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Abstract— This paper analyzes the capacity of a wireless relay
network composed of a large number of nodes that operate in an
amplify-and-forward mode and that divide into a fixed number
of levels. The source and relays are only allowed to operate at
given time slots, while the destination can receive signals all the
time. The capacity computation relies on the study of products
of large random matrices, whose limiting eigenvalue distribution
is computed via a set of recursive equations.

I. INTRODUCTION

This paper investigates a special class of wireless relay
networks, the multi-level orthogonal amplified-and-forward
relay network. Consider a wireless relay network with one-
directional transmission. There are three groups of nodes: the
sources, the destinations and the relays. The sources send
messages to destination nodes with assistance from the relay.
In practice, there are cases where the sources and destinations
are far from each other or there are obstructions between the
sources and destinations such that direct transmission from
source to destination performs poorly. Relays can be used
to improve the capacity in these scenarios. In some cases,
multiple levels of relays may be required.
Several configurations of the network are possible. The sim-
plest configuration is the multi-hop network. The relays send
a modified version of its received signal from the source to
the destination, and the destination decodes the message based
on its received signal from the relays. Multi-hop network is
illustrated in Figure 1. The other possible configuration is
the orthogonal relay network [11]. Sources and each level
of relays are allocated orthogonal resources for transmission.
The destinations listen all the time, even when the link are
very weak. The additional links to the destinations can further
improve the system capacity. This paper will focus on the
orthogonal relay network configuration. The orthogonal relay
network is illustrated in Figure 2.
An operation scheme called amplify-and-forward (AF) is
adopted by the relays in this paper. In an AF relay network,
the relays simply scale the received signals according to
their power constraint and forward the scaled signals to the
destinations. The AF operation is a reasonable strategy when
relays have a limited computation power and no centralized
control nor feedback exists. The AF strategy allows saving of

 

Fig. 1. 2-level multihop AF relay network

 

Fig. 2. 2-level orthogonal AF relay network

both computation time and energy at the relays, at the price
of noise amplification at each level.
The impact of noise amplification on the system capacity has
been quantified for the multihop AF relay network in [5]-
[9], when the number of nodes gets large, but the number
of relay levels remains fixed. In [5], general capacity scaling
results for the multi-level multihop AF relay network have
been derived. This paper adopts the approach in [5] and applies
it to obtain a general formula for the multi-level orthogonal AF
relay network. The capacity formula is the expectation of the
log determinant of a product of random matrices. This work
needs classical tools from Random Matrix Theory throughout,
as developed in [1]-[4].

II. SYSTEM MODEL

This paper follows the similar system model as in [5]. Flat-
fading channel, perfectly synchronized transmission and re-
ception among all terminals are assumed. A network with K
levels of relays is considered. For completeness, let the source
be the 0th level and the destination be the K + 1th level. The
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kth level consists of lk terminals. Aversion of interference
suggests a time-division transmission strategy: during each
transmission cycle, there are K +1 time slots. At the kthtime
slot, k = 1, ...,K+1, the k−1th level is scheduled to transmit.
The message is sent by the sources at the 1st time slot. Then,
each level of relay terminals performs the AF operation; that
is, the kth level of terminals, k = 1, ...,K, will amplify the
signal received at (k − 1)th time slot according to its power
constraint and send the scaled signal at the kth time slot. The
destination nodes listen all the time and decode the message
by combining the signals received during the K+1 time slots.

Yk = [yk1, yk2, . . . , yklk ]T and Xk = [xk1, xk2, . . . , xklk ]T

denote respectively the received and transmitted signals at
the kth level of relays, k = 1, ...,K. X0 ∈ Cl0×1 rep-
resent the transmitted signals at the sources, and YK+1 ∈
C(K+1)lK+1×1 are the received signals at the destinations.
YK+1 = [YK+1,1, YK+1,2, . . . , YK+1,K+1]

T , where YK+1,k ∈
ClK+1×1 are the signals received at the destinations, at time
slot k. The K-level AF orthogonal relay channel can be
modeled as:

Yk = HkXk−1 + Zk ; k = 1, 2, . . . ,K; YK+1,1

...
YK+1,K+1

 =


√

γ1HK+1,1X0 + ZK+1,1

...√
γK+1HK+1,K+1XK + ZK+1,K+1


where Hk denotes the channel matrix between the (k − 1)th

and kth level;
√

γkHK+1,k denotes the channel matrix be-
tween the (k − 1)th level and the destination. The matrices
Hk = {Hi,j

k } ∈ Clk×lk−1 and HK+1,k = {Hi,j
K+1,k} ∈

ClK+1×lk−1 are independent and their entries are i.i.d.∼
NC(0, 1) random variables, varying ergodically over time (fast
fading assumption). γk accounts for the pathloss from the
k − 1th level to the destination. Additive white Gaussian
noise Zk (with unit variance) adds at the kth level. At
the destination, ZK+1 = [ZK+1,1, · · · , ZK+1,K+1]T , where
ZK+1,k is the destination receiver noise at time slot k.

No cooperation nor channel-state information (CSI) is avail-
able at the source and relay terminals, but we assume full
cooperation and full CSI (i.e. the knowledge of the realizations
of all the random matrices {Hk}K

k=1, {HK+1,k}K+1
k=1 ) at the

destinations.

The power constraint at each node in the network is inversely
proportional to the number of nodes at its level. For each
level of relays, the received signals are scaled according to
the power constraint at this level of relays. The scaling factor
of the kth level of relay is αk. Therefore, the scaling is

Xk = αkYk, k = 1, . . . ,K

Pk is the total power constraint on the kth level, then

Pk = E[XH
k Xk] = α2

kE[(HkXk−1 + Zk)H(HkXk−1 + Zk)]

Since Xk−1, Hk and Zk are independent,

Pk = α2
k(E[XH

k−1E[HH
k Hk]Xk−1] + E[ZH

k Zk])

= α2
k(E[XH

k−1(lkI)Xk−1] + lk) = α2
klk(Pk−1 + 1)

βk = Pk−1+1
Pk

is the power ratio, k = 1, . . . ,K. The scaling
factors can then be written as αk =

√
1/βklk, k = 0, . . . ,K.

For completeness, define β0 =
√

1/P0, α0 =
√

P0/l0 and
Y0 = 1

α0
X0.

To simplify notations, we introduce {Gk}K+1
k=1 and {Z ′

k}
K+1
k=1

for the equivalent representation of the channel between Yk−1

and [YK+1,k, ..., YK+1,K+1]T . YK+1,k

...
YK+1,K+1

 = GkYk−1 + Z ′
k, k = 1, ...,K + 1

It can be shown that {Gk}K+1
k=1 and {Z ′

k}
K+1
k=1 satisfy

GK+1 = αK
√

γK+1HK+1,K+1; Z ′
K+1 = ZK+1,K+1.

For k = K, . . . , 2, 1,

Gk = αk−1

[ √
γkHK+1,k

Gk+1Hk

]
; Z ′

k =
[

ZK+1,k

Gk+1Zk + Z ′
k+1

]
(1)

The overall channel is then

YK+1 = G1Y0 + Z ′
1 =

1
α0

G1X0 + Z ′
1 (2)

We call G1Y0 the signal part and the Z ′
1 the noise part.

Let Σk be the expected covariance of Z ′
k given that the

destinations have perfect knowledge of the channels. The
matrices {Σk}K+1

k=1 have the following recursive relationship:

ΣK+1 = I; Σk−1 =
[

I 0
0 Σk + GkGH

k

]
, k = K+1 . . . , 2.

(3)
Σ1 is the covariance matrix of the noise part.

For the Gaussian noise channel, the capacity is achieved when
the entries of X0 are jointly Gaussian. Since there is no CSI at
the sources and the entries of H1,HK+1,1 are i.i.d. Gaussian
and independent of G2, [10] relates that the optimal X0 is
distributed according to NC(0, P0

l0
I). Thus, the covariance

matrix of the signal part is G1G
H
1 .

The overall capacity can then be computed as:

C =
1

K + 1
I(X0;YK+1 | G1)

=
1

K + 1
E log det

(
I + Σ− 1

2
1 G1G

H
1 Σ− 1

2
1

)
=

1
K + 1

E log det
(
I + GH

1 Σ−1
1 G1

)
(4)

(The 1
K+1 term comes from the time-division scheme.) To ana-

lyze the capacity scaling behavior of the multi-level amplified-
and-forward relay channel, we take all lk’s to infinity. We
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assume they tend to some given ratios while going to infinity,
say, lk

lK+1
→ ck, k = 0, . . . ,K.

III. CAPACITY ANALYSIS

Stieltjes transform is a powerful tool for analyzing the limiting
eigenvalue distribution (LED) of large dimensional random
matrices. A thorough discussion of its applications can be
found in [2]. With F as a distribution on R (here and in
the rest of the paper, one identifies a distribution on R with
its cumulative distribution function), the Stieltjes transform is
defined as

g(z) ≡
∫ ∞

−∞

1
x− z

dF (x), z ∈ C+ ≡ {z ∈ C : Im (z) > 0}
(5)

with the inversion formula

lim
ε↓0

∫ x2

x1

1
π

Im(g(x + iε))dx = F (x2)− F (x1). (6)

A sequence of distributions converges to a limit if and only if
the corresponding sequence of Stieltjes transforms converges.
The following result is a straightforward consequence of a
result by Silverstein [4]. The empirical eigenvalue distribution
of an n × n Hermitian matrix An with real eigenvalues
λ1, . . . , λn is given by FAn

(x) = 1
n

∑n
k=1 1{x≥λk}.

Theorem 1: Let n, N ≥ 1 and let us assume that:
(a) Xn = (Xn

ij) is an n×N random matrix with i.i.d. entries
such that E |Xn

11 − EXn
11|

2 = 1;
(b) N = N(n) with n/N → c > 0 as n →∞;
(c) Tn is an n × n random Hermitian non-negative definite
matrix such that its empirical eigenvalue distribution FTn

converges almost surely, as n → ∞, to a (deterministic)
distribution FT , with corresponding Stieltjes transform gT ;
(d) Xn and Tn are independent.
Let An = 1

N X∗
nTnXn. Then its empirical eigenvalue dis-

tribution FAn
converges almost surely, as n → ∞, to a

(deterministic) distribution FA, whose Stieltjes transform gA

satisfies

zgA(z) + 1 = c

(
−1

gA(z)
gT

(
−1

gA(z)

)
+ 1

)
(7)

in the sense that, for each z ∈ C+, g = gA(z) is the unique
solution to (7) such that g ∈ C+.

In the particular case where Tn = I , the above equation
becomes

zgA(z) + 1 =
cgA(Z)

1 + gA(z)
, (8)

and its solution is the Stieltjes transform of the well-known
Marčenko-Pastur distribution [1].

To illustrate how Silverstein’s theorem is used to solve the
capacity expression (4), the single-level AF relay network is
examined first. The single-level case provides general guidance
for computing the general multi-level problem. A set of
recursive equations are then derived to compute the Stieltjes
transform of the LED of the multi-level AF relay network.

A. Single-Level Orthogonal AF Relay Network

When K = 1, G2 = α1
√

γ2H2,2,Σ2 = I.

G1 = α0

[ √
γ1H2,1

G2H1

]
, Σ1 =

[
I O
O Σ2 + G2G

H
2

]
From (4), C1-level orth AF = 1

2E log det(I + GH
1 Σ−1

1 G1), where

GH
1 Σ−1

1 G1 =
1
l0

[
HH

2,1 HH
1

]
T1

[
H2,1

H1

]
(9)

T1 =
1
β0

[
γ1I O
O GH

2 (Σ2 + G2G
H
2 )−1G2

]
(10)

GH
2 Σ−1

2 G2 =
γ2

β1l1
HH

2,2H2,2 (11)

Theorem 2: For matrices GH
1 Σ−1

1 G1, GH
2 Σ−1

2 G2 and T1 sat-
isfying (9), (10) and (11) with l0

l2
→ c0 and l1

l2
→ c1, the

Stieltjes transform gk of the LED of GH
k Σ−1

k Gk satisfies:

c0(zg1(z) + 1) =
γ1g1(z)

β0 + γ1g1(z)
+

c1g1(z)
β0 + g1(z)

(
−β0

β0 + g1(z)
g2

(
−β0

β0 + g1(z)

)
+ 1

)
(12)

c1(zg2(z) + 1) =
γ2g2(z)

β1 + γ2g2(z)
(13)

where g1 : C+ → C+ and g2 : C+ → C+.

Proof: The basic proof idea goes as follows. From
(11), the eigenvalue distribution of GH

2 Σ−1
2 G2 converges a.s.

to a scaled version of the Marčenko-Pastur distribution. The
corresponding Stieltjes transform g2 can be shown to satisfy
(13) with g2 : C+ → C+. For (9), Theorem 1 applies to
compute the LED of GH

1 Σ−1
1 G1, if T1 is random Hermitian

nonnegative definite and independent of [H2,1 H1]T , with its
eigenvalue distribution converging almost surely as l0 → ∞.
It is obvious that l2

l1+l2
of the eigenvalues of T1 are equal

to γ1/β0 and that the distribution of the other eigenvalues
of T1 depends on 1

β0
GH

2 (Σ2 + G2G
H
2 )−1G2. Therefore, the

missing link is the relationship between the eigenvalues of
GH

2 (Σ2 +G2G
H
2 )−1G2 and GH

2 Σ−1
2 G2. This relationship can

be obtained by combining Lemmas 1 and 2 in [5]. From [5],

Lemma 1: 1) If Σ is positive definite, then

GH(Σ+GGH)−1G = GHΣ− 1
2 (I+Σ− 1

2 GGHΣ− 1
2 )−1Σ− 1

2 G

2) Let T = GH(Σ + GGH)−1G ∈ Cl×l and denote by ti and
mi the eigenvalues of T and GHΣ−1G respectively, where
t1 ≤ t2 ≤ . . . ≤ tl and m1 ≤ m2 ≤ . . . ≤ ml. Then

tk =
mk

1 + mk
k = 1, . . . , l (14)

From Lemma 1, the eigenvalue distributions of T1 and
GH

2 Σ−1
2 G2 satisfy

(c1+1)FT1

(
x

β0

)
= I{x≥γ1}+c1FGH

2 Σ−1
2 G2

(
x

1− x

)
(15)
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and their corresponding Stieltjes transforms satisfy

(c1 + 1)(zgT1(z) + 1)

=
γ1

γ1 − β0z
+

c1

1− β0z

(
β0z

1− β0z
g2

(
β0z

1− β0z

)
+ 1

)
(16)

Since GH
2 Σ−1

2 G2 is Hermitian nonnegative definite, T1 is also
Hermitian nonnegative definite, and its eigenvalue distribution
converges a.s. Therefore, Theorem 1 applies to find the Stielt-
jes transform g1: combining (7) and (16) yields the conclusion
that g1 satisfies (12) with g1 : C+ → C+.

g1 can be only be solved numerically. The polynomial equation
obtained by combining (12) and (13) is of order 6 and only
one of the roots of this equation satisfies both g1 : C+ → C+

and g2 : C+ → C+. From g1, the inverse Stieltjes transform
(6) provides the corresponding LED F1. The single-level AF
channel capacity is then given by

C1-level orth AF ∼
l0
2

∫
log (1 + x) dF1(x) (17)

as l0 →∞. Therefore, the capacity increases linearly with the
number of nodes at each level.

B. Multi-Level Orthogonal AF Relay Network

The generalization of the previous result to the multi-level
case requires a recursive transformation of the matrices as
well as an iterative application of Lemma 1 and Theorem 1
to compute the Stieltjes transform of the LED of the matrix
in (4). By introducing a new series of matrices {Tk}K

k=1, we
can generalize (9), (10) and (11) to the K-level case.{Tk} is
defined as

Tk =
1

βk−1

[
γkI O
O GH

k+1(Σk+1 + Gk+1G
H
k+1)

−1Gk+1

]
(18)

The series of matrices GH
k Σ−1

k Gk can be then expressed in
terms of Tk.

GH
k Σ−1

k Gk = 1
lk−1

[
HH

K+1,k HH
k

]
Tk

[
HK+1,k

Hk

]
(19)

GH
K+1Σ

−1
K+1GK+1 = γK+1

βK lK
HH

K+1,K+1HK+1,K+1 (20)

Again, capacity computation is through the LED of
GH

1 Σ−1
1 G1. The similarity between (9), (10) and (18), (19)

suggests a recursive way to compute the Stieltjes transform of
the LED of GH

1 Σ−1
1 G1 for the multi-level case.

Theorem 3: For matrix series {GH
k Σ−1

k Gk}K+1
k=1 and {Tk}K

k=1

satisfying (18), (19) and (20), the Stieltjes transforms gk of the
LED of GH

k Σ−1
k Gk satisfy the following equations.

For k = 1, . . . ,K:

ck−1(zgk(z) + 1) =
γkgk(z)

βk−1 + γkgk(z)
+

ckgk(z)
βk−1 + gk(z)

+

ckgk(z)
βk−1 + gk(z)

−βk−1

βk−1 + gk(z)
gk+1

(
−βk−1

βk−1 + gk(z)

)
(21)

cK(zgK+1(z) + 1) =
γK+1gK+1(z)

βK + γK+1gK+1(z)
(22)

where gk : C+ → C+, k = 1, . . . ,K + 1.

Proof: From Theorem 1, the eigenvalue distribution
of GH

k Σ−1
k Gk converges a.s. if Tk is Hermitian nonnegative

definite and the eigenvalue distribution of Tk converges a.s.,
k = 1, ...,K. (18) implies that Tk is Hermitian nonneg-
ative definite. The relationship between the eigenvalues of
GH

k+1Σ
−1
k+1Gk+1 and Tk is provided in Lemma 1. As long

as the eigenvalue distribution of GH
k+1Σ

−1
k+1Gk+1 converges

a.s., then the eigenvalue distribution of Tk converges a.s.
For GH

K+1Σ
−1
K+1GK+1, (20) indicates that its eigenvalue dis-

tribution converges a.s. to a scaled version of the Marčenko-
Pastur distribution. It can be shown that the correspond-
ing Stieltjes transform gK+1 satisfies (13) with gK+1 :
C+ → C+. The convergence of the eigenvalue distribution of
GH

K+1Σ
−1
K+1GK+1 ensures that the eigenvalue distribution of

TK converges a.s. Consequently, the eigenvalue distribution
of GH

KΣ−1
K GK converges, and so does TK−1, and so on.

By induction, we conclude that the eigenvalue distribution of
GH

k Σ−1
k Gk, k = 1, ...,K + 1 converges almost surely.

As a result, combining (7), (8) and (16), the recursive equa-
tions (19) and (20) for the Stieltjes transform gk of the LED
of GH

k Σ−1
k Gk, k = 1, ...K + 1 can be derived.

Computing the capacity (4) requires the knowledge of the
LED of GH

k Σ−1
k Gk. Explicitly, through introduction of a

new sequence {zk}K+1
k=1 , where z1 = z, zk+1 = −βk

βk+gk(zk) ,
k = 1, · · · ,K. (19) becomes, for k = 1, . . . ,K:

gk+1(zk+1) =
βk−1 + gk(z)

βk−1

(
1 +

γk

ck
· βk−1 + gk(zk)
βk−1 + γkgk(zk)

)
−

ck−1(βk−1 + gk(zk))2(zkgk(zk) + 1)
ckβk−1gk(zk)

Therefore, gk(zk), k = 2, ...,K + 1, can be expressed in
terms of z and g1(z). Substitute gK+1(zK+1) in terms of z
and g1(z) into (20) yields an equation for g1(z). The overall
equation for g1 is of (very) high order when K ≥ 2. The
root has to be solved numerically and should satisfy the
constraints, gk(zk) ∈ C+, ∀k = 1, . . . ,K + 1. The LED F1

of GH
1 Σ−1

1 G1 is computed via the inverse Stieltjes transform
(6). The capacity is given by

CK-level orth AF ∼
l0

K + 1

∫
log (1 + x) dF1(x)

as l0 → ∞. The capacity scales linearly with the number of
nodes at each level. Finally, it is possible to show that when
ck →∞, k = 1, ...,K and c0 remains fixed, F1 converges to
a special distribution which can viewed as a combination of
K + 1 orthogonal direct-link MIMO channels with different
channel gain factors.

IV. NUMERICAL SIMULATIONS

The theoretical LED obtained in Section III-B approximates
the empirical eigenvalue distribution of finite-dimension ma-
trices fairly well. Figure 3 shows that there is indeed a good
agreement between the two, even for a small number of nodes
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Fig. 3. Limiting versus empirical eigenvalue distribution
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Fig. 4. Varying the number of relays in a 1-level AF relay network: LED

in the network. The value of γ1 is set to be 0.25 in all of our
simulations.
Also of interest is the effect of the number of relays upon
the LED and the capacity. The ratio between relay nodes and
source nodes varies, while the ratio between the number of
source and destination nodes is fixed. When there is only one
level of relays, the LED and the capacity are shown in Figures
4 and 5 respectively.
Figure 6 summarizes the comparison between direct-link trans-
mission, multihop relay and orthogonal relay networks. A
higher density at large eigenvalues implies a better capacity
performance. We can see that as the number of nodes at the
relay increases, multihop transmission starts to outperform
the direct-link transmission. In all cases, orthogonal relay
operation provides the highest capacity.

V. CONCLUSION

The capacity of a large scale multi-level orthogonal AF
relay network can be expressed by means of the limiting
eigenvalue distribution of a random matrix, whose Stieltjes
transform is shown to satisfy a set of recursive equations. A
general procedure for solving explicitly these equations has
been proposed, from which one can deduce both the limiting
eigenvalue distribution and the capacity. From the capacity
expression, we conclude that the capacity of the multi-level
orthogonal AF relay network scales linearly as the number of
nodes goes to infinity, with fixed ratios between all levels.
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Fig. 5. Varying the number of relays in a 1-level AF relay network: Capacity
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Fig. 6. Comparison between direct-link, multi-hop and orthogonal relay
networks
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