor of 2X simply because the lifeguards are busy performing use-
ful analysis work. Lifeguards perform different amounts of work
for different types of instructions, and the mixture of instructions
in BARNES (which does significant pointer chasing) happens to in-
voke more expensive lifeguard processing than in LU and OCEAN
(which are matrix-oriented). SWAPTIONS, on the other hand, has a
much higher frequency of remote conflicts than the other appli-
cations, and therefore the lifeguard threads spend more of their
time stalled waiting for other lifeguard threads to catch up. We
observe that the median stall time for one of these lifeguard syn-
chronization events is over 500,000 cycles, which is surprisingly
large. Interestingly, this large latency is not caused by a chain of
stalls (e.g., THREAD A waits for THREAD B, which is in turn wait-
ing for THREAD C, etc.). Instead, the problem is simply load im-
balance within the lifeguards due to the combination of point-to-
point synchronization and static assignment of work across life-
guard threads. To reduce this source of overhead, we would need a
mechanism for work stealing across lifeguard threads, which may
be possible using techniques proposed by Ruwase et al. [36] and
Nightingale et al. [33].

On the other hand, ADDRCHECK tends to be less costly than
TAINTCHECK, mostly because it needs to process a narrower set of
instructions (only memory accesses to the heap). This has the im-
mediate result of the lifeguard spending a big part of its execution
waiting for the application to produce events in the log. Out of all
the benchmarks, SWAPTIONS is again the one penalized the most
due to ordering from conflicting accesses in the application and
ConflictAlert messages from the consecutive allocations and de-
allocations of memory from the application threads. Specifically,
we measured that throughout the execution of its parallel section,
SWAPTIONS performs approximately 450K pairs of allocations and
frees, for which a pair of ConflictAlert messages is generated for
every call. However, every pair of ConflictAlert messages is trans-
lated to a barrier at the lifeguard side and corresponds to a conserva-
tive solution for all the lifeguard threads to stall until the metadata
state is updated after every malloc/free. We also observed that
1/3 of all allocations request at most 64 bytes of memory (1 cache
block), 2/3 of all allocations request at most 32 cache blocks and no
allocations request more than 128 cache blocks. An alternative to
the ConflictAlert mechanism for small allocations would be to in-
duce dependence arcs by touching the allocated/freed cache blocks
within the allocation library. This could enable lifeguard threads
not interested in these blocks to proceed without stalling.
Impact of Lifeguard Accelerators. To quantify the performance
benefit of our lifeguard accelerators (described earlier in Section 4),
Figure 8 shows the slowdown—relative to the application running
with 8 threads and no monitoring—of the PARALLEL MONITOR-

ING case without and with acceleration, for our two lifeguards.
Specifically for ADDRCHECK we observe that accelerators have
a large impact on the “heavy” benchmarks (e.g., BARNES) and
achieve a speedup of 3.4X–1.13X (no practical speedup for LU
and FMM that have less than 1% overhead). For TAINTCHECK,
compare the height of the leftmost and rightmost bars for each ap-
plication in Figure 8. As we see in the figure, lifeguard acceleration
has a large impact on performance for all the benchmarks, resulting
in speedups ranging from 2X (BARNES) to 10X (LU).

Impact of Aggressive Dependence Reduction. In our experiments
so far, we have assumed an aggressive design for eliminating un-
necessary dependence arcs, similar to FDR [45]. One interesting
question is how much performance would we sacrifice with a less
aggressive scheme that requires less hardware. In particular, we
consider a design that maintains only one full (64-bit) timestamp
per processor (as opposed to one timestamp per cache block, as in
FDR [45]). The performance of this less-aggressive case is shown
for TAINTCHECK only as the center bar for each application in
Figure 8. Comparing these center bars with the rightmost bars, we
observe that for most applications, the performance loss of the less-
aggressive scheme is relatively small. One reason why this is true
is that most of the time when a lifeguard encounters an incoming
dependence arc, the dependence has already been satisfied. Hence
in many cases, the dependences that are being eliminated under ag-
gressive dependence reduction were not causing expensive stalls in
the first place. For a group of dependences between a pair of threads
that occur close together in time, it is likely that only one expen-
sive stall will occur for the entire group; hence reducing some of
these dependences is of little consequence. The performance im-
pact of the less-aggressive design is more noticeable in BARNES
and SWAPTIONS, which are the two applications that do spend a
noticeable amount of time stalling on inter-thread dependences. In
summary, although aggressive dependence reduction shows bene-
fits in some cases, a less aggressive design also appears to be a
viable design option.

8. Conclusions
This paper presents the first design of a general-purpose online
monitoring platform that supports fast parallel monitoring of mul-
tithreaded parallel applications. To obtain fast monitoring, we suc-
cessfully parallelize the three hardware accelerators in [6], over-
coming a variety of challenges. Our simulation results of a 16-core
CMP demonstrate that: (i) our parallel accelerators improve per-
formance by 2–9X and 1.13–3.4X for the TAINTCHECK and AD-
DRCHECK lifeguards, respectively; (ii) we are 5–126X faster than
the time-slicing approach required by existing techniques; and (iii)

our average overheads for applications with eight threads are 51%
and 28% for the two lifeguards, respectively.

9. Acknowledgments
We would like to thank Olatunji Ruwase and Michael Ryan for
their comments and valuable feedback on this paper. This work is
supported in part by a grant from the NSF.

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. In PACT, 2008.

[2] D. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. PhD thesis, MIT, 2004.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors. Software – Practice and Experience,
30(7), 2000.

[4] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry, R. Teodor-
escu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W. Schlosser.
Log-based architectures for general-purpose monitoring of deployed
code. In ASID Workshop at ASPLOS, 2006.

[5] S. Chen, M. Kozuch, P. B. Gibbons, M. Ryan, T. Strigkos, T. C.
Mowry, O. Ruwase, E. Vlachos, B. Falsafi, and V. Ramachandran.
Flexible hardware acceleration for instruction-grain lifeguards. IEEE
Micro, 29(1):62–72, 2009. Top Picks from the 2008 Computer Archi-
tecture Conferences.

[6] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos.
Flexible hardware acceleration for instruction-grain program monitor-
ing. In ISCA, 2008.

[7] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis. Thread-safe
dynamic binary translation using transactional memory. In HPCA,
2008.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable
macro engine for customizing applications. In ISCA, 2003.

[9] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In MICRO, 2004.

[10] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible informa-
tion flow architecture for software security. In ISCA, 2007.

[11] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
OSDI, 2000.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE Trans. Software Engineering, 27(2), 2001.

[13] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI, 2002.

[14] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debugging for
distributed applications. In USENIX ATEC, 2006.

[15] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In
ISCA, 1999.

[16] M. L. Goodstein, E. Vlachos, S. Chen, P. B. Gibbons, M. Kozuch,
and T. C. Mowry. Butterfly analysis: Adapting dataflow analysis to
dynamic parallel monitoring. In ASPLOS, 2010.

[17] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In HPCA, 1993.

[18] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In ISCA, 2008.

[19] HP Labs. Cacti 5.1 Technical Report. http://www.hpl.hp.com/research/cacti/.

[20] H. Kannan. Ordering decoupled metadata accesses in multiprocessors.
In MICRO, 2009.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In PLDI, 2005.

[22] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
deterministically replaying shared-memory multiprocessor execution
efficiently. In ISCA, 2008.

[23] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: A
software-hardware interface for practical deterministic multiprocessor
replay. In ASPLOS, 2009.

[24] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent
network interfaces for fine-grain communication. In ISCA, 1996.

[25] V. Nagarajan and R. Gupta. Architectural support for shadow memory
in multiprocessors. In VEE, 2009.

[26] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared mem-
ory dependencies using strata. In ASPLOS, 2006.

[27] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
recording program execution for deterministic replay debugging. In
ISCA, 2005.

[28] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, U. Cambridge, 2004. http://valgrind.org.

[29] N. Nethercote and J. Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[30] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, 2007.

[31] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[32] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[33] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
security checks on commodity hardware. In ASPLOS, 2008.

[34] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R. Adl-Tabatabai.
Architecting a chunk-based memory race recorder in modern CMPs.
In MICRO, 2009.

[35] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A
low-overhead practical information flow tracking system for detecting
security attacks. In MICRO, 2006.

[36] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran, S. Chen,
M. Kozuch, and M. Ryan. Parallelizing Dynamic Information Flow
Tracking. In SPAA, 2008.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic race detector for multi-threaded programs. ACM
TOCS, 15(4), 1997.

[38] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon:
A helper-thread approach to programmable, automatic, and low-
overhead memory bug detection. IBM J. on Research and Devel-
opment, 50(2/3), 2006.

[39] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS, 2004.

[40] G.-R. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari. Analyzing
dynamic binary instrumentation overhead. In WBIA Workshop at
ASPLOS, 2006.

[41] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexi-
Taint: A programmable accelerator for dynamic taint propagation. In
HPCA, 2008.

[42] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. Mem-
Tracker: Efficient and programmable support for memory access mon-
itoring and debugging. In HPCA, 2007.

[43] Virtutech Simics. http://www.virtutech.com/.

[44] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In ISCA, 1995.

[45] M. Xu, R. Bodik, and M. D. Hill. A ’Flight Data Recorder’ for
enabling full-system multiprocessor deterministic replay. In ISCA,
2003.

[46] M. Xu, R. Bodik, and M. D. Hill. A regulated transitive reduction
(RTR) for longer memory race recording. In ASPLOS, 2006.

[47] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted
lockset-based race detection. In HPCA, 2007.

[48] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas. Efficient and flexible
architectural support for dynamic monitoring. ACM TACO, 2(1), 2005.

