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Abstract—The rate region achievable by two transmitter-receiver pair is given by

pairs who wish to communicate over a Gaussian interference

channel has been the subject of intense study over the last dof(N,, N,) = min{Nt N, maX{Nt,Nr}} (1)
decades. Recently, the high SNR capacity region of this chaal ’ ’ 2

has been completely characterized in a work by Etkin, Tse and - . . L .
Wang (2007). In this paper, we study the effect of adding randm Bwldmg on this res_ult, we first exh|b_|t, in the fast fadmg_
fading into the picture, as well as multiple antennas at the SCenario, a rate region that characterizes the whole dgpaci
transmitters and the receivers. Under the fast fading assumtion, region up to a fixed number of bits, as in [2], and provide

we recover a result of the same type as that obtained inthe abe 3 precise upper bound on the gap-to-capacity. Our proof

mentioned paper. Under the slow fading assumption, we obtai o -hnique relies on a result by [6] on a general class of

an upper bound on the maximally achievable diversity order br . . :

a given target rate pair, which we conjecture to be tight. mterfere_nce chanpels. In the slqw fading scenario, weyaeal
the maximum achievable diversity order for a given targt ra

pair, following the technique of [7] for point-to-point chaels.

Our result is an upper bound on this diversity order at high

Considered initially by Shannon in [1], the interferencah SNR. A corresponding achievability result is still lackirmut

nel describes the shared medium in which two or motge believe that the mathematical framework required toystud

transmitter-receiver pairs wishing to communicate rdiab the upper bound is already of interest in its own right.

interfere with each other. Although the general capacigyae

remains unknown in the simplest scenario with two commu- II. CHANNEL MODEL

nicating pairs, a recent result by Etkin, Tse and Wang [2] has i )

shed light on the particular case where both interference aff€ consider the MIMO interference channel

noise are additive, and noise is Gaussian. They establisiva n { Yi=HIX1i+Gi Xo+ 2, @)

outer bound on the capacity region, that is shown moreover Yo =Go X1+ Hy Xo + 2o

to be achi_evable to within one bit/s/Hz by a simplified Hang here H,, Hs, Gi, Gy are four independentV, x N,

Kobayashi scheme [3], for all values of channel parametes,jom matrices with i.i.d\c(0,1) entries. These matrices

'I_'h|s characterlzgtlon of .the capacny.reglon IS th_erefcme P are moreover independent from tié.-variate noise vectors

_tlcularly “?'e"a“t |n_th_e_ high SNR regime, where interferen Z1, Zo with i.i.d. Nc(0, Ny) components and i.i.d realizations

is the main factor limiting communication rates. over time (for ease of notation, let us assume tNat— 1).

When transmitter-receiver pairs wish to communicate bgfia In addition, the transmitted signals; € C"* are subject to

in a wireless environment, users have to combat chanie¢ (respective) power constrairiy || X;||*} < P. For ease

fading, in addition to dealing with interference. A by-nowof notation again, let us also define the power per antenna

familiar technique to combat fading in the context of pdimt- Fo = P/N:.

point communications is the use of multiple antenna systems

[4]. It is therefore of interest to explore the performancA. Fast Fading Scenario

achievable by such systems in the presence of interference. ) }
We first consider the scenario where the channel matrites

We consider in this paper the situation where two transmsittery, G, G, vary ergodically over time, and assume that the
are equipped withV; antennas each and two receivers ai@alizations of the matrice#;, G; are revealed to receiver

equipped withN,. antennas each. In the situation where bofar ; — 1,2 respectively. That is, the received signals become
pairs wish to communicate at the same rate, it was shown

by S. A. Jafar and M. Fakhereddin in [5] that the number of Vio= (HiX1+GiXa+ 21, Hy, Gh),
degrees of freedom (or multiplexing gain) per communia@atin Yo = (G2 X1+ HyXs+ Z1,Hy, Go).

I. INTRODUCTION
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Following [6], let us also define The above result says that the gap-to-capacity is upper
bounded by a fixed number, for all values of channel pa-
S1= (G2 X1+ Z3, Hy,Ga),  S2=(G1Xa+ Z1,H1,G1)  rameters (provided that we fix the number of antennas). It
therefore provides a tight characterization of the capacit
region of the fast fading MIMO interference channel in the
Uy = (Gy X1 + Z4, Hy, GY), Us = (G Xy + Z),H,,GY) high SNR regime, as already shown for the classical Gaussian
interference channel in [2]. In particular, whéf). = N, = 1,
where Hi, H;, G, GY, Z;, Z; are independent copies ofthe gap is upper bounded by just like for the Gaussian
Hy, Ho, G1, Ga, Z1, Z, respectively. We see that there is anterference channel. Notice moreover that in this case, th
one-to-one correspondence betwdgnand S; given X3, as  high SNR capacity region is the same as that described in [2].
well as betweerY; andS; given X,, and thatU; and S; are . N, 1
independent giver;, for i — 1,2 respectively. The presentlSO: if Ne =1, theng < 5,7, x— < 1, for all values
channel therefore belongs to the general class of intevgere ©f Ve If N = Ny = n, then the above bound shows that
channels studied in [6]. The computation of the rate regio&hS O(n). At the other end, the cas¥, < N; remains an
Ro defined in there gives: open problem.

as well as

R — [(R\ R R? - Finally, let us mention that a rapid analysis of the rateangi
0= {(R1,Rz) € RY: R allows to recover the result (1) on the number of degrees of
al) Ry < E(logdet(I + PyH1HY)) freedom for the MIMO interference channel whah > N;.
a2) Ry < E(logdet(I + PyH2H}))
bl) R1 + Re < E(logdet([ + PQHQH; + PQGQG;)
+logdet(I + PyH (I + PGy GY) L HY))
b2) Ri+ Ry < E(logdet([ + PoHle + PoGlGD
+ logdet(I + P()HQ(I + PoGll*G/l)ilH;))

Proof of Proposition 1. Let us compute
I(X1;81|Ur) = h(S1|Ur) — h(S1| X1,Un)
= h(G2 X1+ Z2,Ga, Hy | GIQ X1+ Zé, I2, Hé)

_h(G2 X1+ Z5,Go, Hy | Xy, GIQ X1+ Zé, G/Q, Hé)
= h(Ga X1+ 22| Gy X1+ Z, Gy, Ga) — h(Z
c1) 2Ry + Ry < E(logdet(I + PoHyH} + PyG1G?) Since ( >2 ]\1; th2| 2 ; - 1(;/2))7 f(thQ) N

et 1 ince N, > N, the pseudo-invers¢Gj)t of the N, x
+logdet(I + POHi (I+ POGQ*GQ) Hl)/ ey N, matrix G}, satisfies (G4)G, = I, so substracting
+logdet(I + RoG1G1 + Poly (I + PoGyGy') ™ Hz)) Gy (Gh)T (Gl Xy + Zb) to Ga X1 + Zo gives
02) Ri1+ 2Ry < E(logdet([—l— POHQH; + POGQG;) h(22 — Gy (G/Q)T Zé | G/2 X, + Zé, /27G2) _ h(ZQ)
* * ! 1%\ —1

+logdet(I + MGGy + B HL(I+ RGhGY) ™ Hy)) since conditioning reduces entropy. Notice that this last i

d) Ry + Ry equality allows us to get rid of the inpuX; and therefore
< E(logdet(I + PyG3Go + PoH; (I + P,GYGY) ' H,) obtain a bound on the gap-to-capacity which is independent
+logdet(I + PyGiGy + PoH3 (I + PyGYGYy )~ Hy))} of P. The computation of the right-hand side leads to

!/ !/ * *
In [6], it is shown thatR, contains the capacity region of 7 < E(logdet(I + G, (GQ)T((G?T) G2))
the above interference channel and tha{ i, Ry) € Ry, = E(logdet(I + G2 (G5 G3) ™" G3))
then (R, — g, Rz — g) is achievable by a simplification of the = E(logdet(I + G5G2 + G5 GY) —log(I + G5 GY))
Han-Kobayashi scheme [3], where

9

9

IN

It is now a well known fact (see e. g. [8]) thatdf is anm xn

9= I(X1; 51| UL) = I(Xa; So | Us) matrix with i.i.d. N¢(0,1) entries andn > n, then
In the following, we compute an explicit upper bound on this E(logdet(I + G*G)) = Zw(m —j+1)
gap-to-capacityy, in the case where the number of receive j=1

antennas is greater than or equal to the number of transwﬁerew(m) o _7+Zm71 L s the Euler digamma function
- k=1 & ’

antennas From this and the above, we deduce that
Proposition 1. Assume that N, > N,. Then the gap-to- N, N,
capacity is upper bounded by g < Zw@NT —j—-1)- Zw(NT —j—-1)

Ny, N, 1 j;l =1

g9< Y, , - 1 1
N.—N;—1 k = T
= ; N, — ] N, —j+1
INotice that unlike [2], we have not been considering exipfiche case Niv" 1 Niv" 1

where the SNR and INR scale differently, but the result ofghgposition is = ~ - — p
independent of the different scalings of the SNR and INR. j k=1 Ny —j+k j k=1 Ne =Ny —1+j+k



which completes the proof. 0 and the corresponding diversity order for a target mulkijlg
gain pair(ry,72) is defined, following [7], as

B. Sow Fading Scenario d(r1.7s) = — lim log Pout(r1 log P, 72 log P)
1,72 Pco IOgP
Let us now assume that the realizations of the channel matritBy the above mentioned gap-to-capacity result and an argu-

Hy, Hy, Gi, Gy are held fixed over time. If the channelment similar to that developed in [7], it is possible to show
realizations are revealed to both transmitters and rexgite hat

is then possible to show, following [6] again, that for a give

realization of Hy, Ho, G1, G2, the capacity regiorC(H,G) d(r1,72) = —Plim
of the MIMO interference channel (2) is contained in the -
following rate region: where

ROQ(H, G) = {(Rl,Rz) S R?’_ :

log P{(r1 log P, 3 log P) ¢ Roo(H,G)}
log P

RolH, G) = Qg{ Ro(H, G, Q1. Qo) al) Ry < logdet(I + PH, H})
@ SPQz < a2) Ry < logdet(I + PHyHj)
where we have, for two fixed input covariance matriégs bl) R1 + Ry < logdet(I + PHoH; + PG2G3)
and Q2 +logdet(I + PHy(I + PGGo) tHY)
Ro(H, G, Q1,Q2) = {(R1,Rs) € R : b2) Ry + Ro < logdet(I + PH1H{ + PG1GY)
al) Ry < logdet(I + H\Q.H}) +logdet(I + PHa(I + PGyG1) ™' Hy)
a2) Ry < logdet(] + HyQoHY) cl) 2Ry + Ry < logdet(I + PH1H{ + PG1GY)
bl) Ry + Ry < logdet(I + HaQoHj + G2Q1G3) +logdet(I + PHy(I + PG5G2)” ' HY)
+ logdet(I + HiQ:(I + Q1G5G2) tHY) +logdet(I + PG;G1 + PH3 (I + PG2G3%) ™ Hs)
b2) Ry + Ry < logdet(I + H1Q1H{ + G1Q2G?) c2) Ry + 2R, < logdet(I + PHyHj + PG>G3)
+logdet(I + HyQo(I + Q2G5 G)  H) +logdet(I + PHa(I + PG{G1) ™" H3)
1) 2Ry + Ry < logdet(I + H1 Q1 H} + G1Q2GY) + logdet(I + PG5Gy + PH; (I + PG,G}) ™ Hy)
+logdet(I + H1Q:(I + Q1G3G) " HY) d) Ry + Ry
+logdet(I + Q2G5G1 + Q2H3 (I + G2Q1G5) ™ Ha) < logdet(I + PG3G> + PH; (I + PG1G;) " Hy)
¢2) Ry + 2Ry < logdet(I + HyQoH} + GoQ1GY) +logdet(I + PGGy + PH; (I + PGoG3) ™ Ha)}
+logdet(I + HaQo(I + Q2GGy) 1 HY) Let finally dsym(r) = d(r,r) denote the diversity order

+logdet(I + Q1G3Gs + QLHF (I + G1Q2GY) " Hy) corresponding to a symr_netrip target mu!tiplexing gain, and
d) Ry + Ry let d,,,»(r) denote the diversity-multiplexing tradeoff curve
for a classical MIMO channel withn transmit antennas;
<logdet(I + Q1G3G2 + Q1Hi (I + G1Q2GT) "H1)  receive antennas and target multiplexing gaitve recall that
+ logdet(I + Q2G1G1 + Q2Hj (I + G2Q1G%) " 'Hs)}  this curve is the polygonal line joining the point, d(k) =
(m—k)(n—k)) for k integer betwee andmin(m, n). The
Moreover, if (R, R2) € Ro(H,G), then (R, — N, Rz — following proposition gives an upper bound on the diversity
N;) € C(H,G). The gap-to-capacity is therefore also uppesrder of the MIMO interference channel in the case where the

bounded by a constant in this case, given by the numberffmber of transmit and receive antennas are equal.

receive antennas. -
Proposition 2. Assume that N, = N; = n. Then

If we now assume that the realizations of the channel matrice )

are revealed to the receivers only, then the capacity regi’%ﬁdw(” < min{dp,n(r), dgn,n(2r)}

reduces to the single poirt(0,0)}. Indeed, there is always B) d(r,r,) < min{dy, ,(r1), dpn(r2), dsp.n(r1 +72)}

a positive probability for a given non-zero target rate pair

(R1, R») to fall outside the above capacity region. Relyingve conjecture these upper bounds to be tight, but have no
on the above gap-to-capacity result, we analyze this outa@emal proof of this fact so far. Notice also that, as opposed
probability in detail and establish an upper bound on the the preceding section, the above proposition dméspply
high SNR diversity-multiplexing tradeoff for the MIMO in- to the more general situation studied in [2], where the SNR
terference channel. For a target rate gdii, 12), the outage and INR scale differently; this situation would require a
probability is defined as significantly more involved study.

Pout(R1,R2) = min  P{(Ry,R2) ¢ Ro(Q1,Q2,G, H)} Proof of Proposition 2. A) From the expression faRoo(H, G)
T LR o < p and the fact that the matricé®,, H,, G1, G» are independent



and identically distributed, we obtain Using then Hadamard'’s inequality, we obtain that the above
expression is less than or equal to

P{(rlog P,rlog P) ¢ Ro(H,G)} = (3)
P{a) logdet(I + PH H;) < rlog P doie1 {log(1+ P(Hh§-2)||2 + X)) —log(1+ PAj)
or b) logdet(I + PH2H; + PG2GY%) +log(1 +P(Hh§»1)||2 + /\j))}
+ logdet(I + PH,(I + PG3G2) ' H}) < 2rlog P ,
or ¢) logdet(I + PH; (I + PG3Ga) " H?) yvhere./zi > ... >\, are the eigenvalues af>G3 andh'”
+ logdet(I + PGIG1+ PHi(I + PGoGy)—Hy)  ° ed" row of .
+ logdet(I + PH H} + PG1GY) < 3rlog P To summarize, what we have shown so far is that
or d) logdet(I + PG3Go + PH{ (I + PG1G}) 'Hy) P{(rlog P,rlog P) ¢ Roo(H,G)}
+ logdet(I + PG Gy + PH(I + PGyG)~ Hy) > P{log det(I + PHyHj + PG2GY)
< 2rlog P} + logdet(I + PHy (I + PG3Go) " H}) < 2rlog P}

Any of the four bound; abovg imposes an upper limit on the> P{ > i {log(1+ P(||h‘§.2)|\2 + ;) —log(1+ PX;)
diversity order. In particular, it follows directly from [&hat 1) 2
the single-user bound a) leads to the upper bound +log(1+ P([[h; 17 + X))} < 2rlog P}

dsym(r) < dppn(r) The joint distribution ofA; > ... > ), is the classical Wishart

whered,, ,,(r) is the classicah x n MIMO diversity curve. distribution

Let us now analyze the limitation imposed by bound b) in (3). P(A1s-- ;M) ~ [T (M — Aj)? exp (— > i /\j)
We easily see that

logdet(I + PH2H; + PG2G3)

+ logdet(I + PH,(I + PG3Go) *H7}) )

— logdet(I + PHyH} + PG2GY) — log det(I + PGLG2) p(B) ~ B""" exp(=B)

+ logdet(I + PH{ Hy + PG5Gs) Following the methodology of [7], let us make the change of
It is a well know fact (see e. g. [9]) that % is an x n matrix variables s ) _p
with i.i.d. Nc(0,1) entries, thenGG* = UAU*, where A Aj =P, Bt =P

Is a diag_onallmatrix f(_)rmed by the (ordered) eigenv_alues Rfis then possible to deduce the following upper bound on the
GG*, U is uniformly distributed on the set af x n unitary diversity order:

matrices andA and U are independent. Likewis&7*G = '

VAV*, whereV is a uniformly distributed unitary matrix, < ) 1) @)

also independent of. Therefore, the above expression is still dsym(r) < mmz {@n =)+ Da;+n (87 +57)}

equal to =1

log det(I + PWaMaWi + PULAUL) — log det(I + PVaAVY) \év:nesrteratirr}tes.mln|m|zatlon oven’s and ('s is subject to the
+10gdet(I+PW1M1W1* —|—P‘/2A‘/2*) ' »
whereA, M, M, are diagonall/,, Vs, Wy, W5 are uniformly an2...20 20, 57 >0

distributed unitary matrices and all matrices, exdépaindV>, gnd
are independent. Using the identifigt(/ + AB) = det(I +

and the normsB\” = ||n\”||> are iid. random variables
(independent of the\'s), each with Gamma distribution

n

BA), the above expression may be rewritten as Z { max(0,1 — aj,1 — ﬁj(l)) +max(0,1 - aj,1 — 5;2))
logdet(I + P(UsyWa)Ma(W35Uz) + PA) —logdet(I + PA) =1
+log det(I + P(Vy W) M,y (WiVa) + PA) ) —(1—a)}<2r

Now, sincels, Ws, Vo, Wi are uniformly distributed unitary Notice that by symmetry, this upper bound may be simplified
matrices, so ar€; W, andV; W, (and these two are indepen+0

dent); therefore(U; W5 ) M2 (W5 Us) has the same distribution R .

S d < 2(n — 1) a; +2np;
as HoH; and (V5 W,) My (W;Vz) has the same distribution sym(r) < manl {@(n =) +1) a; +2n0;}
as Hy Hy (or equivalentlyH, Hy), which in turn implies that _ =
(4) has the same distribution as subject toar, > ... > a; >0, 8; >0 and

logdet(I + PHyH5 + PA) — logdet(I + PA) r N
+logdet(I + PHyH; + PA) ; {2max(0,1 —a;,1-3;) — (1 —a;)"} <2r



This minimization problem has the following elegant saati
for 2r = k integer betweer) andn, we havea; = 37 =0
for j <=k andaj = 3; =1 for j > k, so that

dsym(k/2) < D {(2(n—j)+1) +2n} = (3n—k)(n— k)
J=k+1

and for non-integer values @f-, the curve is a linear interpo-

lation between these points. This turns out to be the clalssic
3n x n MIMO diversity curve (scaled horizontally by a factor

1/2), so that
dsym(r) < d3n,n(2T)

This completes the proof of part A)

B) The second part of the proposition follows from a straigh}:ina”y

forward extension of the above argument.

Illustrations of the result:
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Fig. 1: upper bound on the diversity ordégm(r) for n = 1.
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4
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Fig. 2: upper bound on the diversity ordéym(r) for n = 2.

2 r

2We conjecture that neither bound ¢) nor bound d) imposetstriamita-
tions on the diversity order than those imposed by boundsiébg together.
This fact is however not needed in order to state the prdpaosit

d()

1 14/11 3/2

on the diversity ordégm(r) for n = 3.

3 T

Fig. 3: upper bound

we make the following conjecture, in the case where
the number of receive antennas is not equal to the number of
transmit antennas. This conjecture is in agreement with the
number of degrees of freedom (1) of the MIMO interference
channel. Notice however that a straightforward extensibn o
the above argument does not suffice to prove the conjecture.

Conjecture 3. Let m = max(N,, N;) and n = min(N,., Ny).
Then

A) dgym(r) < min{da(r), dy(r)}
where d,(r) A (1)

dy(r) domn (27) + dim2n(27) — dm o (27)
dm.2n(2r) +m (n —2r)"

min{d,(r1),d,(r2),dp(r1 + 72)}
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