
Flip-and-forward achieves the optimal diversity-multiplexing tradeoff

for the two-hop MIMO relay channel, with two relay antennas

Ramtin Pedarsani, Olivier Lévêque
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Abstract—The flip-and-forward scheme introduced in (Yang-
Belfiore, 2007) for handling communication in multi-hop MIMO
relay networks was shown to achieve a better diversity-
multiplexing tradeoff than pure amplify-and-forward schemes.
In the present paper, we show that the flip-and-forward scheme
actually achieves the optimal diversity-multiplexing tradeoff for
a two-hop relay network, when the relay is equipped with two
antennas.

I. INTRODUCTION

The gain of using multiple antennas for setting up com-

munication over a wireless medium has been widely ac-

knowledged in the literature, starting with the seminal works

[1], [2]. For point-to-point channels, the performance of

multiple antenna systems is quite well understood by now;

in particular, the optimal tradeoff between reliability and rate

(also known as diversity-multiplexing tradeoff or DMT) of

such systems at high SNR was analyzed in detail in [3].

In wireless networking situations, less is known in general

about the communication strategies that allow to reach the

optimal performance in terms of both reliability and rate.

A scenario of particular interest for wireless networks is

the situation where a source wants to communicate to a

destination with the help of intermediate relays. A vast liter-

ature is available on the subject, which proposes numerous

methods to handle communication efficiently (see, e.g., [5],

[6], [7], [8], [9], [10], [11], [12], [15], [13], [14] and the

references therein). It is worth mentioning that in [14] the

authors propose a non-linear scheme, called quantize-map-

and-forward, based on random coding arguments, and show

that the information theoretic cutset bound is achievable

within a constant number of bits. In the present paper, we

focus on the scenario where all the nodes are equipped with

multiple antenna devices and the source and the destination

are too far apart to establish a direct link. The channel

between the source and the destination is called a multi-hop

MIMO relay channel in this case. Moreover, we consider

linear relaying schemes for the sake of simplicity of practical

implementation.

A natural and simple scheme to implement for such sys-

tems is the amplify-and-forward scheme, which consists in

forwarding directly (scaled versions of) the received signals

from one relay to the next. At fixed SNR, this scheme is

known to suffer from noise amplification at each level, but

in the high SNR regime, this issue disappears, provided that

the number of relays is fixed and that the SNR is high

enough. It was nevertheless observed in [15] that even in

this situation, amplify-and-forward schemes do not achieve

the optimal diversity gain. The reason is that an additional

outage event, referred to as “mismatch” of adjacent channels,

is incurred by the multiplication of the channel matrices.

A new strategy was then proposed in [15] to overcome

this limitation, which works as follows. A single transmission

block is divided into multiple slots. In each slot, the relay an-

tennas forward the received signals with or without flipping

the sign, according to a fixed pattern. This strategy, called

flip-and-forward, creates an artificial time varying channel

within a single slow fading transmission block and recovers

the lost diversity caused by the channel mismatch. A lower

bound on the DMT of this scheme has been established

in [15]. Furthermore, it has been shown that the optimal

diversity gain can be achieved, although the DMT optimality

of this scheme is still open.

A generalized version of the flip-and-forward scheme,

called “rotate-and-forward”, was proposed next in [16]. In-

stead of flipping the sign of the received signal, the relays

perform scalar complex rotations in a distributed manner,

according to a fixed pattern. It has been shown that when

the number of slots goes to infinity, the optimal DMT can

be achieved in the case of two relay antennas. However, it

may be of less practical interest if the transmission is subject

to a stringent delay constraint.

Therefore, whether the simple flip-and-forward scheme

with finite number of slots is DMT optimal or not remains

a question of interest from both the theoretical and practical

point of view. We answer this question in the affirmative in

this paper, in the case where the relay has two antennas.

II. SYSTEM MODEL

We consider a relay channel with n antennas at the

source, m antennas at the destination and p antennas at the

relay1. We assume no direct link between the source and the

destination, so the channel is a two-hop relay channel, and

we also assume that the relay is full-duplex. Let H1 denote

1Since we do not consider joint processing of different antennas, the
results apply to an arbitrary number of relays and p generally refers to the
total number of antennas within the layer of relays.
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Fig. 1. Two-hop MIMO relay channel.

the p × n channel matrix between the source and the relay,

and H2 denote the m × p channel matrix between the relay

and the destination (see Figure 1).

The channel is assumed to be slow-fading, so the channel

matrices H1 ∈ Cp×n and H2 ∈ Cm×p are fixed during

each transmission block. The channel state is known at the

receivers, but not at the transmitters; furthermore, the channel

matrix entries are assumed to be i.i.d. circularly symmetric

complex Gaussian with unit variance.

In the flip-and-forward scheme proposed in [15], the relay

flips at each time slot a given number of components of its

received signal and then forwards the flipped signal to the

destination, according to a fixed pattern. This corresponds to

multiplying the received signal vector by a diagonal matrix

∆ ∈ F with ∆ii ∈ {+1,−1} and F being a set known

to all terminals. The channel between the source and the

destination at time slot t can therefore be written as

yt = H2∆tH1xt + zt, t = 1, . . . ,F
where xt ∈ Cn and yt ∈ Cm are the transmitted and received

signals, and zt ∈ Cm is the complex Gaussian noise with

covariance matrix Kzt
= Im + H2∆t∆

∗
t H

∗
2 = Im + H2H

∗
2

(where A∗ denotes the complex-conjugate transpose of A).

Besides, there are |F| possible matrices ∆; these are chosen

sequentially by the relay over |F| consecutive time slots. Let

us denote this chosen sequence by ∆1, . . . , ∆|F|.
For a given realization of the channel matrices H1 and

H2 and i.i.d. signaling at the source (which is shown to be

asymptotically optimal in [3]), the average mutual informa-

tion per channel use between the source and the destination

is therefore given by

I(SNR) =
1

|F|

|F|∑

t=1

log det(I + SNR∆tP∆tQ), (1)

where P = H1H
∗
1 and Q = H∗

2H2 are both p× p matrices.

Correspondingly, the outage probability for a target rate

R = r log SNR is given by

Pout(r log SNR) = P(I(SNR) < r log SNR)

and the scheme is said to achieve simultaneously multiplex-

ing gain r and diversity gain d if

Pout(r log SNR)
.
= SNR−d,

where f(SNR)
.
= g(SNR) means

lim
SNR→∞

log(f(SNR))

log SNR
= lim

SNR→∞

log(g(SNR))

log SNR
.

The diversity-multiplexing tradeoff is therefore given by the

curve d(r) defined as

d(r) = lim
SNR→∞

− log(Pout(r log SNR))

log SNR
,

The DMT curve d(r) established by the outage formulation

can be achieved with approximately universal codes. More

specifically, the equivalent channel of the flip-and-forward

scheme is a parallel n × m MIMO channel. Therefore, the

universal codes for such channels (e.g., the perfect codes

proposed in [4]) can be used to attain the optimal DMT.

III. DMT ANALYSIS

Using a simple cutset bound argument, it can be shown

that the DMT curve of the two-hop relay channel is upper

bounded by that of a classical (n ∧m)× p MIMO channel,

where n ∧ m = min(n, m).
In this section, we show that the DMT achieved by the flip-

and-forward scheme is optimal when the number of antennas

at the relay is equal to p = 2. This result therefore confirms

that of [16] obtained for the rotate-and-forward scheme under

the same assumptions on the number of antennas at the relay.

The proof follows nevertheless a quite divergent path here.

In particular and surprisingly perhaps, the case where the

number of antennas at both the source and the destination

n = m = 2 exhibits some subtle differences in the analysis

with all the other cases (n > 2 and m > 2).

Theorem 1: When the number of antennas at the relay is

equal to p = 2, the DMT achieved by the flip-and-forward

scheme is that of an (n ∧ m) × 2 classical MIMO channel,

i.e.

d(r) =

{
2(n ∧ m) − (n ∧ m) + 1) r, if r ∈ [0, 1],
((n ∧ m) − 1) (2 − r), if r ∈ [1, 2].

(2)

Proof: The strategy for the proof is as follows. We first

obtain a lower bound ILB(SNR) on the mutual information

(1), which can be written in terms of a set of independent

random variables, whose distributions are known. This lower

bound gives an upper bound on the outage probability

Pout(r log SNR) = P(I(SNR) < r log SNR)

≤ P(ILB(SNR) < r log SNR)

which in turn yields a lower bound on the diversity order

d(r) ≥ dLB(r). From the joint distribution of the random

variables involved in ILB(SNR), we compute the diversity

order dLB(r), following the methodology of [3], and show

that this lower bound matches the expression (2).

In the case with p = 2, the flip set F has two members:

I and diag(1,−1). The expression (1) for the mutual infor-

mation may therefore be rewritten as

I(SNR) =
1

2
log det(I+SNRPQ)+

1

2
log det(I+SNRP̃Q)

where

P̃ =

(
1 0
0 −1

)
P

(
1 0
0 −1

)
.



Using the fact that for a 2 × 2 matrix A,

det(I + A) = 1 + a11 + a22 + det(A),

we obtain, after some manipulations,

I(SNR) =
1

2
log

((
1 + SNR(p11q11 + p22q22)

+ SNR2 det(P ) det(Q)
)2 − SNR2

(
p12q21 + p21q12

)2
)

(3)

Notice that p11 = ‖h(1)
1 ‖2 and p22 = ‖h(1)

2 ‖2, where h
(1)
1

and h
(1)
2 denote the first and second rows of H1 respectively

(of length n each). The random variables A1 = p11,

A2 = p22 are therefore i.i.d. with common pdf pA(a) =

an−1e−a/Γ(n). Likewise, q11 = ‖h(2)
1 ‖2 and q22 = ‖h(2)

2 ‖2,

where h
(2)
1 and h

(2)
2 denote this time the first and second

columns of H2 respectively (of length m each). The random

variables B1 = q11 and B2 = q22 are therefore i.i.d. with

common pdf pB(b) = bm−1e−b/Γ(m). Notice also that the

four random variables A1, A2, B1 and B2 are independent.

Furthermore, defining

w =
p12√
p11p22

and z =
q12√
q11q22

and noticing that p12 = p21 and q12 = q21, we obtain

(p12q21 + p21q12)
2 = 4 (Re(p12q12))

2

= 4 p11p22q11q22 (Re(wz))2.

In turn, writing w = |w| eiφ and z = |z| eiθ, the last term on

the right-hand side may be rewritten as

(Re(wz))2 = |w|2 |z|2 cos2(φ − θ).

Let us define the following three random variables:

U1 = 1−|w|2, U2 = 1−|z|2 and V = 1−cos2(φ−θ).

In the appendix, it is shown that these three random variables

are mutually independent, as well as independent from

A1, A2, B1, B2. Moreover, their pdfs are given by

pU1(u1) = (n − 1)un−2
1 1{0≤u1≤1},

pU2(u2) = (m − 1)um−2
2 1{0≤u2≤1},

pV (v) = 1

π
√

v(1−v)
1{0≤v≤1}.

Furthermore, observe that

det(P ) = p11p22 − |p12|2 = A1A2U1,

det(Q) = q11q22 − |q12|2 = B1B2U2.

So the expression (3) may finally be rewritten as

I(SNR) =

1

2
log

((
1 + SNR(A1B1 + A2B2) + SNR2A1A2B1B2U1U2

)2

− 4 SNR2A1A2B1B2 (1 − U1) (1 − U2) (1 − V )
)

Although this expression for the mutual information only

contains independent random variables, it also contains a

minus sign that prevents us from deducing easily the cor-

responding DMT curve. Instead, we compute a lower bound

on the DMT curve from the following lower bound on the

mutual information.

Lemma 1: The mutual information is lower bounded by

I(SNR) ≥ ILB(SNR) =

1

2
log

(
1 + 2 SNR(A1B1 + A2B2) + 2 SNR2A1A2B1B2V

+ 2 SNR3A1A2B1B2 (A1B1 + A2B2)U1U2

+ SNR4(A1A2B1B2U1U2)
2
)

(4)

The proof of this lemma is given in the appendix.

We are now in position to compute the DMT curve

corresponding to this lower bound. The random variables

in (4) are independent and their joint pdf is given by

pA1,A2,B1,B2,U1,U2,V (a1, a2, b1, b2, u1, u2, v)

= Cn,man−1
1 e−a1 an−1

2 e−a2 bm−1
1 e−b1 bm−1

2 e−b2

× un−2
1 1{0≤u1≤1} um−2

2 1{0≤u2≤1}
1√

v(1−v)
1{0≤v≤1}

Following [3], let us then operate the following change of

variables:

A1 = SNR−α1 , A2 = SNR−α2 , B1 = SNR−β1 ,

B2 = SNR−β2 , U1 = SNR−γ1 , U2 = SNR−γ2 ,

V = SNR−δ.

The joint pdf of the new variables becomes

p(α1, α2, β1, β2, γ1, γ2, δ) = Cn,m(log(SNR))7

× SNR−(n(α1+α2)+m(β1+β2)+(n−1)γ1+(m−1)γ2+δ/2)

× e−(SNR−α1+SNR−α2+SNR−β1+SNR−β2 )

× 1{γ1≥0,γ2≥0,δ≥0}
1√

1−SNR−δ
.

The upper bound on the outage probability therefore reads

Pout(r log SNR) ≤ P(ILB(SNR) < r log SNR)

=

∫

Dr

dα1dα2dβ1dβ2dγ1dγ2dδ p(α1, α2, β1, β2, γ1, γ2, δ)

where

Dr = {α1, α2, β1, β2, γ1, γ2, δ ∈ R : ILB(SNR) < r log SNR}

This expression can be further approximated asymptotically

by

P(ILB(SNR) < r log SNR)

.
=

∫

eDr

dα1dα2dβ1dβ2dγ1dγ2dδ

× SNR−(n(α1+α2)+m(β1+β2)+(n−1)γ1+(m−1)γ2+δ/2).

where

D̃r = {α1, α2, β1, β2, γ1, γ2, δ ≥ 0 : ILB(SNR) < r log SNR}



Using Laplace’s integration’s method, we deduce that

dLB(r) =

min
{
n(α1 + α2) + m(β1 + β2) + (n − 1)γ1 + (m − 1)γ2 + δ

2

}

subject to α1, α2, β1, β2, γ1, γ2, δ ≥ 0 and

max
(
0, 1 − α1 − β1, 1 − α2 − β2, 2 − α1 − β1 − α2 − β2 − δ,

3 − α1 − β1 − α2 − β2 − min(α1 + β1, α2 + β2) − γ1 − γ2,

4 − 2(α1 − β1 − α2 − β2 − γ1 − γ2

)
< r.

The solution of this optimization problem depends now on

the values of m and n.

Case m = n = 2. For 0 ≤ r ≤ 0.5, we have

α1 = α2 = β1 = β2 = 0.5 − r
γ1 = γ2 = 2r
δ = 2r




 ⇒ dLB(r) = 4 − 3r.

For 0.5 ≤ r ≤ 1, we have

α1 = α2 = β1 = β2 = 0
γ1 = γ2 = 1.5 − r
δ = 2 − 2r




 ⇒ dLB(r) = 4 − 3r.

For 1 ≤ r ≤ 2, we have

α1 = α2 = β1 = β2 = 0
γ1 = γ2 = 1 − 0.5r
δ = 0



 ⇒ dLB(r) = 2 − 2r.

These three expressions match the expression (2) for the

considered intervals, so the proof of Theorem 1 is complete

for m = n = 2.

Case m > 2 or n > 2. Without loss of generality, we

assume that n ≥ m. For 0 ≤ r ≤ 1 we have

α1 = α2 = γ1 = δ = 0
β1 = β2 = 1 − r
γ2 = r




 ⇒ dLB(r) = 2m − (m + 1)r.

For 1 ≤ r ≤ 2 we have

α1 = α2 = β1 = β2 = 0
γ1 = δ = 0
γ2 = 2 − r



 ⇒ dLB(r) = (m− 1)(2− r).

These two expressions match the expression (2) for the

intervals considered, so the proof of Theorem 1 is complete

for arbitrary values of m and n.

It is remarkable that for a target multiplexing gain r
ranging between 0 and 1, the typical outage event in the

case m = n = 2 is of a different nature than in the other

cases.

In the first case (m = n = 2), the main outage event at

r = 0.5, corresponding to γ1 = γ2 = δ = 1, is caused by

the two matrices H1 and H2 being rank 1, i.e. h
(1)
2 = c1 h

(1)
1

and h
(2)
2 = c2 h

(2)
1 , as well as the alignment in the complex

plane of the two proportionality factors c1 and c2.

In all the other cases (assuming without loss of generality

that n ≥ m), the main outage event at r = 0.5 corresponds

to β1 = β2 = γ2 = 0.5 and is therefore mainly determined

by the matrix H2 having relatively small entries (notice that

in the case where n = m > 2, other outage events give rise

to the same diversity, but they are not of the same nature as

in the n = m = 2 case).

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have proved that the flip-and-forward

scheme presented in [15] is DMT optimal when the relay

has two antennas. This shows that the diversity-multiplexing

tradeoff for a two-hop relay channel can be achieved with

a practical linear relaying scheme. We actually believe that

the optimality of the flip-and-forward scheme holds in more

generality, i.e. with either a larger number of antennas in the

relay or a larger number of relays. However, the proof of

this fact remains open.

APPENDIX

Joint distribution of the random variables U1, U2 and V .

Let us first consider the random variable w = p12√
p11p22

.

Denoting by h
(1)
1 and h

(1)
2 the first and second rows of H1

respectively, we obtain

w =
h

(1)
1 · (h(1)

2 )∗

‖h(1)
1 ‖ ‖h(1)

2 ‖
.

Since the row vectors h
(1)
1 and h

(1)
2 have i.i.d. complex

Gaussian entries, the distribution of each of them is unitarily

invariant. So
h
(1)
1

‖h
(1)
1 ‖

may be expressed as

h
(1)
1

‖h(1)
1 ‖

= [1, 0, 0, · · · , 0] U

where U ∈ Cn×n is uniformly distributed on the set of n×n
unitary matices (Haar distribution). Therefore,

w = [1, 0, 0, · · · , 0] U
(h

(1)
2 )∗

‖h(1)
2 ‖

,

which has the same distribution as

[1, 0, 0, · · · , 0] · (h
(1)
2 )∗

‖h(1)
2 ‖

=
h

(1)
21

‖h(1)
2 ‖

i.e.

|w|2 ∼ |h(1)
21 |2

‖h(1)
2 ‖2

So the random variable U1 = 1 − |w|2 is distributed as

U1 ∼
∑n

k=2 |h
(1)
2k |2

‖h(1)
2 ‖2

Lemma 2: If X and Y are two independent Gamma-

distributed random variables with parameters (k1, θ) and

(k2, θ) respectively, then the random variable Z = X
X+Y



is independent of X and Y and is distributed according to

the Beta distribution with parameters (k1, k2), i.e.

pX(x) = xk1−1 e−x/θ

θk1 Γ(k1)
1{x≥0},

pY (y) = yk2−1 e−y/θ

θk2 Γ(k2)
1{y≥0},

pZ(z) =
zk1−1 (1 − z)k2−1

∫ 1

0 uk1−1 (1 − u)k2−1du
.

Proof. See [17].

Note that the random variables |h(1)
2k |2 are i.i.d. exponential

random variables. Therefore,

X =

n∑

k=2

|h(1)
2k |2 ∼ Gamma(n − 1, 1),

Y = |h(1)
21 |2 ∼ Gamma(1, 1).

Hence, due to Lemma 2,

U1 ∼ X

X + Y
∼ Beta(n − 1, 1)

which is the order statistics of the largest point among n−1
i.i.d. points uniformly distributed on the interval [0, 1], i.e.

pU1(u1) = (n − 1)un−2
1 1{0≤u1≤1}

Similarly, it can be shown that

pU2(u2) = (m − 1)um−2
2 1{0≤u2≤1}

and U1 and U2 are clearly independent, as H1 and H2 are.

Furthermore, for any fixed argument α ∈ [0, 2π], w eiα ∼
w. So, the random variable φ, which is the argument of w,

is uniformly distributed on [0, 2π], and is independent of all

the random variables |h(1)
2k |2 since the phase and amplitude

of a circularly symmetric Gaussian random variable are

independent. The same argument holds for z = |z| eiθ.

Therefore, φ − θ is also uniformly distributed on [0, 2π].
We deduce that the random variable V = 1 − cos2(φ − θ),
which is a function of φ and θ is also independent of U1 and

U2, and has pdf

pV (v) =
1

π
√

v(1 − v)
1{0≤v≤1}.

This completes the proof. �.

Proof of Lemma 1.

Let us compute

(
1 + SNR(A1B1 + A2B2) + SNR2A1A2B1B2U1U2

)2

− 4 SNR2A1A2B1B2(1 − U1)(1 − U2)(1 − V )

= 1 + 2 SNR(A1B1 + A2B2) + SNR4(A1A2B1B2U1U2)
2

+ 2 SNR3A1A2B1B2 (A1B1 + A2B2)U1U2

+ SNR2
(
(A1B1 + A2B2)

2 + 2A1A2B1B2U1U2

− 4 A1A2B1B2(1 − U1)(1 − U2)(1 − V )
)

The last term in parentheses is given by

(A1B1)
2 + (A2B2)

2 + A1A2B1B2

(
2 + 2U1U2

− 4(1 − U1 − U2 − V + U1U2 + U1V + U2V − U1U2V )
)

= (A1B1 − A2B2)
2 + A1A2B1B2

(
− 2U1U2

+ 4(U1 + U2 + V − U1V − U2V + U1U2V )
)

≥ 2A1A2B1B2V.

Indeed, U1, U2 and V belong to [0, 1], so

− 2U1U2 + 4(U1 + U2 + V − U1V − U2V + U1U2V )

≥ 3(U1 + U2) + 2V − 3(U1 + U2) + 0 ≥ 2V.

This completes the proof. �
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