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Abstract— Using graph theory, this paper investigates how
a group of robots, endowed with local positioning (range
and bearing from other robots), can be engaged in a leader-
following mission whilst keeping a predefined configuration.
The possibility to locally change the behaviors of the follower
team to accomodate both tasks is explored. In particular, a
methodology to automatically adjust the parameters of the
inter-robot interactions and a nonlinear PI controller are
explained and implemented. Our approach is supported by a
mathematical analysis as well as real robot experiments.

I. INTRODUCTION

The problem of driving a multi-agent system to a final

common state is known as the consensus problem and is

based on the idea of using some information from the

communication network to drive the system to a final state.

Indeed, as explained in [1], formation control can be achieved

with graph-based theory on holonomic agents.

When solving the rendez-vous problem with non-

holonomic robots, most works, [2], [3], assume the avail-

ability of global positioning (such as a compass) and general

knowledge about all the other robots and the environment.

Unfortunately in real-life scenarios, this general knowledge

can rarely be acquired or computed at high enough rates

to enable consistent and correct formation keeping. Further-

more, leader-following strategies should not rely on these

assumptions since the leader should be independent from

its followers. In this paper, the only information available to

each agent, as explained in Section II-C, is the relative range

and bearing of the other robots when available.

Using limited perception or localization abilities to create

robotic formations has received recent attention in [4], [5],

[6], [7], [8]. In our previous work, [9], we demonstrated in

realistic simulations calibrated on real hardware that specific

configurations can be obtained using only noisy range and

bearing measurements. Building on top of [9], we introduce

a novel way to maintain a formation when involved in a

leader-tracking task.

Among the literature discussing formation control, the

leader-following methods in [8], [10], [11] assume that each

robot takes another neighboring robot as a reference point.

Here, in Section III, we include in the robotic group a

leader that does not participate in the consensus process.
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In other words, the followers have to reach the predefined

configurations (including the leader) without the consent of

the leader.

Continuously maintaining the correct configuration as well

as reaching the leader can be considered as two different

tasks and giving precedence to one task over the other de-

pending on the current environmental context is very useful.

In section III-A, we present a novel approach to dynamically

adjust the weights of these tasks, and in Section III-B a first

example is introduced focusing on escorting a static leader.

Furthermore, as we are interested in systems with a moving

leader (that basically plays the role of a moving target),

this paper also presents a method based on a nonlinear

proportional-integral (PI) controller to actuate the followers

(Section III-C). This enables the convergence of the followers

to the specified formation as we will see in Section IV.

Finally, in Section V, we draw conclusions and suggest future

work.

II. BACKGROUND

A. Basic Notions on Graph Theory

In this section the main graph theory results are summa-

rized. An undirected graph with N elements is defined as a

pair G = (V, E), where

• V = {vi, i = 1 . . .N} is the Vertex set,

• E ⊆ V × V is the Edge set.

As we deal with undirected graphs, the elements of E are

unordered pairs of elements, i.e. (vi, vj) ∈ E ⇔ (vj , vi) ∈
E. A path over G connecting two nodes vi, vj is defined

as PG
ij = {[vk, vk+1], vk 6= vk+1, k = i . . . j, } (we assume,

without loss of generality, that i < j). A graph G is

connected if ∃PG
ij , ∀vi, vj ∈ V . The i-th node Neighbors

subset is defined as Ni = {∀vj ∈ V : (vi, vj) ∈ E}, and the

degree of vi is defined as ∆i = |Ni|.
Given a graph G = (V, E) and an orientation map defined

over the edge set, we can define the incidence matrix I ∈
R

N×|E| as:

ιi,k =







−1 if εk = (ni, nj)
1 if εk = (nj , ni)
0 otherwise

(1)

where |E| is the cardinality of the edge set and εk is the

k-th edge of G. When the orientation map is not defined, a

random orientation can be chosen. An example is reported

in Figure 1(a), where four agents are connected by a com-

plete graph with a random orientation. The corresponding
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Fig. 1. Two equivalent forms of the consensus algorithm: (a) a network of
agents modeled as integrators with weighted and randomly oriented edges
and (b) the feedback loop that performs the algorithm on a MIMO system
with single integrator agents.

Incidence Matrix is:

I =









1 1 0 0 −1 0
−1 0 1 −1 0 0

0 −1 0 1 0 −1
0 0 −1 0 1 1









(2)

The definition of the incidence matrix allows us to define

the Laplacian matrix as

L = I · W · IT (3)

where the Weight matrix W ∈ R
|E|×|E|, W =

diag ({wj , ∀εj ∈ E}) is a diagonal matrix that can be used

to change the weights assigned to the edges. In particular,

if at least one weight differs from 1, the Laplacian matrix

is addressed as Weighted Laplacian matrix. As explained

in [12], the Laplacian matrix of a connected graph has some

interesting properties:

a) eig(L) = {0 = λ1 ≤ λ2 ≤ . . . ≤ λN}

and, in case λ1 is a simple eigenvalue (i.e. 0 = λ1 < λ2),

b) null(L) = span {1} ⇒ L1 = 0

where 1 = [1 . . . 1]T and 0 = [0 . . . 0]T are vectors of N

elements all equal to 1 and 0 respectively.

B. The Consensus Problem

The consensus problem [13] is a well-known and widely

studied problem in the field of decentralized control. It

starts by considering all the agents of a group as holonomic

kinematic models:

ẋi = ui (4)

where xi is the state of the i-th robot. The solution of the

consensus problem for N agents, whose goal is to drive the

whole system to a final common state, can be solved with

the Laplacian based feedback method. The feedback control

is in the form

ẋ = u = −Lx + b (5)

In Figure 1 two different representations of the Laplacian

feedback control are depicted: in Figure 1(a) a random

orientation map has been defined over the graph in order

to define L as in Equation 3, in Figure 1(b) a bias has been

introduced in order to obtain a predefined steady state.

As all the eigenvalues λi,i=2...N of L are greater than 0,

the autonomous closed loop system is marginally stable and

the state vector x = [x1 . . . xN ]
T

converges to the null space

Ri

φi

ωi

xi

yi

ui

Fig. 2. Kinematic model of a non-holonomic wheeled robot. The red circle
identifies the front side.

of L, i.e. x(t) → x̄ as t → ∞, where x̄ = 1
N

∑N

i=1 xi(0) is

the time-independent common final state for single integrator

systems. If we have a bias, the steady state is x̄ = −Lb

The convergence ratio of a system based on the Laplacian

consensus feedback can be calculated depending on the

eigenvalues of L [12]:

‖x(t) − 1‖ ≤ ‖x(0) − 1‖e−λ2t (6)

where λ2 is the lowest non-zero eigenvalue of L and 1 =
[1 . . . 1]

T
. It follows that, by changing the values of the

matrix W , it is possible to change the convergence by

modifying the λ2 eigenvalue.

C. Consensus with Real Robots

As pointed out in Section II-B, the consensus problem

is usually solved on the assumption that the vehicles are

modeled as single integrators. In reality, this assumption

can not be considered true because robots have kinematic

constraints. A typical example of robot is the differential

wheeled robot depicted in Figure 2. The kinematic equations

of the i-th robot would be:






ẋi = ui cos(φi)
ẏi = ui sin(φi)

φ̇i = ωi

(7)

where ui is the linear speed, ωi the rotational speed and

the vector [xi yi φi]
T

forms the triplet defining the absolute

pose. The dynamics of the robot model are ignored due to

the very low mass of our hardware platform, the Khepera III

robot [14]. Further, we introduce the constraint that all the

robots gather relative information provided by a local line-of-

sight range and bearing module [15]. This means that often

a given robot can not acquire the position and orientation

Bi =







.

.

.
bij

.

.

.







[

ui

ωi

]







ẋi = ui cos(φi)
ẏi = ui sin(φi)

φ̇i = ωi

Controller
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∀j ∈ N(i)





xi

yi

φi





Local
Positioning
Information

[

eij

αij

]
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Fig. 3. Feedback scheme for formation keeping using consensus algorithm
for a group of differential-wheeled robots with local sensing.



of the teammates because of the distance or occlusions (e.g.

when a teammates is in between two others).

In order to consider the nonlinearities induced by the robot

model, the control loop is modified as depicted in Figure 3,

where the bias input B can be used to achieve a predefined

formation. Given a group of N robots, we have shown in [9]

that, under the assumption of a connected communication

graph, it is possible to drive the system to a predefined

steady-state by exploiting only local data and an ad-hoc

broadcasting protocol (without that broadcasting protocol,

the graph needs to be complete). The proportional controller

that stabilized the system for each robot Ri was:

ui(t) = Ku · ēi(ei,j(t), αi,j(t)) · cos(ᾱi(ei,j(t), αi,j(t)))
ωi(t) = Kw · ᾱi(ei,j(t), αi,j(t))

(8)

where Ku, Kw are two positive constants and ēi(·) and ᾱi(·)
are

ēi(ei,j(t), αi,j(t)) =
√

ē2
x,i(t) + ē2

y,i(t)

ᾱi(ei,j(t), αi,j(t)) = atan2(ēy,i(t), ēx,i(t))

with

ēx,i(t) =
∑∆i

j=1 [−Li,j · ei,j(t) · cos(αi,j(t))]

ēy,i(t) =
∑∆i

j=1 [−Li,j · ei,j(t) · sin(αi,j(t))] .

Hence, the control is a function of the acquired data: ei,j(t) is

the Euclidean distance between the robot Ri and the robot

Rj , and αij(t) is the azimuth of Rj with respect to Ri

(see Figure 4). An extended demonstration of the controller

stability can be found in [17]. In Figure 5 four robots start

in random positions and converge to a square formation with

radius r = 2.0 m.

III. GRAPH-BASED ESCORTING MISSION

A. Graph-based Behavioral Control

Let’s suppose we have a group of N robots whose commu-

nication graph is complete. The definition of the Laplacian

Ri

RhRhRhRhRh

RkRk

αih αik

eik

eih

Xi

Yi

Fig. 4. Definition of the local measurement data with respect to the robot
Ri.
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Fig. 5. Evolution of a four-differential-wheeled-robot system converging
to a square formation: (a) trajectories of the robots and (b) distances to the
center of mass.

matrix as reported in Equation 3 allows us to define a Weight

matrix that can be used to change how different edges can

affect the dynamics of the system. Our goal is to understand

how these changes should occur when one or more leaders

are introduced in the graph in order to get a predefined group

behavior.

In the general case where many leader nodes are intro-

duced in the group, the graph G become G = (V , E). The

vertex set V holds V = Vf

⋃

Vl and Vf

⋂

Vl = 0, where Vf

is the followers subset and Vl is the leaders subset. This

partition of the vertex set was already presented in [18],

where authors focused on the possibility of using leaders

to drive the followers to a predefined configuration.

Our idea starts from the possibility of exploiting the

partition of the edge set that derives from the follower/leader

partition of the vertex set. The edge set can be partitioned in

three subsets, that are:

• Ef ⊆ Vf × Vf (inter-follower edges)

• El ⊆ Vl × Vl (inter-leader edges)

• Efl = Elf ⊆ Vf × Vl (leaders-to-follower edges)

We consider the leaders as a part of the group, the columns

of the Incidence matrix can be rearranged as:

I =

[

Iff Ifl 0
0 Ilf Ill

]

(9)

where Iff is the incidence matrix corresponding to the inter-

followers edges, Ifl, Ilf contain the tails and the heads of

the edges between followers and leaders respectively, and Ill

corresponds to the inter-leaders edges. We can partition the

Weight matrix as

W =





Wff 0 0
0 Wfl 0
0 0 Wll



 (10)

where Wff = diag {wj , ∀εj ∈ Ef}, Wfl =
diag {wj , ∀εj ∈ Efl} and Wll = diag {wj , ∀εj ∈ El}.

Roughly speaking, Wff is a diagonal matrix that collects

the weights of the inter-follower edges, Wfl is a diagonal

matrix that collects the weights of the follower-to-leader

edges and Wll is a diagonal matrix that collects the weights

of the inter-leader edges. Given these considerations, it

follows that the Weighted Laplacian matrix defined in
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Fig. 6. A leader node (R4) is introduced into a complete graph with new
edges (dotted lines). Figure (b) shows our desired final configuration.

Equation 3 can be partitioned in order to consider follower-

leader subgroups and corresponding weights. The Laplacian

matrix becomes:

LW =





Lff Lfl

L
T

fl Lll



 (11)

where:

• Lff = IffWffIT
ff + IflWflIT

fl

• Lfl = IflWflIT
lf

• Lll = IllWllIT
ll + IlfWflIT

lf

We observe that different weights can affect how the system

converges to the leaders position (i.e., as the leaders are

not affected by the followers, they can be considered as an

anchor point for the system).

B. Escorting a Static Leader

As we are investigating how we can obtain a desired

behavior for a graph with one leader, that is |El| = 0, the

matrices in Equations 9,10 become:

I =

[

Iff Ifl

0 Ilf

]

W =

[

Wff 0
0 Wfl

]

(12)

and Lll = IlfWflI
T
lf . As an example, let us consider the

completely connected system depicted in Figure 6, directly

derived from the example depicted in Figure 1(a) and where

robot R4 is considered as the leader. The incidence matrix

in Equation 2 can be rewritten as:

I =









−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1









(13)

where the divisions correspond to Equation 12. As the Weight

matrix, we define:

W = diag {wff , wff , wff , wfl, wfl, wfl} (14)

with wff , wfl > 0. From Equation 11, it follows that:

LW =









2wff + wfl −wff −wff −wfl

−wff 2wff + wfl −wff −wfl

−wff −wff 2wff + wfl −wfl

−wfl −wfl −wfl 3wfl









(15)
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Fig. 7. Trajectories and distances to the center of mass of a group of
followers while they converge around the leader using (a)-(b) wff =
10, wfl = 1 and (c)-(d) wff = 1, wfl = 10. The leader vehicle is
represented by a black star at x = 12m, y = 5m.

with its eigenvalues,

eig(LW) = [0, λ2, λ3, λ4]
T

, (16)

depending only on the values of wff , wfl. As pointed out in

Equation 6, the lower non-zero eigenvalue of the Laplacian

matrix defines the upper bound of the convergence time. In

our example this eigenvalue λ2 is:

λ2 =







4wff = 4wfl if 3wff + wfl = 4wfl

3wff + wfl if 3wff + wfl < 4wfl

4wfl if 3wff + wfl > 4wfl

(17)

Intuitively, it means that if wff < wfl the system converges

to the leader position before the followers converge to their

formation; on the other hand, if wff > wfl the followers

converge to their formation before reaching the leader po-

sition. Both behaviors present positive and negative aspects:

if wff ≫ wfl, the followers are strongly bounded to stay

in formation and, in case of obstacles in the environment,

they may not be able to reach the leader; if wff ≪ wfl,

the followers are not forced to preserve their formation but

they surround the target only when they are close to it. The

behavior of a group of followers converging to the leader

position and surrounding it with a regular formation with

a diameter of 2m is depicted in Figure 7 using different

weights.

To account for the above issues, we can define wff,i(·)
and wfl,i(·) as functions depending on the distance d

between each follower and the leader. For our purposes,

we use the sigmoid functions wff,i(d), ∀εi ∈ Ef and

wfl,j(d), ∀ εj ∈ Efl defined as:

wff,i(d) = β1

(

1 −
1

1 + e−s(d−d1)

)

+ δ1

wfl,j(d) = β2

(

1

1 + e−s(d−d2)

)

+ δ2

(18)
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Fig. 9. Evolution of a group of three followers while they converge to the
leader position using weights defined in Equation 18: (a) trajectories of the
robots and (b) distances to the center of mass of the followers. The leader
vehicle is represented by a black star at x = 12m, y = 5m.

where s is the slope of the sigmoid functions, β1,β2 are

used to define the excursion of each sigmoid, δ1,δ2 are used

to set the minimum value of each function and d1, d2 are

used to the define the sigmoid functions’ crossing point. As

wff,i(d), wfl,j(d) are used by the system to assign different

priorities to the formation keeping and the leader surrounding

task, a threshold distance d can be defined where wff,i(d) =
wfl,j(d) = w. It means that when d = d, both behavioral

functions have the same magnitude. The two parameters d1,

d2 become:

d1(d, w, β1, δ1) = d +
1

s
ln

(

β1

β1 − w + δ1
− 1

)

d2(d, w, β2, δ2) = d +
1

s
ln

(

β2

w − δ2
− 1

)

In Figure 8 two sigmoid functions are depicted with their

parameters. In Figure 9 the behavior of a group of three

followers is shown with the parameters s = 4, β1 = 2,

β2 = 2, δ1 = 1, δ2 = 2, w = 2.5, d = 2r, where r is the

desired radius for the final formation.

Note that in this case, the followers converge to the

leader position while they achieve the regular configuration.

Intuitively, it is easy to understand the power of this ap-

proach: once some key points are defined (i.e. a threshold
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Fig. 10. Function used to modulate the integral part of the controller
depending on the global relative angle ᾱ.

distance), the behavior of the group can change as smoothly

as desired simply by changing the parameters of the functions

wff,i(d), wfl,j(d), and different behaviors can be defined

for the followers subgroup, for the leaders subgroup and for

their interconnections.

C. Escorting a Moving Leader

Let’s suppose now that the leader robot is not static.

The leader can be a vehicle with a different kinematic

model with respect to the followers, but we will assume

that here it moves along straight segments. This assumption

is not limiting the generality of our approach and as usual

the leader is a vehicle with a complete knowledge of the

environment where the following group is moving and it can

calculate a trajectory to satisfy its constraints. We note that

the leader trajectory is not a priori known by the followers.

As an example, one could consider that the followers are

Unmanned Ground Vehicles (UGV) and the leader is an

Unmanned Aerial Vehicle (UAV). With a moving leader, the

proportional control in Equation 8 is not suitable anymore to

maintain the formation around the leader. The main idea is to

consider that when the followers are aligned with the leader

(i.e. they are moving in the same direction), the kinematics

of the followers can be simplified to a single integrator. This

means that to reach the leader, a integral part must be added

to the forward control u .

At this point, a new problem arises: since the distances

are acquired using only local information, we have that

ē(ei,j , αi,j) ≥ 0 and, thus, the integral part of the controller

cannot be discharged. To solve this issue, we modify the

controller as follows:
{

ui(t) = Ku · ēi · cos(ᾱi) + KI ·
∫ t

0
f(ᾱi) · ēi dt

ωi(t) = Kw · ᾱi

(19)

where Ku, Kw, KI are positive constants and f(ᾱ) is a

nonlinear function used to modulate the value of the integral
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Fig. 11. Velocity profile of the leader considered as a massless point: (a)
profile on the x-axis and (b) on the y-axis.

part. The function f(ᾱ) has to be chosen to ensure that if the

followers are aligned with the leader (i.e. ᾱ = 0) the integral

action allows them to reach it, otherwise (i.e. ᾱ 6= 0) f(ᾱ)
has to be negative so that the followers can move slowly and

align to the velocity of the leader. The function we choose

is the sigmoid function

f(ᾱ) = βI

(

−1

1 + e−s(‖ᾱ‖−γ)

)

+ 1; (20)

where βI is amplitude of the function and s is the slope.

The parameter γ is defined by choosing the angle ᾱ0 such

that f(ᾱ0) = 0 : γ = ‖ᾱ0‖ + 1
s

ln(βI − 1). In Figure 10

the modulation function f(ᾱ) with βI = 5, s = 10 and

γ = 0.924 (i.e. ᾱ0 = π
4 ) is depicted. As an example, let us

consider the system depicted in Figure 6, where the leader

robot is moving. To be as general as possible, we supposed

the leader can move without kinematic constraints (i.e. it

can be considered as a massless point). The trajectory of the

leader on the plane can be described with velocity profiles

on the x and y axes. The leader velocity profile is depicted in

Figure 11, while in Figure 12 the distance between the center

of mass of the followers and the leader is depicted in case

the modulation function is used (dotted line) or when f(ᾱ) is

constant equal to one (solid line). The same simulations are

performed when the motor speed is limited to 2 m/s (12(b))

or not (12(a)). In both cases, the leader and the followers

start at the same positions. Looking at these pictures, some

considerations can be pointed out: in the first part of the

simulation (0 < t ≤ 10[s.]) the behavior of the follower

group is almost the same, due to the fact that the leader is

moving on a line with constant velocity; at t > 10[s.], after

the first change of trajectory, the behaviors diverge because,

in case of f(ᾱ) = 1, the followers see the error ē increasing,

the controller continues integrating and the system becomes

instable.

IV. EXPERIMENTS

Experiments were performed using Khepera III

robots [14], developed by K-Team in collaboration

with the Distributed Intelligent Systems and Algorithms

Laboratory (DISAL) at EPFL. This robot has a diameter

of 12 cm, making it appropriate for multi-robot indoor

experiments. The goal of the three follower robots, whose

initial orientation is random, is to match their mean

position with the leader and to reconfigure in a regular
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f(ᾱ) = 1
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Fig. 12. Distance between the center of mass of the followers subgroup
and the leader position (a) without motor saturation and (b) with motor
saturation. When f(ᾱ) = 1 the system is unstable.

configuration of 0.5 m diameter. The controller of the robots

has Ku = 35000, Kw = 50000 and KI = 2000 (the rest

of the parameters are the same as used for Figure 12(b)),

and a data broadcasting has been implemented to avoid

instability problems due to line-of-sight occlusions, as

already explained in [9]. A Braitenberg [19] controller

has been added on top of the formation control to avoid

obstacles.

A. Range and Bearing

A hardware extension board for the Khepera III robot

has been developed in [15] to enable robots to find their

relative positions. Figure 13(a) shows the sixteen evenly-

spaced infrared Light Emitting Diodes (LEDs) that this

module uses. This range and bearing board has also the

ability to broadcast low bit rate communication packets using

the IR emitters.

B. Simulated Robots

1) Experimental Setup: Experiments are conducted in

Webots [16], a realistic mobile robotic simulator carefully

calibrated using real robotic data. All the sensors and actu-

ators of the simulated robotic platform were calibrated to

match reality: in particular, a slip noise has been added

to the wheels, infrared sensors are modeled based on data
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Fig. 13. The range and bearing board developed at EPFL on a Khepera
III robot 13(a) and four robots performing the escorting algorithm 13(b).

sheets, and the range and bearing platform is affected by a

noise of 10% in the estimation of the distance and a 0.1

radian noise in the relative angle. Two sets of experiments

are performed in a 15 × 15 m arena, one without obstacles

and one with. Obstacles are represented by 1 m diameter

cylinders randomly placed in the environment around the

initial position of the robots. In both sets of experiments, the

four robots are randomly placed in 3× 3 m area. The leader

initially moves straight at 11 cm/s (approximately one robot

size per second), after two minutes it starts to move along a

circle of radius 1 m at 7 cm/s for 30 seconds, it then resumes

its prior movement and stops moving after another 1 minute

and 30 seconds.

2) Results: The position of each robot is monitored during

a run. After 100 runs, the average mean square error (MSE)

between the actual distances between each pair of robot

and the desired distances is computed. Figure 14 shows the

MSE without obstacles when data broadcasting is enabled

(Full broadcast) and disabled (No broadcast). In both cases,

convergence of the formation (and this includes the leader) is

quickly achieved (after 50 seconds in average) as the leader

moves at 11 cm/s and we limit the maximal speed of the

simulated Khepera III to 26 cm/s. We note also that the

control is reactive to changes in the leader movement.
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Fig. 14. Average and standard deviation of the mean square error of the
distances between each robot and the desired distances depending on time
and without obstacles.
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Fig. 15. Average and standard deviation of the mean square error of the
distances between each robot and the desired distances depending on time
and with obstacles.
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Fig. 16. Top view of the reported positions of the robots in the real arena
during a run. Followers are red dots, the leader is a black star. The run
starts with the robots placed on the left side and finishes when they reach
the right side.

Figure 15 shows the MSE with obstacles. In average the

first obstacle is hit by the leader at around 50 seconds and

we observe that with broadcasting enabled, the controller

stays reactive and is easily able to reach the target and keep

the formation intact. Without broadcasting the system looks

unstable but as soon as the target stops for 30 seconds the

followers are able to come back.

Overall, the simulation results show the very good perfor-

mance of our approach.

C. Real Robots

1) Experimental Setup: To test our algorithm on real

robots, we have chosen the biggest arena available at our

lab, that is a 16×4 meters arena. Khepera III robots equipped

with range and bearing boards (see Figure 13(a)) are initially

placed in the arena as shown on the left part of Figure 16.

The leader (black star) is positioned in front of the followers

(red dots) facing the right-end of the arena.

To push the limits of our approach on actual hardware,

the leader is set to move at 19 cm/s, the update frequency of

the positioning board is set to 5 Hz and data broadcasting is

enabled.

2) Results: The position of each robot is monitored with

SwisTrack [20], an open-source tracking software. After

around 65 seconds, the leader reaches the end of the arena

and the experimental run is stopped. After 12 runs, the
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Fig. 17. Average and standard deviation of the mean square error of the
distances between each robot and the desired distances depending on time
in the real arena.

average MSE is computed and shown in Figure 17. We notice

that although the MSE does not reach zero, it stabilizes after

only 30 seconds at 0.13 m2. This corresponds to an average

error of 15 cm (about one robot size) on each link. This result

not only confirms the good performance of our approach but

also its ability to stabilize under difficult conditions (i.e. a

fast moving leader).

V. CONCLUSION

In this paper, we demonstrated that we could drive non-

holonomic robots to a specific formation while following a

leader robot using only noisy local positioning information.

We derived a nonlinear PI controller to enable the formation

of followers to reach, surround and escort the moving leader.

We showed that different behaviors can be achieved by

changing the weights on the edges of the communication

graph. We also tested the robustness of our control under

challenging conditions such as obstacle field arenas and

unpredictable leader trajectories. The next step of this work

will focus on the possibility to add more complex behaviors

using the same framework.

ADDITIONAL MATERIAL

A video showing four simulated Khepera III robots

is available on http://www5.epfl.ch/swis/

page35885.html.
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[18] M. Ji, A. Muhammad and M. Egerstedt, Leader-Based Multi-Agent

Coordination: Controllability and Optimal Control, IEEE American
Control Conf., pp. 1358-1363, 2006.

[19] V. Braitenberg, Vehicles, Experiments in Synthetic Psychology, The
MIT Press, 1984.

[20] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot and A.
Martinoli, SwisTrack - A Flexible Open Source Tracking Software for

Multi-Agent Systems, IEEE/RSJ 2008 Int. Conf. on Intelligent Robots
and Systems, pp. 4004-4010, 2008.


