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Abstract— Most recent findings in robot-assisted therapy
suggest that the therapy is more successful if the patient actively
participates to the movement (“assistance-as-needed”). In the
present contribution, we propose a novel approach for designing
highly flexible protocols based on this concept. This approach
uses adaptive oscillators: a mathematical primitive having the
capacity to learn the high-level features of a quasi-sinusoidal
signal (amplitude, frequency, offset). Using a simple inverse
model, we demonstrate that this method permits to synchronize
with the torque produced by the user, such that the effort
associated with the movement production is shared between
the user and the assistance device, without specifying any
arbitrary reference trajectory. Simulation results also establish
the method relevance for helping patients with movement dis-
orders. Since our method is specifically designed for rhythmic
movements, the final target is the assistance/rehabilitation of
locomotory tasks. As an initial proof of concept, this paper
focuses on a simpler movement, i.e. rhythmic oscillations of the
forearm about the elbow.

I. INTRODUCTION
Dedicated robotics platforms are nowadays developed

for the rehabilitation of patients suffering from movement
disorders, both at the upper and lower extremities [1], [2],
[3]. These robot-assisted therapies are mainly developed
in order to be less labor intensive for the therapists, such
that more frequent and/or longer training sessions can be
proposed to the patient, eventually leading to faster and
better recovery. Patient motivation can further be assessed by
incorporating entertainment features within the rehabilitation
protocol. Recent findings moreover suggest that therapy is
more successful if the patient actively participates to the
movement, giving rise to the concept of “assistance-as-
needed” [4], [5].

For the lower-limb, traditional robotics platforms for re-
habilitation stay far away from this concept, driving the
user’s limbs along a pre-specified reference trajectory using
stiff position control [6], [7]. This approach has three main
drawbacks: (i) if the user stays passive, he/she will be moved
anyway, such that his/her own effort is not promoted; (ii) the
reference trajectory is captured from the gait pattern of one
or several other healthy individual(s), and might therefore
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Fig. 1. Sketch of the synchronization between the human joint (elbow in
this case) and an adaptive oscillator. The oscillator feeds back some torque
ue(t) to the controlled joint.

not correspond to a suitable trajectory for the patient being
trained; and (iii) making errors — which is not permitted by
stiff position controllers — is often necessary for learning
and the formation of an internal task representation within the
motor repertoire [8]. More recently, rehabilitation protocols
based on assistance-as-needed were proposed, both for the
Lokomat [9] and other platforms [10] by adding some
compliance with respect to the pre-specified trajectory.

In the present paper, we propose a novel assistance method
for rhythmic movements that not only promotes the user’s
effort, in the sense that he/she will receive assistance only
if making an effort on his/her own, but also allows the
user to flexibly shape the intended trajectory. Indeed, there
is actually no pre-specified trajectory by the experimenter,
such that, in steady-state, the user should receive the same
amount of assistance whatever the stabilized pattern. These
two features are similar to what is achieved with EMG-based
assistance devices [11], although these require complex sens-
ing and very long calibration procedure to be optimally fitted
to a single user [12]. In contrast, our method requires only
to measure the assisted joint position.

The method is based on adaptive frequency oscillators1,
that were developed by Righetti, Buchli, and Ijspeert [13],
[14] for various applications [15]. Oscillator-based methods
are very appealing in the context of rhythmic movement
assistance, because these movements — like e.g. walking
— are very likely controlled by spinal oscillators (Central
Pattern Generators, CPGs) [16]. The “artificial” oscillator
is thus assumed to synchronize with the spinal one, and
in turn feeds back some torque to the controlled joint
(Figure 1). Although our final target is to provide assistance
during locomotory tasks, the present paper — as a proof

1For brevity, we will simply refer to adaptive oscillators in the rest
of this paper. Furthermore, the dynamical system we are going to use as
oscillator has the intrinsic capacity to adapt not only its frequency but also
its amplitude and offset.
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of concept — will focus on simulations and experiments of
rhythmic oscillations of the forearm about the elbow. We
acknowledge that the intrinsic neural mechanisms to control
the upper and lower limb are likely very distinct, but this
simple configuration allows us to investigate the problem of
assistance without having yet to deal with complex dynamics
due to contacts with the ground and the coordination of
multiple degrees of freedom.

The paper is organized as follows. In Section II, we
provide a small recap of the adaptive oscillator used in
this paper. In Section III, we provide both simulation and
experimental results of movement assistance of the forearm
for healthy participants. In Section IV, we discuss simulation
results anticipating the method efficiency with a patient
suffering from muscle weakness. The paper ends with a
conclusion.

II. ADAPTIVE OSCILLATOR: RECAP
The adaptive oscillator used in this paper is directly

adapted from [13], and was previously used for various
different applications [15]. In the present case, the adaptive
oscillator is used as state observer, in the sense that it
acts like a filter to smoothen and anticipate the evolution
of the corresponding joint state. Unlike conventional filters,
this adaptive oscillator is however able to predict the state
evolution (and the evolution of higher order derivatives) in
real-time, i.e. without delay with respect to the measured
output. In counterpart, this filtering oscillator is designed
to work only for quasi-sinusoidal signals, and would not
work properly with other profiles, although adaptations can
be found in [17], [18].

The adaptive characteristics of this algorithm refers to its
ability to continuously adapt to changes in the input signal
features, namely the movement phase, frequency, amplitude,
and offset, in the case of a sinusoidal input. It is a system
of differential equations based on a Hopf oscillator that can
synchronize on a periodic input F(t):

ẋ(t) = γ
(
µ −

(
x(t)2 + y(t)2))x(t)+ω(t)y(t)+νF(t),

ẏ(t) = γ
(
µ −

(
x(t)2 + y(t)2))y(t)−ω(t)x(t), (1)

where x(t) and y(t) are the oscillator’s states; ω(t) is the
oscillator intrinsic frequency; and µ and γ determine the
oscillator amplitude and the attractivity of the limit cycle,
respectively. In the present paper, we used µ = 1 (such that
the oscillator’s intrinsic amplitude equals one) and γ = 8 (like
in [13], [18]). The learning parameter ν determines the speed
of the phase synchronization with respect to F(t). If this
oscillator is augmented with a third state variable to learn
the frequency of the input signal F(t) (instead of doing only
mere synchronization), Righetti et al. [13] proved that the
basin of attraction becomes infinite, such that any periodic
signal can be learned from any initial condition. This is done
by using an integrator whose argument sums up to zero over
one period if F(t) and y(t) have a phase-lag of 90∘ (i.e. if
F(t) and x(t) are in phase):

ω̇(t) = νF(t)
y(t)√

x(t)2 + y(t)2
. (2)

Fig. 2. Example of the oscillator’s adaptation dynamics. Top panel: the
oscillator’s output θ̂(t) (dotted gray line) filters out the sudden change in
the input θ(t) (solid black line), i.e. a frequency step at t = 0. Bottom panel:
corresponding evolution of the learned frequency ω(t).

In the present paper, we moreover implemented a mechanism
to reset the integrator (2) to ω = 2π if ω < 0, in order
to avoid the tracking of negative or near-zero frequencies.
Visual inspection of the data revealed that this happened very
rarely.

Finally, [17] proposed to use this building block to learn
the parameters of a (multi-)sinusoidal input by using the
difference between the actual signal θ(t) and the filtered
(or learned) signal θ̂(t) as input, i.e. F(t) = θ(t)− θ̂(t). The
filtered signal is simply the oscillator output plus an offset
term, i.e.:

θ̂(t) = α0(t)+α1(t)x(t), (3)

where the amplitude α1 and the offset α0 can be learned by
integrators:

α̇0(t) = ηF(t),

α̇1(t) = ηx(t)F(t), (4)

with η being the integrator gain.
Assuming that the actual input signal is (quasi-)sinusoidal,

the state estimator block easily provides a zero-delay filtered
estimate of the input signal (3), but also of its velocity and
acceleration:

ˆ̇
θ(t) = α1(t)ω(t)y(t), (5)
ˆ̈
θ(t) = −α1(t)ω(t)2x(t).

As an example, Figure 2 shows the oscillator adaptation
to a step change in the input frequency. It is visible that
the oscillator acts like a classical low-pass filter, but on the
signal features (the frequency in this case), rather than on
the signal itself.

III. HEALTHY HUMAN IN THE LOOP:
SIMULATION AND EXPERIMENT

Here we explore the feasibility of doing human assistance
and rehabilitation using the adaptive oscillator presented
above. In particular, this paper deals with the augmentation
of a single degree-of-freedom, namely the human elbow. The
fundamental building blocks of the coupled system (human
elbow + exoskeleton) are depicted in Figure 3 and described
below.
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Fig. 3. Block diagram of the integrated system (human elbow + exoskeleton). The shaded part (associated with the human controller and elbow dynamics)
needs to be modeled only for simulations, and not for the actual implementation of the assistance algorithm. Each box is detailed in the text.

A. Elbow dynamics and torque estimator

The elbow dynamics map the input torque to an output
trajectory, therefore integrating the different forces acting
at the joint level. We propose to capture these dynamical
interactions with a simple model of a damped pendulum:

Iθ̈(t) =−mgl sinθ(t)−bθ̇(t)+u(t), (6)

where I, m, and l denote respectively the forearm+hand
inertia, mass, and equivalent length; b denotes the elbow
viscous damping constant; g= 9.81m/s2 denotes the constant
of gravity; and θ(t), θ̇(t), and θ̈(t) denote the elbow angular
position, velocity, and acceleration, respectively. Finally, u(t)
denotes the input torque that is applied at the elbow joint,
both by the user uh(t) and by the assistance device ue(t), i.e.
u(t) = uh(t) + ue(t). Note that the assistance device mass
was assumed to be negligible with respect to the human
forearm. As shown in Figure 3, this model is only used for
simulations, and not for the actual experiments.

The torque estimator block simply retrieves an estimate of
the total torque û(t) based on an inverse dynamical model
of (6), i.e.:

û(t) = mgl sin θ̂(t)+b ˆ̇
θ(t)+ I ˆ̈

θ(t), (7)

where θ̂(t), ˆ̇
θ(t), and ˆ̈

θ(t) are provided by (3) and (5).
Finally, a fraction of this torque is fed back to the user

via the assistance device, i.e.:

ue(t) = κ û(t), (8)

where 0 ≤ κ < 1 is the assistance gain. Assuming a station-
ary sinusoidal movement and a perfect inverse dynamical
model (7), such that û(t) = u(t), the total torque should
emerge from a collaboration between the user (1− κ) and
the assistance device (κ). The fundamental building block
being an adaptive oscillator (1), this assistance algorithm is
characterized by a certain degree of inertia, which is tuned
by setting the gains ν and η . However, proper tuning of these
gains should allow the user to smoothly drive the oscillator
adaptation, such that the user will keep the control of all
“high-level” parameters (movement amplitude, frequency,
and offset) while feeling the oscillator synchronized with
his/her movements to make them easier to perform. For both
the simulations and experiments reported in this paper, we
used ν = 20 and η = 5 as a compromise between good
reactivity and low risk of instability.

B. Human-in-the-loop: simulation

Simulations of the behavior with a healthy participant were
carried out in order to explore the algorithm properties for
preparing the actual experiments. Altering the healthy human
controller also allows to make hypotheses about the system’s
behavior with patients affected by specific disorders (see
Section IV).

The human controller of Figure 3 receives two inputs: (i)
a reference specifying the desired movement to perform; and
(ii) the actual position (and possibly other movement-related
variables) fed back from the sensory apparatus. As output,
this block provides the torque uh(t) that is applied by the
human at the joint level to match the actual movement with
the desired one. A crude model of this block will be proposed
for simulations, but this model is actually not required for our
application, neither are specific assumptions about the way
the reference is internally represented (as a whole trajectory,
or only specific landmarks, or something in between), or
which sensory variables are actually used, i.e. the shaded
area in Figure 3.

The task of the simulated human is simply to oscillate the
upper-arm about the elbow and around the upright vertical
position (same posture as in the actual experiment, see Figure
5). We crudely assume that this reference trajectory is inter-
nally represented as a whole, i.e. θre f (t) = Are f sin(ωre f t)+
π , and that the human stabilizes it using a simple PID
controller:

uh(t) = kpe(t)+ ki

∫
e(t)dt + kd ė(t), (9)

where kp = 100, ki = 5, and kd = 2 are the controller
gains, and e(t) = θre f (t)−θ(t) is the error signal. We thus
assume that the human is able to sense the elbow position
without delay and noise. These assumptions about the control
mechanisms are very likely far from the reality. For instance,
it is postulated that the control of rhythmic movements
with the upper limbs is also managed by low-level neural
structures based on oscillators (CPG) [19], [20], [21], [22].
However, these differences are not crucial to illustrate how
our method works, since the assistance algorithm retrieves
the torque applied at the joint level, disregarding the neural
structure and mechanisms that produced it.

The physiological parameters were set as follows: forearm
equivalent mass m = 1.8kg, forearm equivalent length l =
0.2m, forearm inertia I = 0.11Nms2/rad, and elbow damping
b = 0.4Nms/rad.
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Fig. 4. Simulation of elbow assistance with an healthy participant. Top panel, elbow position: reference θre f (t) (dotted black), actual θ(t) (solid black),
and estimated θ̂(t) (dotted gray). Bottom panel, applied torque: human uh(t) (solid black) and estimate of the human, i.e. (1−κ)û(t) (dotted gray). The
assistance torque ue(t) is zero for t < 5s and equal to κ û(t) = (1−κ)û(t) (since κ = 0.5 in this case) otherwise. The task is described in the text.

Simulation results are shown in Figure 4: the reference
trajectory θre f (t) is the dotted black line, and the actual
trajectory is the solid black line. These are hardly distinguish-
able due to the good tracking capacity of the PID controller.
More interestingly, the bottom panel shows the torque that
was applied by the human to realize this tracking, i.e. uh(t)
(solid black), and an estimate of this torque obtained from
(7) (dotted gray). Except during transients, these two signals
were also pretty overlapped, demonstrating the tracking
capacity of the adaptive oscillator. The task was as follows:

∙ 0 ≤ t < 5: no assistance was applied (κ = 0) and the
oscillator converged to the actual dynamics. Are f = π/6,
ωre f = 2π .

∙ 5 ≤ t < 10: 50% of assistance was applied (κ = 0.5,
this was the case until the end). Are f = π/6, ωre f = 2π .
The human torque significantly decreased, showing the
effect of assistance.

∙ 10 ≤ t < 15: switch in the reference amplitude: Are f =
π/10, ωre f = 2π . The oscillator reacted quickly, such
that the transient was very smooth.

∙ 15 ≤ t < 20: switch in the reference frequency: Are f =
π/10, ωre f = 3π . The oscillator took a bit longer to
adapt, but the transient was again smooth.

∙ 20 ≤ t: the task instruction was to stop the movement
(Are f = 0), such that the assistance torque rapidly died
out.

Overall, this simulation shows the capacity of our assis-
tance method to reduce the human effort, without depriving
him/her to fully control the movement features, like ampli-
tude and frequency.

C. Human-in-the-loop: experiment

In this section, we report preliminary experimental results
that were obtained with human participants.

1) Experimental setup and protocol: The assistance de-
vice we used in this experiment was the NEUROExos (Figure
5), an elbow active orthosis conceived for neurorehabilitation
and assistive purposes [23]. NEUROEXOS relies on three
main features: (i) a four degrees of freedom (DOF) passive

Fig. 5. Front view of a participant wearing the NEUROExos.

mechanism, conceived to automatically align the exoskeleton
and elbow rotation axes, (ii) a double-shell structure of the
links, providing a versatile, comfortable and distributed user-
robot mechanical interface, and (iii) an antagonistic tendon-
driven compliant actuation, allowing a near-zero impedance
torque control using force sensors [24], with a −3dB band-
width of about 15Hz.

In order to monitor the participant’s effort associated with
movement performance during all conditions, we recorded
the surface EMG activity from the biceps brachii and triceps
brachii muscle using bipolar surface Ag/AgCl electrodes
(Pirronse&Co., Italy) attached about 2 cm apart along the
longitudinal axis of the muscle belly. All the EMG recordings
were digitized at 1kHz using the Telemyo 2400R G2 Analog
Output receiver (Noraxon USA Inc., AZ, USA). EMG analog
recordings and NEUROExos outputs were synchronized by
means of a Labview routine running at 1 kHz on a real-time
controller NI PXI-8196 (National Instrument, TX, USA). A
Labview routine was also developed to provide the partici-
pant with visual feedback and acoustic cueing (see later).

The participants (right-handed) comfortably sat on a chair,
and wore the NEUROExos on their right arm. NEUROExos
was fastened both at the participant upper arm and forearm
using the custom-made double shell structure. The NEU-
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Fig. 6. Comparison between the actual kinematics (solid, black) and the
filtered version provided by the adaptive oscillator (dashed, gray) during
8s of performance for a representative participant: position (top), velocity
(middle) and acceleration (bottom).

ROExos support was adjusted to support the participant
arm in the horizontal position, i.e. the shoulder forming
an angle of about 90∘ with respect to the chest in both
frontal and transverse planes. Participants were asked to put
their forearm in the upright vertical position — mimicking
thus the inverse pendulum configuration of the limb during
walking — and to make cyclical flexion/extension around
this position at an amplitude and pace that was specified by
the experimenter. The reference amplitude was kept constant
across all conditions investigated here (20∘, thus correspond-
ing to a total elbow excursion of about 40∘). This was softly
constrained to the participant by giving him/her augmented
visual feedback about the movement on a computer screen:
a central cursor moved vertically by following the elbow
angular displacement, while two peripheral cursors delimited
the fixed movement range (corresponding thus to ±20∘).
The movement pace was constant at 1Hz and was softly
constrained by a metronome (1 beep per cycle). Participants
heard the metronome through headphones and were asked
to synchronize with it. Both the visual feedback and the
auditory cueing only provided guidance to the participant to
follow the movement features. No corrective actions were
applied by the exoskeleton to compensate for errors in
movement amplitude or frequency, such that the participant
always kept the full control of these high-level parameters.

2) Experimental results: The adaptive oscillator provided
delay-free and filtered estimates of the elbow angular po-
sition, velocity and acceleration, according to (3) and (5).
These estimates are compared to the actual profiles in Figure
6, over 8s of performance for a representative participant.
This figure reveals the high performance of the filter based
on an adaptive oscillator: the tracking is good, and the
filtered signal is not lagging behind the actual one. Also,
the oscillator output was a filtered version of the actual
kinematics, which is particularly visible for the acceleration.
Accordingly, we expect that the estimated torque is also a
good estimate of the total torque, assuming that the inverse
model (7) is accurate enough.

Looking into the details of possible kinematic changes
across conditions, we computed the standard kinematic pro-
files over each cycle — limited by two successive velocity

Fig. 7. For two participants, the panels show the steady-state kinematic
profiles (position, top; velocity, middle; acceleration, bottom) without wear-
ing the exoskeleton (light gray), and with the exoskeleton with two different
assistance gains (κ = 0, i.e. transparent mode, in dark gray; and κ = 0.5, in
black). These profiles were obtained by resampling the actual trajectories
over 101 equally spaced points for each cycle, limited by two successive
velocity peaks, then averaging for each of the 101 points across cycles.

peaks — by resampling over 101 equally spaced points
(see Figure 7). This procedure was done for two different
participants (Participant #1 is the same as in Figure 6). We
compared three conditions in steady-state, i.e. when the per-
formance plateau was reached: (i) same movement/posture
but without wearing the exoskeleton (the angular position of
the elbow was measured using a goniometer); (ii) wearing
the exoskeleton controlled in “transparent mode” (i.e. κ =
0); and (iii) 50% of assistance provided (i.e. κ = 0.5).
The profiles look quite similar among conditions. The only
marked difference being that the acceleration profile was
more jerky when wearing the exoskeleton, this phenomenon
being amplified when assistance was switched on. This is
presumably due to high-frequency dynamics at the mechan-
ical interface between the user and the exoskeleton.

The largest difference between the performance in these
contexts was actually visible in the EMG profiles developed
by the participants. Figure 8 shows the evolution of the
mean normalized and rectified EMG for the biceps and
triceps across the cycles of the same three different con-
ditions and for the same two participants. Two important
results are visible on this figure: (i) wearing the exoskeleton
without assistance (difference between the condition without
exoskeleton, light gray, and the transparent condition κ = 0,
dark gray) induced larger activity, mainly in the biceps, this
being certainly due to the exoskeleton forearm’s mass and
inertia, that were not compensated in that mode and that
mainly loaded the joint flexor; and (ii) providing assistance
(κ = 0.5) induced a marked decrease in peak EMG, after
about 10 to 20 cycles that were necessary to fully adapt to
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Fig. 8. For the same two participants, the panels show the average of the measured rectified EMG for the biceps (top panel) and triceps (bottom panel).
The figure shows the last 20 cycles of the condition without wearing the exoskeleton (light gray), and the first and last 20 cycles of three trials wearing
the exoskeleton (dark gray: trials 1 and 3 without assistance, i.e. κ = 0; black: trial 2 with 50% of assistance provided, i.e. κ = 0.5).

this assisted environment. The level of assistance we tested
corresponded to a decrease in the mean EMG with respect to
the condition without exoskeleton in three of the four EMG
traces shown in Figure 8.

In sum, the assistance method proved to reduce the human
effort through a marked decrease in biceps and triceps EMG,
although the resulting influence on the movement kinemat-
ics was negligible. Further experiments are carried out to
illustrate the method flexibility to the participant wishes, for
instance by instructing him/her to modulate the movement
amplitude and/or frequency on-line during execution. First
results are promising and will be reported elsewhere.

IV. PATIENT WITH MUSCLE WEAKNESS:
SIMULATION

In this section, we aim at discussing the relevance of our
method for designing novel rehabilitation programs for pa-
tients with movement disorders, e.g. due to muscle weakness
or brain injury. The physiological parameters are the same as
in Section III-B. The controller is also the same, except that
we assume the simulated patient to be unable to produce
elbow torque larger than 0.7Nm in magnitude2. For this
reason, the task was simplified since the movement oscillated
around the downward position (stable equilibrium). Since the
focus was not on the capacity to adapt, only two conditions
were tested: (i) 0≤ t < 5: no assistance was provided (κ = 0)
and the oscillator converged to the actual dynamics. The
reference was set with Are f = π/6, ωre f = 2π; and (ii) 5 ≤ t:
50% of assistance was provided (κ = 0.5). Same reference
signal.

Figure 9 shows the result of this simulation. Without as-
sistance, the patient is unable to fulfill the task, due to torque
saturations. As consequence, the stabilized movement is of
much smaller amplitude. Once assistance is provided, the
amplitude progressively reaches the reference one, such that
the patient’s applied torque eventually leaves the saturation
regime after about t = 8s.

2This very low value was taken as a borderline to demonstrate the
relevance of the proposed approach.

Fig. 9. Simulation of elbow assistance with a patient suffering from muscle
weakness. Top panel, elbow position: reference θre f (t) (dotted black), actual
θ(t) (solid black), and estimated θ̂(t) (dotted gray). Bottom panel, applied
torque: human uh(t) (solid black) and estimate of the human, i.e. (1−κ)û(t)
(dotted gray). The assistance torque ue(t) is zero for t < 5s and equal to
κ û(t) = (1 − κ)û(t) (since κ = 0.5 in this case) otherwise. The task is
described in the text.

V. CONCLUSION AND FUTURE WORK

In the present paper, we proposed a new method for human
assistance that exploits the intrinsic flexibility of adaptive
oscillators. The method proved to be efficient for assisting
rhythmic forearm movements about the elbow in healthy
participants, both in simulations and — more importantly
— in preliminary experiments with two participants. The
results illustrated that not only the oscillator adapted to the
participant behavior, but also that the participant adapted
to the assisted regime, by reducing both biceps and triceps
EMGs. Moreover, this adaptation was surprisingly fast, about
10 cycles, and required simple sensors (joint position) and
crude modeling assumptions about the human controller
(which was actually modeled for simulations only) and the
joint dynamics (which were captured by a very simple
equation). We are currently finalizing another paper to detail
these experiments and to establish the statistical significance
of our approach. This paper will also establish the task
flexibility, by showing that participants keep the full control
of the high-level movement features (amplitude, frequency).

Preliminary simulation results also illustrated that the
method might be efficient for patients, mainly those suffering
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from muscle weakness. However, we still have to explore the
validity of this claim with actual patients.

So far, the method focused on assistance of the forearm,
although very few rhythmic movements are performed by
the upper limbs in daily life, a notable exception being
(simplified) juggling [25]. Therefore, the next step will be
to prove the relevance of our approach for a more functional
task, walking being the clear target. We will have to adapt
the method presented here in order to (i) be adaptive to non-
sinusoidal rhythmic movements; (ii) cope with the dynamics
due to contacts with the ground; (iii) coordinate the multiple
degrees of freedom involved in locomotion; and (iv) explore
alternatives to the need of deriving an inverse dynamical
model, that is more tedious to get for locomotion tasks.

REFERENCES

[1] S. Hesse, H. Schmidt, C. Werner, and A. Bardeleben,
“Upper and lower extremity robotic devices for rehabilitation
and for studying motor control.” Curr Opin Neurol,
vol. 16, no. 6, pp. 705–710, Dec 2003. [Online]. Available:
http://dx.doi.org/10.1097/01.wco.0000102630.16692.38

[2] A. Dollar and H. Herr, “Lower extremity exoskeletons and active or-
thoses: Challenges and state-of-the-art,” Robotics, IEEE Transactions
on, vol. 24, no. 1, pp. 144–158, Feb. 2008.

[3] D. P. Ferris, “The exoskeletons are here.” J Neuroeng Rehabil, vol. 6,
p. 17, 2009. [Online]. Available: http://dx.doi.org/10.1186/1743-0003-
6-17

[4] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer, and J. E.
Bobrow, “Optimizing compliant, model-based robotic assistance
to promote neurorehabilitation.” IEEE Trans Neural Syst Rehabil
Eng, vol. 16, no. 3, pp. 286–297, Jun 2008. [Online]. Available:
http://dx.doi.org/10.1109/TNSRE.2008.918389

[5] H. Vallery, E. H. F. van Asseldonk, M. Buss, and H. van der
Kooij, “Reference trajectory generation for rehabilitation robots:
complementary limb motion estimation.” IEEE Trans Neural Syst
Rehabil Eng, vol. 17, no. 1, pp. 23–30, Feb 2009. [Online]. Available:
http://dx.doi.org/10.1109/TNSRE.2008.2008278

[6] G. Colombo, M. Wirz, and V. Dietz, “Driven gait orthosis for
improvement of locomotor training in paraplegic patients.” Spinal
Cord, vol. 39, no. 5, pp. 252–255, May 2001. [Online]. Available:
http://dx.doi.org/10.1038/sj.sc.3101154

[7] K. P. Westlake and C. Patten, “Pilot study of lokomat versus
manual-assisted treadmill training for locomotor recovery post-
stroke.” J Neuroeng Rehabil, vol. 6, p. 18, 2009. [Online]. Available:
http://dx.doi.org/10.1186/1743-0003-6-18

[8] R. A. Scheidt, J. B. Dingwell, and F. A. Mussa-Ivaldi, “Learning to
move amid uncertainty,” J Neurophysiol, vol. 86, no. 2, pp. 971–985,
Aug 2001.

[9] R. Riener, L. Lünenburger, S. Jezernik, M. Anderschitz, G. Colombo,
and V. Dietz, “Patient-cooperative strategies for robot-aided treadmill
training: first experimental results.” IEEE Trans Neural Syst Rehabil
Eng, vol. 13, no. 3, pp. 380–394, Sep 2005. [Online]. Available:
http://dx.doi.org/10.1109/TNSRE.2005.848628

[10] E. H. F. Van Asseldonk, R. Ekkelenkamp, J. F. Veneman, F. C. T.
Van der Helm, and H. van der Kooij, “Selective control of a subtask
of walking in a robotic gait trainer(lopes),” in Proc. IEEE 10th
International Conference on Rehabilitation Robotics ICORR 2007,
Jun. 13–15, 2007, pp. 841–848.

[11] Y. Sankai, “Leading edge of cybernics: Robot suit hal,” in Proc.
International Joint Conference SICE-ICASE, Oct. 2006, pp. P–1–P–2.

[12] E. Guizzo and H. Goldstein, “The rise of the body bots,” IEEE
Spectrum, vol. 42, no. 10, pp. 50–56, Oct. 2005.

[13] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning
in adaptive frequency oscillators,” Physica D, vol. 216, pp. 269–281,
2006.

[14] J. Buchli, L. Righetti, and A. J. Ijspeert, “Frequency analysis with
coupled nonlinear oscillators,” Physica D, vol. 237, pp. 1705–1718,
2008.

[15] L. Righetti, J. Buchli, and A. J. Ijspeert, “Adaptive frequency oscilla-
tors and applications,” The Open Cybernetics and Systemics Journal,
vol. 3, pp. 64–69, 2009.

[16] A. Frigon and S. Rossignol, “Experiments and models of sensorimotor
interactions during locomotion,” Biol Cybern, vol. 95, no. 6, pp. 607–
627, 2006.

[17] L. Righetti and A. J. Ijspeert, “Programmable central pattern gen-
erators: an application to biped locomotion control,” in Proc. IEEE
International Conference on Robotics and Automation ICRA 2006,
May 15–19, 2006, pp. 1585–1590.

[18] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič, “On-line learning
and modulation of periodic movements with nonlinear dynamical
systems,” Auton Robot, vol. 27, pp. 3–23, 2009.

[19] S. Schaal, D. Sternad, R. Osu, and M. Kawato, “Rhythmic arm
movement is not discrete,” Nat Neurosci, vol. 7, no. 10, pp. 1136–
1143, 2004.

[20] E. P. Zehr and J. Duysens, “Regulation of arm and
leg movement during human locomotion.” Neuroscientist,
vol. 10, no. 4, pp. 347–361, Aug 2004. [Online]. Available:
http://dx.doi.org/10.1177/1073858404264680

[21] O. White, Y. Bleyenheuft, R. Ronsse, A. M. Smith, J.-L. Thonnard,
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