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77454 Marne la Vallée Cédex 2, France
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Abstract—The rate region achievable by two transmitter-receiver
pairs who wish to communicate over a Gaussian interference
channel has been the subject of intense study over the last
decades. Recently, the high SNR capacity region of this channel
has been completely characterized in a work by Etkin, Tse and
Wang (2007). In this paper, we study the effect of adding random
fading into the picture, as well as multiple antennas at the
transmitters and the receivers. Under the fast fading assumption,
we recover a result of the same type as that obtained in the above
mentioned paper. Under the slow fading assumption, we obtain
an upper bound on the maximally achievable diversity order for
a given target rate pair, which we conjecture to be tight.

I. I NTRODUCTION

Considered initially by Shannon in [1], the interference chan-
nel describes the shared medium in which two or more
transmitter-receiver pairs wishing to communicate reliably,
interfere with each other. Although the general capacity region
remains unknown in the simplest scenario with two commu-
nicating pairs, a recent result by Etkin, Tse and Wang [2] has
shed light on the particular case where both interference and
noise are additive, and noise is Gaussian. They establish a new
outer bound on the capacity region, that is shown moreover
to be achievable to within one bit/s/Hz by a simplified Han-
Kobayashi scheme [3], for all values of channel parameters.
This characterization of the capacity region is therefore par-
ticularly relevant in the high SNR regime, where interference
is the main factor limiting communication rates.

When transmitter-receiver pairs wish to communicate reliably
in a wireless environment, users have to combat channel
fading, in addition to dealing with interference. A by-now
familiar technique to combat fading in the context of point-to-
point communications is the use of multiple antenna systems
[4]. It is therefore of interest to explore the performance
achievable by such systems in the presence of interference.

We consider in this paper the situation where two transmitters
are equipped withNt antennas each and two receivers are
equipped withNr antennas each. In the situation where both
pairs wish to communicate at the same rate, it was shown
by S. A. Jafar and M. Fakhereddin in [5] that the number of
degrees of freedom (or multiplexing gain) per communicating

pair is given by

dof(Nt, Nr) = min

{

Nt, Nr,
max{Nt, Nr}

2

}

(1)

Building on this result, we first exhibit, in the fast fading
scenario, a rate region that characterizes the whole capacity
region up to a fixed number of bits, as in [2], and provide
a precise upper bound on the gap-to-capacity. Our proof
technique relies on a result by [6] on a general class of
interference channels. In the slow fading scenario, we analyze
the maximum achievable diversity order for a given target rate
pair, following the technique of [7] for point-to-point channels.
Our result is an upper bound on this diversity order at high
SNR. A corresponding achievability result is still lacking, but
we believe that the mathematical framework required to study
the upper bound is already of interest in its own right.

II. CHANNEL MODEL

We consider the MIMO interference channel
{

Y1 = H1X1 +G1X2 + Z1

Y2 = G2X1 +H2X2 + Z2
(2)

where H1, H2, G1, G2 are four independentNr × Nt

random matrices with i.i.d.NC(0, 1) entries. These matrices
are moreover independent from theNr-variate noise vectors
Z1, Z2 with i.i.d. NC(0, N0) components and i.i.d realizations
over time (for ease of notation, let us assume thatN0 = 1).
In addition, the transmitted signalsXi ∈ CNt are subject to
the (respective) power constraintsE{‖Xi‖2} ≤ P . For ease
of notation again, let us also define the power per antenna
P0 = P/Nt.

A. Fast Fading Scenario

We first consider the scenario where the channel matricesH1,
H2, G1, G2 vary ergodically over time, and assume that the
realizations of the matricesHi, Gi are revealed to receiveri,
for i = 1, 2 respectively. That is, the received signals become

Y1 = (H1X1 +G1X2 + Z1, H1, G1),

Y2 = (G2X1 +H2X2 + Z1, H2, G2).
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Following [6], let us also define

S1 = (G2X1 + Z2, H2, G2), S2 = (G1X2 + Z1, H1, G1)

as well as

U1 = (G′
2X1 + Z ′

2, H
′
2, G

′
2), U2 = (G′

1X2 + Z ′
1, H

′
1, G

′
1)

whereH ′
1, H ′

2, G′
1, G′

2, Z ′
1, Z ′

2 are independent copies of
H1, H2, G1, G2, Z1, Z2 respectively. We see that there is a
one-to-one correspondence betweenY1 andS2 givenX1, as
well as betweenY2 andS1 givenX2, and thatUi andSi are
independent givenXi, for i = 1, 2 respectively. The present
channel therefore belongs to the general class of interference
channels studied in [6]. The computation of the rate region
R0 defined in there gives:

R0 =
{

(R1, R2) ∈ R
2
+ :

a1) R1 < E(log det(I + P0H1H
∗
1 ))

a2) R2 < E(log det(I + P0H2H
∗
2 ))

b1) R1 +R2 < E(log det(I + P0H2H
∗
2 + P0G2G

∗
2)

+ log det(I + P0H1(I + P0G
′∗
2 G

′
2)

−1H∗
1 ))

b2) R1 +R2 < E(log det(I + P0H1H
∗
1 + P0G1G

∗
1)

+ log det(I + P0H2(I + P0G
′∗
1 G

′
1)

−1H∗
2 ))

c1) 2R1 +R2 < E(log det(I + P0H1H
∗
1 + P0G1G

∗
1)

+ log det(I + P0H1(I + P0G
′∗
2 G

′
2)

−1H∗
1 )

+ log det(I + P0G
∗
1G1 + P0H

∗
2 (I + P0G

′
2G

′∗
2 )−1H2))

c2) R1 + 2R2 < E(log det(I + P0H2H
∗
2 + P0G2G

∗
2)

+ log det(I + P0H2(I + P0G
′∗
1 G

′
1)

−1H∗
2 )

+ log det(I + P0G
∗
2G2 + P0H

∗
1 (I + P0G

′
1G

′∗
1 )−1H1))

d) R1 +R2

< E(log det(I + P0G
∗
2G2 + P0H

∗
1 (I + P0G

′
1G

′∗
1 )−1H1)

+ log det(I + P0G
∗
1G1 + P0H

∗
2 (I + P0G

′
2G

′∗
2 )−1H2))

}

In [6], it is shown thatR0 contains the capacity region of
the above interference channel and that if(R1, R2) ∈ R0,
then(R1 − g,R2 − g) is achievable by a simplification of the
Han-Kobayashi scheme [3], where

g = I(X1;S1 |U1) = I(X2;S2 |U2)

In the following, we compute an explicit upper bound on this
gap-to-capacityg, in the case where the number of receive
antennas is greater than or equal to the number of transmit
antennas1.

Proposition 1. Assume that Nr ≥ Nt. Then the gap-to-
capacity is upper bounded by

g ≤

Nt,Nr
∑

j,k=1

1

Nr −Nt − 1 + j + k

1Notice that unlike [2], we have not been considering explictily the case
where the SNR and INR scale differently, but the result of theproposition is
independent of the different scalings of the SNR and INR.

The above result says that the gap-to-capacity is upper
bounded by a fixed number, for all values of channel pa-
rameters (provided that we fix the number of antennas). It
therefore provides a tight characterization of the capacity
region of the fast fading MIMO interference channel in the
high SNR regime, as already shown for the classical Gaussian
interference channel in [2]. In particular, whenNr = Nt = 1,
the gap is upper bounded by1, just like for the Gaussian
interference channel. Notice moreover that in this case, the
high SNR capacity region is the same as that described in [2].

Also, if Nt = 1, theng ≤
∑Nr

k=1
1

Nr−1+k
≤ 1, for all values

of Nr. If Nr = Nt = n, then the above bound shows that
g ≤ O(n). At the other end, the caseNr < Nt remains an
open problem.

Finally, let us mention that a rapid analysis of the rate region
R0 allows to recover the result (1) on the number of degrees of
freedom for the MIMO interference channel whenNr ≥ Nt.

Proof of Proposition 1. Let us compute

g = I(X1;S1 |U1) = h(S1 |U1) − h(S1 |X1, U1)

= h(G2X1 + Z2, G2, H2 |G
′
2X1 + Z ′

2, G
′
2, H

′
2)

−h(G2X1 + Z2, G2, H2 |X1, G
′
2X1 + Z ′

2, G
′
2, H

′
2)

= h(G2X1 + Z2 |G
′
2X1 + Z ′

2, G
′
2, G2) − h(Z2)

Since Nr ≥ Nt, the pseudo-inverse(G′
2)

† of the Nr ×
Nt matrix G′

2 satisfies (G′
2)

†G′
2 = I, so substracting

G2 (G′
2)

† (G′
2X1 + Z ′

2) to G2X1 + Z2 gives

g = h(Z2 −G2 (G′
2)

† Z ′
2 |G

′
2X1 + Z ′

2, G
′
2, G2) − h(Z2)

≤ h(Z2 −G2 (G′
2)

† Z ′
2 |G

′
2, G2) − h(Z2)

since conditioning reduces entropy. Notice that this last in-
equality allows us to get rid of the inputX1 and therefore
obtain a bound on the gap-to-capacity which is independent
of P . The computation of the right-hand side leads to

g ≤ E(log det(I +G2 (G′
2)

†((G′
2)

†)∗G∗
2))

= E(log det(I +G2 (G′∗
2 G

′
2)

−1G∗
2))

= E(log det(I +G∗
2G2 +G′∗

2 G
′
2) − log(I +G′∗

2 G
′
2))

It is now a well known fact (see e. g. [8]) that ifG is anm×n
matrix with i.i.d. NC(0, 1) entries andm ≥ n, then

E(log det(I +G∗G)) =

n
∑

j=1

ψ(m− j + 1)

whereψ(m) = −γ+
∑m−1

k=1
1
k

is the Euler digamma function.
From this and the above, we deduce that

g ≤
Nt
∑

j=1

ψ(2Nr − j − 1) −
Nt
∑

j=1

ψ(Nr − j − 1)

=

Nt
∑

j=1

(

1

2Nr − j
+ . . .+

1

Nr − j + 1

)

=

Nt,Nr
∑

j,k=1

1

Nr − j + k
=

Nt,Nr
∑

j,k=1

1

Nr −Nt − 1 + j + k



which completes the proof. �

B. Slow Fading Scenario

Let us now assume that the realizations of the channel matrices
H1, H2, G1, G2 are held fixed over time. If the channel
realizations are revealed to both transmitters and receivers, it
is then possible to show, following [6] again, that for a given
realization ofH1, H2, G1, G2, the capacity regionC(H,G)
of the MIMO interference channel (2) is contained in the
following rate region:

R0(H,G) =
⋃

Q1,Q2≥0:

Tr(Q1)≤P,Tr(Q2)≤P

R0(H,G,Q1, Q2)

where we have, for two fixed input covariance matricesQ1

andQ2:

R0(H,G,Q1, Q2) =
{

(R1, R2) ∈ R
2
+ :

a1) R1 < log det(I +H1Q1H
∗
1 )

a2) R2 < log det(I +H2Q2H
∗
2 )

b1) R1 +R2 < log det(I +H2Q2H
∗
2 +G2Q1G

∗
2)

+ log det(I +H1Q1(I +Q1G
∗
2G2)

−1H∗
1 )

b2) R1 +R2 < log det(I +H1Q1H
∗
1 +G1Q2G

∗
1)

+ log det(I +H2Q2(I +Q2G
∗
1G1)

−1H∗
2 )

c1) 2R1 +R2 < log det(I +H1Q1H
∗
1 +G1Q2G

∗
1)

+ log det(I +H1Q1(I +Q1G
∗
2G2)

−1H∗
1 )

+ log det(I +Q2G
∗
1G1 +Q2H

∗
2 (I +G2Q1G

∗
2)

−1H2)

c2) R1 + 2R2 < log det(I +H2Q2H
∗
2 +G2Q1G

∗
2)

+ log det(I +H2Q2(I +Q2G
∗
1G1)

−1H∗
2 )

+ log det(I +Q1G
∗
2G2 +Q1H

∗
1 (I +G1Q2G

∗
1)

−1H1)

d) R1 +R2

< log det(I +Q1G
∗
2G2 +Q1H

∗
1 (I +G1Q2G

∗
1)

−1H1)

+ log det(I +Q2G
∗
1G1 +Q2H

∗
2 (I +G2Q1G

∗
2)

−1H2)
}

Moreover, if (R1, R2) ∈ R0(H,G), then (R1 − Nr, R2 −
Nr) ∈ C(H,G). The gap-to-capacity is therefore also upper
bounded by a constant in this case, given by the number of
receive antennas.

If we now assume that the realizations of the channel matrices
are revealed to the receivers only, then the capacity region
reduces to the single point{(0, 0)}. Indeed, there is always
a positive probability for a given non-zero target rate pair
(R1, R2) to fall outside the above capacity region. Relying
on the above gap-to-capacity result, we analyze this outage
probability in detail and establish an upper bound on the
high SNR diversity-multiplexing tradeoff for the MIMO in-
terference channel. For a target rate pair(R1, R2), the outage
probability is defined as

Pout(R1, R2) = min
Q1,Q2≥0:

Tr(Q1)≤P,Tr(Q2)≤P

P{(R1, R2) /∈ R0(Q1, Q2, G,H)}

and the corresponding diversity order for a target multiplexing
gain pair(r1, r2) is defined, following [7], as

d(r1, r2) = − lim
P→∞

log Pout(r1 logP, r2 logP )

logP

By the above mentioned gap-to-capacity result and an argu-
ment similar to that developed in [7], it is possible to show
that

d(r1, r2) = − lim
P→∞

log P{(r1 logP, r2 logP ) /∈ R00(H,G)}

logP

where

R00(H,G) =
{

(R1, R2) ∈ R
2
+ :

a1) R1 < log det(I + PH1H
∗
1 )

a2) R2 < log det(I + PH2H
∗
2 )

b1) R1 +R2 < log det(I + PH2H
∗
2 + PG2G

∗
2)

+ log det(I + PH1(I + PG∗
2G2)

−1H∗
1 )

b2) R1 +R2 < log det(I + PH1H
∗
1 + PG1G

∗
1)

+ log det(I + PH2(I + PG∗
1G1)

−1H∗
2 )

c1) 2R1 +R2 < log det(I + PH1H
∗
1 + PG1G

∗
1)

+ log det(I + PH1(I + PG∗
2G2)

−1H∗
1 )

+ log det(I + PG∗
1G1 + PH∗

2 (I + PG2G
∗
2)

−1H2)

c2) R1 + 2R2 < log det(I + PH2H
∗
2 + PG2G

∗
2)

+ log det(I + PH2(I + PG∗
1G1)

−1H∗
2 )

+ log det(I + PG∗
2G2 + PH∗

1 (I + PG1G
∗
1)

−1H1)

d) R1 +R2

< log det(I + PG∗
2G2 + PH∗

1 (I + PG1G
∗
1)

−1H1)

+ log det(I + PG∗
1G1 + PH∗

2 (I + PG2G
∗
2)

−1H2)
}

Let finally dsym(r) = d(r, r) denote the diversity order
corresponding to a symmetric target multiplexing gain, and
let dm,n(r) denote the diversity-multiplexing tradeoff curve
for a classical MIMO channel withm transmit antennas,n
receive antennas and target multiplexing gainr. We recall that
this curve is the polygonal line joining the points(k, d(k) =
(m− k)(n− k)) for k integer between0 andmin(m,n). The
following proposition gives an upper bound on the diversity
order of the MIMO interference channel in the case where the
number of transmit and receive antennas are equal.

Proposition 2. Assume that Nr = Nt = n. Then

A) dsym(r) ≤ min{dn,n(r), d3n,n(2r)}

B) d(r1, r2) ≤ min{dn,n(r1), dn,n(r2), d3n,n(r1 + r2)}

We conjecture these upper bounds to be tight, but have no
formal proof of this fact so far. Notice also that, as opposed
to the preceding section, the above proposition doesnot apply
to the more general situation studied in [2], where the SNR
and INR scale differently; this situation would require a
significantly more involved study.

Proof of Proposition 2. A) From the expression forR00(H,G)
and the fact that the matricesH1, H2, G1, G2 are independent



and identically distributed, we obtain

P{(r logP, r logP ) /∈ R0(H,G)} = (3)

P
{

a) log det(I + PH1H
∗
1 ) < r logP

or b) log det(I + PH2H
∗
2 + PG2G

∗
2)

+ log det(I + PH1(I + PG∗
2G2)

−1H∗
1 ) < 2r logP

or c) log det(I + PH1(I + PG∗
2G2)

−1H∗
1 )

+ log det(I + PG∗
1G1 + PH∗

2 (I + PG2G
∗
2)

−1H2)

+ log det(I + PH1H
∗
1 + PG1G

∗
1) < 3r logP

or d) log det(I + PG∗
2G2 + PH∗

1 (I + PG1G
∗
1)

−1H1)

+ log det(I + PG∗
1G1 + PH∗

2 (I + PG2G
∗
2)

−1H2)

< 2r logP
}

Any of the four bounds above imposes an upper limit on the
diversity order. In particular, it follows directly from [7] that
the single-user bound a) leads to the upper bound

dsym(r) ≤ dn,n(r)

wheredn,n(r) is the classicaln× n MIMO diversity curve.

Let us now analyze the limitation imposed by bound b) in (3).
We easily see that

log det(I + PH2H
∗
2 + PG2G

∗
2)

+ log det(I + PH1(I + PG∗
2G2)

−1H∗
1 )

= log det(I + PH2H
∗
2 + PG2G

∗
2) − log det(I + PG∗

2G2)

+ log det(I + PH∗
1H1 + PG∗

2G2)

It is a well know fact (see e. g. [9]) that ifG is an×n matrix
with i.i.d. NC(0, 1) entries, thenGG∗ = UΛU∗, where Λ
is a diagonal matrix formed by the (ordered) eigenvalues of
GG∗, U is uniformly distributed on the set ofn × n unitary
matrices andΛ and U are independent. Likewise,G∗G =
V ΛV ∗, whereV is a uniformly distributed unitary matrix,
also independent ofΛ. Therefore, the above expression is still
equal to

log det(I + PW2M2W
∗
2 + PU2ΛU

∗
2 ) − log det(I + PV2ΛV

∗
2 )

+ log det(I + PW1M1W
∗
1 + PV2ΛV

∗
2 )

whereΛ,M1,M2 are diagonal,U2, V2, W1, W2 are uniformly
distributed unitary matrices and all matrices, exceptU2 andV2,
are independent. Using the identitydet(I + AB) = det(I +
BA), the above expression may be rewritten as

log det(I + P (U∗
2W2)M2(W

∗
2U2) + PΛ) − log det(I + PΛ)

+ log det(I + P (V ∗
2 W1)M1(W

∗
1 V2) + PΛ) (4)

Now, sinceU2, W2, V2, W1 are uniformly distributed unitary
matrices, so areU∗

2W2 andV ∗
2 W1 (and these two are indepen-

dent); therefore,(U∗
2W2)M2(W

∗
2U2) has the same distribution

asH2H
∗
2 and (V ∗

2 W1)M1(W
∗
1 V2) has the same distribution

asH∗
1H1 (or equivalentlyH1H

∗
1 ), which in turn implies that

(4) has the same distribution as

log det(I + PH2H
∗
2 + PΛ) − log det(I + PΛ)

+ log det(I + PH1H
∗
1 + PΛ)

Using then Hadamard’s inequality, we obtain that the above
expression is less than or equal to

∑n

j=1

{

log(1 + P (‖h
(2)
j ‖2 + λj)) − log(1 + Pλj)

+ log(1 + P (‖h
(1)
j ‖2 + λj))

}

whereλ1 ≥ . . . ≥ λn are the eigenvalues ofG2G
∗
2 andh(i)

j

is the jth row of Hi.

To summarize, what we have shown so far is that

P{(r logP, r logP ) /∈ R00(H,G)}

≥ P{log det(I + PH2H
∗
2 + PG2G

∗
2)

+ log det(I + PH1(I + PG∗
2G2)

−1H∗
1 ) < 2r logP}

≥ P

{

∑n

j=1

{

log(1 + P (‖h
(2)
j ‖2 + λj)) − log(1 + Pλj)

+ log(1 + P (‖h
(1)
j ‖2 + λj))

}

< 2r logP
}

The joint distribution ofλ1 ≥ . . . ≥ λn is the classical Wishart
distribution

p(λ1, . . . , λn) ∼
∏

j<k(λk − λj)
2 exp

(

−
∑n

j=1 λj

)

and the normsB(i)
j = ‖h

(i)
j ‖2 are i.i.d. random variables

(independent of theλ’s), each with Gamma distribution

p(B) ∼ Bn−1 exp(−B)

Following the methodology of [7], let us make the change of
variables

λj = P−αj , B
(i)
j = P−β

(i)
j

It is then possible to deduce the following upper bound on the
diversity order:

dsym(r) ≤ min

n
∑

j=1

{

(2(n− j) + 1)αj + n (β
(1)
j + β

(2)
j )

}

where the minimization overα’s and β’s is subject to the
constraints:

αn ≥ . . . ≥ α1 ≥ 0, β
(i)
j ≥ 0

and
n

∑

j=1

{

max(0, 1 − αj , 1 − β
(1)
j ) + max(0, 1 − αj , 1 − β

(2)
j )

− (1 − αj)
+

}

< 2r

Notice that by symmetry, this upper bound may be simplified
to

dsym(r) ≤ min

n
∑

j=1

{

(2(n− j) + 1)αj + 2nβj

}

subject toαn ≥ . . . ≥ α1 ≥ 0, βj ≥ 0 and

n
∑

j=1

{

2 max(0, 1 − αj , 1 − βj) − (1 − αj)
+

}

< 2r



This minimization problem has the following elegant solution:
for 2r = k integer between0 andn, we haveα∗

j = β∗
j = 0

for j <= k andα∗
j = β∗

j = 1 for j > k, so that

dsym(k/2) ≤
n

∑

j=k+1

{(2(n− j) + 1) + 2n} = (3n− k)(n− k)

and for non-integer values of2r, the curve is a linear interpo-
lation between these points. This turns out to be the classical
3n×n MIMO diversity curve (scaled horizontally by a factor
1/2), so that

dsym(r) ≤ d3n,n(2r)

This completes the proof of part A)2.

B) The second part of the proposition follows from a straight-
forward extension of the above argument. �

Illustrations of the result:

1

1/20 12/5 r

d(r)

Fig. 1: upper bound on the diversity orderdsym(r) for n = 1.

4

0 26/7 1

d(r)

r

Fig. 2: upper bound on the diversity orderdsym(r) for n = 2.

2We conjecture that neither bound c) nor bound d) impose stricter limita-
tions on the diversity order than those imposed by bounds a) and b) together.
This fact is however not needed in order to state the proposition.

9

1    14/110 33/2

d(r)

r

Fig. 3: upper bound on the diversity orderdsym(r) for n = 3.

Finally, we make the following conjecture, in the case where
the number of receive antennas is not equal to the number of
transmit antennas. This conjecture is in agreement with the
number of degrees of freedom (1) of the MIMO interference
channel. Notice however that a straightforward extension of
the above argument does not suffice to prove the conjecture.

Conjecture 3. Let m = max(Nr, Nt) and n = min(Nr, Nt).
Then

A) dsym(r) ≤ min{da(r), db(r)}

where da(r) = dm,n(r)

db(r) = d2m,n(2r) + dm,2n(2r) − dm,n(2r)

= dm,2n(2r) +m (n− 2r)+

B) d(r1, r2) ≤ min{da(r1), da(r2), db(r1 + r2)}

ACKNOWLEDGMENT

We would like to thank Emre Telatar for helpful discussions.

REFERENCES

[1] C. E. Shannon,Two-Way Communication Channels, Proc. 4th Berkeley
Symposium on Mathematical Statistics and Probability 1, Berkeley,
CA, Univ. California Press, 611–644, 1961.

[2] R. Etkin, D. Tse, H. Wang,Gaussian Interference Channel Capacity
to Within One Bit, submitted to the IEEE Transactions on Information
Theory, February 2007.

[3] T. S. Han and K. Kobayashi,A New Achievable Rate Region for the
Interference Channel, IEEE Transactions on Information Theory 27
(1), 49–60, January 1981.

[4] E. Telatar, Capacity of Multi-antenna Gaussian Channels, European
Transactions on Telecommunications 10 (6), 585–596, 1999.

[5] S. A. Jafar, M. J. Fakhereddin,Degrees of Freedom for the MIMO
Interference Channel, IEEE Transactions on Information Theory 53
(7), 2637–2642, July 2007,

[6] E. Telatar, D. Tse,Bounds on the Capacity Region of a Class of Inter-
ference Channels, Proceedings of the IEEE Symposium on Information
Theory, Nice France, June 2007.

[7] L. Zheng, D. Tse,Diversity and Multiplexing: A Fundamental Trade-
off in Multiple-Antenna Channels, IEEE Transactions on Information
Theory 49 (5), 1073–1096, May 2003.

[8] A. Lozano, A. M. Tulino, S. Verdú:High-SNR Power Offset in Mul-
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