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Abstract

Recent years have seen an increasing interest in sparseness constraints for image classification
and object recognition, probably motivated by the evidence of sparse representations internal in
the primate visual cortex. It is still unclear, however, whether or not sparsity helps classification.
In this paper we analyze the image classification task on CIFAR-10, a very challenging dataset,
and evaluate the impact of sparseness on the recognition rate using both standard and learned
filter banks in a modular architecture. In our experiments, enforcing sparsity constraints is not
required at run-time, since no performance improvement has been reported by indiscriminatively
sparsifying the descriptors. This observation complies with the most recent findings on human
visual cortex suggesting that a feed-forward mechanism underlies object recognition, and is of
practical interest, as enforcing these constraints can have a heavy computational cost. Our best
method outperforms the state-of-the-art, from 64.84% success rate on color images to 71.53% on
grayscale images.
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Chapter 1

Introduction

Probably inspired by massive work from the neuroscience community [5, 1, 6, 32, 45, 33], many
recent Computer Vision algorithms rely on sparse image representations, including [8, 38, 39, 40,
44, 37, 27, 28, 18, 41, 22, 3, 23, 17, 49]. The effectiveness of sparse coding from a generative point
of view, for image restoration for example, is justified by observing that natural images represent
only a tiny part of the image space [33]. While sparse representations have been regarded as more
likely to be separable in high-dimensional spaces, and therefore suitable for classification, it is still
not clear if they are actually needed for recognition tasks [19].

Understanding if sparse representations are really relevant for image classification is not only
interesting from a theoretical point of view, but also from a practical point of view. Their encod-
ing requires indeed the solution of an optimization algorithm that has proven to be NP-hard [15].
Despite the signal processing community has developed a stir of algorithms facing a very similar
problem in the Compressive Sensing field, this task remains extremely expensive in computa-
tional terms.

In this paper we aim to evaluate the actual importance of sparsity in image classification, by
focusing on the hard recognition problem posed by the CIFAR-10 dataset [47], made of 32 × 32
pixel images of different object categories. Using the architecture presented in Fig. 1.1 andmade of
a feature extraction stage and a pooling stage, similar to those used in recent image classification
algorithms [26, 42, 30, 4, 48, 40, 17], we analyze the impact that sparsity has on the recognition
rate.

The results of our experiments advocate that no advantage is gained by imposing sparsity at
run-time, at least when this sparsity is not tailored in a discriminative fashion, and the currently
employed expensive optimization procedures can be skipped without affecting the success rate.
Our claim complies with the most recent evidences from studies on the human visual cortex [25,
43], suggesting that a feed-forward mechanism underlies the initial stages of object recognition.

Even though our study was not focused on improving the state-of-the-art success rate on the
CIFAR-10 dataset, our best method outperforms the current state-of-the-art result [20], moving
from a 64.84% to a 71.53% success rate. Moreover, our result has been achieved on grayscale
images, whereas [20] considered color images.

pre-processing
feature

extraction
rectification pooling classification

Image

Category

input

image

PCA

Figure 1.1: Our pipeline, similar to many recent approaches. We tried different options for each
of the different steps, in order to evaluate the importance of sparsity constraints in the Feature
Extraction step, and the impact of the overall architecture on the recognition rate.
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Chapter 2

Related Work

Imposing sparsity constraints has recently become popular in Computer Vision, especially for
image recognition tasks. This is probably due to evidence for sparse representations in the mam-
mal brain, and because simple algorithms based on such constraints can reproduce linear filters
similar to the receptive fields of neurons in V1, the first layer of the visual cortex [32, 38]. These
approaches are also attractive because they require only unlabeled data, which are much simpler
to produce than labeled data, for their training.

As a result, such algorithms have been used to extract features that are assumed to be relevant
for classification tasks [39, 37, 41, 22, 17]. Sparsity is also convenient to constrain over-complete
linear representations, which would be ill-posed without such constraints [23].

Sparse coding can be interpreted as learning the input data distributionwith a sparse prior [32].
Restricted Bolzmann Machines (RBMs) have been used to learn the data distribution and extract
features in an unsupervised way [10], and [22] showed that sparsity constraints are useful to make
them converge on natural images toward V1 receptive fields-like filters.

Despite their popularity and to the best of our knowledge, sparsity constraints have not really
been evaluated in terms of classification performances. Is it really important to enforce sparsity
constraints to learn how to extract good features ? Is it important to enforce sparsity constraints
when extracting the features at run-time, even though it can be costly ?

Very recently, [17] developed an architecture very close to ours. They showed the importance
of the rectification function that we also use as a non-linear operation between the feature ex-
traction and the pooling stage, and the power of stacking multiple layers. Nonetheless, they did
not really evaluate the effects of sparsity, as they only compared learned sparse features against
convolutions with random filters. [49] has shown the clear value of sparsity constraints for face
recognition, but in conditions that are difficult to generalize to other problems.

Predictive Sparse Decomposition [18] is an attempt to overcome the issue posed by the synthe-
sis of sparse codes by learning a regressor that is able to approximate the optimal reconstruction.
This algorithm has been used as a building block in [17], and represents a viable strategy to im-
pose sparseness without having to solve a costly optimization problem, but the solution obtained
through the learned regressor is only an approximation of the true, sparse solution.

This technical report represents an attempt to fill the gap represented by the absence of a
thorough evaluation of the real contribution of sparseness in the image classification task, in order
to be able to focus future analyses towards the most relevant aspects of an image classification
architecture.
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Chapter 3

Evaluation Framework

Our framework for evaluation is very similar to the ones used in recent works [26, 42, 30, 4, 48, 40]
and particularly to [17]. We rely on a first stage to extract features, which are either learned
or hard-wired. We apply a non-linear operation to the output, then the second stage “pools”
the features to obtain some robustness to small translations and deformations. We try different
pooling methods.

Before going through the first stage the images are pre-processed with a whitening operation,
as this improves the convergence of the learning algorithm and the recognition performances. We
linearly project the output of the second stage into some subspace for dimensionality reduction.
Again, we try different possible projections. The result is finally fed to different types of classifier.

We detail below these different parts of our framework, while the results of the evaluation
are given in the next subsection. The different combinations we tried are called by concatenat-
ing the names of their parts together. The possible part names are given below in capital letters.
For example, “SPARSEGD-MAX-PCA-SVM” represents the pipeline where we first extract sparse
features with the Olshausen and Field’s algorithm [32], use the absolute value function for rec-
tification, use a max-pooling operation, project the result into an eigenspace, and finally use a
Support Vector Machine for classification.

3.1 Feature Extraction Stage

3.1.1 Learned Features

To learn image features, we chose to adopt the Olshausen and Field’s algorithm [32], used in
many recent works [37, 27, 17] and known to converge well on natural image patches. We have
only slightly modified it for more efficiency when processing images.

In [32], Olshausen and Field suggested that V1, the first layer of the visual cortex, builds a
sparse representation of the images. Under this assumption and the hypothesis that a perfect
reconstruction in attainable, the problem one would like to solve can be stated as

min
M,{ti}

∑

i

‖ti‖0 (3.1)

s.t.
∑

i

‖xi −Mti‖
2

2
= 0 ,

where the ℓ0-norm, the number of non-zero elements, is the best sparsity measure available. The
formulation in Eq. (3.1) is, however, non-convex, making the optimization much more difficult.
The version proposed in [32] therefore learns a dictionary of features by optimizing the following
objective function:

min
M,{ti}

∑

i

‖xi −Mti‖
2

2
+ λ ‖ti‖1 , (3.2)

where xi are training images, ti are the corresponding feature vectors, M is a matrix whose
columns form the dictionary, and ‖·‖

1
is the ℓ1-norm used to enforce sparsity on the vectors ti.
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CHAPTER 3. EVALUATION FRAMEWORK 4

(a) (b)

Figure 3.1: Extracting features and whitening. (a) The 49 filters we obtain with our modified ver-
sion of the Olshausen and Field’s algorithm. Some filters look like the often encountered localized
and oriented filters, but some are made of disconnected components. We believe that this hap-
pens because the convolutional approach is equivalent to have a very large dictionary. As a result,
some filters can be used to capture less important distant dependencies. (b) Filter bank represen-
tation of the columns of the whitening matrix W, obtained as described in Subsection 3.1.3. We
kept only the filter in the middle and convolved it with input images in order to whiten them.

Eq. (3.2) looks for a dictionary M so that the images xi can be reconstructed from only a few
columns of M by computing the product Mti. The sparseness in the ti vectors is enforced by
the last term. Moreover the dictionary is overcomplete: M has more columns than rows, and this
gives us the degress of freedom that we need in order to be able to choose among all the possible
representations the sparsest one. λ is a meta-parameter that establishes the relative importance of

the reconstruction error ‖xi −Mti‖
2

2
with respect to the penalty term ‖ti‖1.

The problem introduced by a straightforward application Eq. (3.2) is that it was developed for
small patches only, and using it on possibly large images is slow and difficult, as many coeffi-
cients inMwould have to be optimized simultaneously. We therefore adopt here a convolutional
approach, where the matrix-vector product is replaced by a convolution. This is possible if we
assume that the local properties of images are translation invariant, which seems reasonable. [23]
uses a similar approach with RBMs. Trivial solutions to the optimization problem, where filter
norms are increased in order to reduce the penalty term, are avoided by performing a proper
normalization step over the filters. Even though more recent investigations focused on finding a
principled approach to solve this issue [34], it has been shown that the aforementioned approxi-
mation provides a reasonable solution [31].

The optimization problem in Eq. (3.2) therefore becomes:

min
{fj},{tj

i
}

∑

i







∥

∥

∥

∥

∥

∥

xi −
∑

j

f j ∗ tji
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∥

∥

∥

∥

∥

2

2

+ λ
∑

j

∥

∥

∥t
j
i

∥

∥

∥

1






, (3.3)

where f j are linear filters and t
j
i can now be seen as a set of images with the same size as the xi

images, whose cardinality is equal to that of the filter bank. Similar intermediate representations
have been called “feature maps” in the Convolutional Neural Networks literature.

The original problem in Eq. (3.2) was optimized using stochastic gradient descent, and it is
easy to also use stochastic gradient descent to find the coefficients of the f j filters. We learned the
49 11 × 11 filters shown in Fig. 3.1(a) in this way. Details about the derivation of this filter bank
are reported in Appendix A.

In our evaluations, we used these filters f j to extract features tj from a image x in three differ-
ent ways:

• Sparse features with gradient descent (SPARSEGD). The tjs are obtained by minimizing by
gradient descent the following objective function:

min
{tj}

∥

∥

∥

∥

∥

∥

x−
∑

j

f j ∗ tj

∥

∥

∥

∥

∥

∥

2

2

+ λ
∑

j

∥

∥tj
∥

∥

1
(3.4)
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(a) (b)

Figure 3.2: Hard-wired filter banks. (a) The hard-wired Leung-Malik filter bank [24]. (b) The
hard-wired Maximum Response 8 filter bank [9].

Figure 3.3: Feature extraction stage with learned features. First row: 5 of the 49 filters learned
on the dataset. Second row: The original image, and the corresponding tj vectors obtained by
simple convolution, as done by the CONV method. Third row:. The corresponding tj vectors
obtained when enforcing the sparsity constraints with gradient descent, as it was done for the
SPARSEGD method.

This optimization is the same as the one posed in Eq. (3.3) after fixing the filters f j and
considering only the given image.

• Sparse features with Matching Pursuit (SPARSEMP). The tjs are obtained by minimizing
the same function in Eq. (3.4) but using the Matching Pursuit algorithm [29]. Matching
Pursuit is usually able to findmuch sparse feature vectors than gradient descent for a similar
reconstruction error. In particular, fixing the number of non-zero coefficients is equivalent
to choosing a proper value for the λ coefficient in Eq. (3.3). However, it is slower, and its
slowness prevented us to use it when optimizing Eq. (3.3).

• Features computed by direct convolution (CONV). The tjs are obtained by direct convolu-
tion, without any sparsity constraint:

tj = f j ∗ x, ∀j . (3.5)

This ismuch faster than the two previous options. It is not, however, unrelated to SPARSEGD,
the first option: it corresponds to the first iteration of gradient descent required to solve
Eq. (3.4) when the tjs are initialized to 0.

Border replication was performed in the pre-processing step to exploit the full image informa-
tion when performing convolutions. The tjs corresponding to a few filters are shown Fig. 3.3 for
SPARSEGD and CONV.

3.1.2 Hard-wired Filters

In addition to learned filters, we have also considered convolutions with four hard-wired filter
banks:
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• The Leung-Malik (LM) filter bank [24] (CONVLM). It is shown in Fig. 3.2(a), and it is com-
posed of 2 Gaussian derivative filters at 6 orientations and 3 scales, 8 Laplacian of Gaussian
filters and 4 Gaussian filters, for a total of 48 filters.

• The Maximum Response 8 filter bank [9] (CONVMR8), depicted in Fig. 3.2(b). It is made of
38 filters similar to those in LM but with different parameters.

• A filter bank constituted by 49 randomly generated filters, with the exception of the first
one that is set to be uniform (CONVRAND).

3.1.3 Pre-processing (Whitening)

Removing the linear dependencies between the coefficients of the images, or whitening, is im-
portant for the convergence of Eqs. (3.3) and (3.4). A whitening operation can be learned from
the covariance matrix C of the original data [16]. By applying to C an eigenvalue decomposition
C = EDE⊤, a whitening matrixW can be computed as W = ED−1/2E⊤.

Similarly to Eq. (3.2), this is not really practical for large images. For this reason, after having
observed the peculiar structure of the filter bank defined by the columns of W and depicted
in Fig. 3.1(c), we have kept the central filter only, and used it to whiten the input images by
convolving the filter with them.

3.1.4 Rectification

Before the pooling stage, we apply some non-linear operation to the feature vectors tj as it is
usually done in multi-layer architectures. This operation gives a new set of feature vectors uj .
Again, we tried different possibilities:

• Taking the absolute values of the coefficients of the tj vectors (ABS). The coefficients uj [m]
of the uj vectors are simply taken to be: uj [m] =

∣

∣tj [m]
∣

∣. This operation was identified as
very effective in [17] for recognition performances despite its simplicity.

• Separating the negative coefficients from the positive ones (POSNEG). If each submap is
composed by N coefficients, the coefficients uj [m] of the uj vectors are taken to be:

uj [m] = [tj [m]]+, uN+j [m] = [−tj [m]]+ , (3.6)

where [x]+ = x if x > 0 and 0 otherwise. This doubles the number of coefficients in the
uj vectors. As can be seen in Fig. 3.4, some filters present very similar positive and nega-
tive parts. This can be explained by the fact that, when optimizing for the sparseness, high
coefficients for a given filter are usually compensated by some other high coefficients with
opposite sign in its neighborhood. This phenomenon has been observed before in the sig-
nal processing literature, and has motivated the creation of approaches based on the Noise
Shaping algorithm, such as [7].

3.2 Pooling Stage

This stage pools the coefficients of the uj vectors to provide invariance to small displacements
and distortions. The choice of having a pooling stage is based on two relevant aspects:

• From a biological perspective, the pooling stage plays the role of the complex cells’ layers
in the Hubel and Wiesel’s model of the V1 cortex [14, 13]. The role that pooling holds is
that of enabling a certain degree of invariance to minor pose and appearance changes. The
importance of pooling layers is also acknowledged by their employment in Convolutional
Neural Networks [21].

• From a computational perspective, plain descriptors have a dimensionality that is too high
for the current computational power. The presence of a downsampling step is therefore
mandatory for enabling the subsequent subspace selection and classification operations.
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Figure 3.4: Rectification and pooling. First two rows: Results of the POSNEG operation applied
to the 5 feature vectors on the last row of Fig. 3.3. The first row corresponds to the positive
coefficients, the second row to the negative ones. Last two rows: Results after pooling with
GAUSS. The feature vectors are not as sparse after pooling. The negative and positive parts tend
to look similar for some filters.

We tried three different pooling mechanisms found in the literature:

• Gaussian pooling (GAUSS). This was used in [48, 46]: the ujs are first convolved with a
Gaussian filter, then downscaled by a factor of 4. We have empirically observed that a 5× 5
filter with σ = 2.0 gives the best results in our case, and we therefore adopt these values.

• Average pooling (BOXCAR). This is similar to GAUSS, except that we use a boxcar filter.

• Maximum value pooling (MAX). We retain the maximum absolute value in a 4 × 4 neigh-
borhood. This was used for example in [44, 17].

The feature vectors for a given image after pooling will be denoted as vj below. Some examples
are shown Fig. 3.4.

3.3 Classification

The last step of our pipeline applies a classifier on the unit-normalized vectors obtained after
subspace selection. We kept two different classification methods:

• Nearest Neighbor classification (NN). It provides a direct measure of the discriminative
capabilities of the previous steps.

• Support Vector Machines (SVM). They are commonly adopted in pipelines similar to ours
and usually achieved the best results. We used the LIBSVM library 1, and we have per-
formed a C-Support Vector Classification (C-SVC) by using the choosing radial basis func-
tions as kernels, and setting the γ parameter to 10. Our best result, however, was obtained
by solving an expensive multi-class bound-constrained SVC problem with γ = 8 using the
BSVM software [11].

We tried other classifiers: Feed-Forward Neural Networks, ensembles of Classification Trees, and
a Naı̈ve Bayes classifier. As they did not give better results than SVMs, we do not report them
here.

In the case of SVMs the feature vectors after pooling vj are still too large, and therefore a di-
mensionality reduction step using PCA is a mandatory choice. In the case of Nearest Neighbor
classification, we use either PCA or no dimensionality reduction step (NONE).We also tried using

1http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Figure 3.5: The CIFAR-10 dataset. It is made of 32 × 32 images of ten object categories (airplane,
automobile, bird, ...) (First row). For computational reasons, we had to downscale the images to
16 × 16 and convert them to grayscale images (Second row), which makes the recognition even
more challenging.

Local Discriminant Embedding (LDE) [12] with a power regularization fixing the signal to noise
ratio to 15%. The results are, however, identical to the PCA case. In both situations, a normaliza-
tion to unit norm is performed after projection, as it is deemed to give significant improvements
on the final result [12]. We have also performed trials with Random Projections [2], which are well
justified by the sparsity constraints we imposed to our feature vectors for some Feature Extrac-
tion options, and pairwise LDE, but no performance improvement has been reported compared
to plain PCA. In order to choose the best size of the eigenspace, we perform an extensive cross-
validation for all dimensions in a range d = {8, . . . , 64}, and choose the value that scores best in a
nearest-neighbor classification over a subset of the training set.



Chapter 4

Results and Discussion

4.1 Evaluation Dataset

As mentioned in the introduction, we adopted the CIFAR-10 dataset [20] to evaluate the differ-
ent architectures and the influence of sparsity. The CIFAR-10 dataset represents a small, labeled
subset of a much bigger, 80-million dataset of 32× 32 image patches collected from the Web [47].
The different classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
Images from the classes satisfying certain requirements are split in a balanced dataset formed by
50000 samples for training and 10000 samples for testing.

Some examples from this dataset are shown in Fig. 3.5. It is a challenging dataset as its exhibits
large variability in pose, appearance, scale, and background composition, and some images are
affected by severe distortions. Those characteristics make this dataset suitable for our needs, since
it avoids the pitfalls involved with the uncontrolled exploitation of natural images and presented
in some recent works by Pinto et al. [35, 36]. The results reported in this subsection were ob-
tained on grayscale images. Given the large number of different combinations for our pipeline,
we applied an initial downsampling step to 16 × 16 pixels to speed up the experiments. This
downsampling seemed to yield a decrease of about 5% of the recognition rate, with negligible
variations across different choices for the extraction stage.

As depicted in Fig. 3.5, downsampled grayscale images are extremely challenging even for
a human. [47] reports the result of an experiment performed on humans in a 15-class image
classification problem, and the recognition rate for 16 × 16 grayscale images is approximately
52.5±2.5%.

4.2 Evaluation of the Results and Interpretation

Tables 4.1, 4.2, 4.3, 4.5 group the results of the relevant experiments to make them easier to inter-
pret. Each table gives for each pipeline:

• The ℓ0-norm of the t vectors, which are the feature vectors after feature extraction. The ℓ0-
norm is the number of non-zero elements, which we normalize by the length of the vector.
The smaller the norm, the sparser the vector is.

• The ℓ0-norm of the v vectors, which are the feature vectors after pooling.

• The recognition rate, which is the percentage of correctly classified examples from a ran-
domly chosen, balanced test set constituted by 10000 samples. The test set is disjoint from
the training set.

4.2.1 Sparsity is not required for recognition

Table 4.1 compares the recognition rates obtained when using the Olshausen and Field’s al-
gorithm (SPARSEGD) with the results achieved by a simple convolution with learned filters

9
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Table 4.1: Comparison between sparse feature vectors and feature vectors obtained by convolu-
tion

Method ‖t‖
0

‖v‖
0

Rec. rate

CONV-POSNEG-GAUSS-NONE-NN 1.00 0.99 39.94%
CONV-POSNEG-GAUSS-PCA-NN ” ” 44.50%
CONV-POSNEG-GAUSS-PCA-SVM ” ” 66.04%

SPARSEGD-POSNEG-GAUSS-NONE-NN 0.46 0.98 41.72%
SPARSEGD-POSNEG-GAUSS-PCA-NN ” ” 45.91%
SPARSEGD-POSNEG-GAUSS-PCA-SVM ” ” 65.25%

Table 4.2: Comparisons between sparse feature vectors obtained with the Olshausen and Field
algorithm (SPARSEGD), and sparse feature vectors obtained with the Matching Pursuit algorithm
(SPARSEMP)

Method ‖t‖
0

‖v‖
0

Rec. rate

SPARSEGD-POSNEG-GAUSS-NONE-NN 0.65 0.99 41.46%
SPARSEGD-POSNEG-GAUSS-PCA-NN ” ” 45.11%
SPARSEGD-POSNEG-GAUSS-PCA-SVM ” ” 65.92%

SPARSEGD-POSNEG-GAUSS-NONE-NN 0.46 0.98 41.72%
SPARSEGD-POSNEG-GAUSS-PCA-NN ” ” 45.91%
SPARSEGD-POSNEG-GAUSS-PCA-SVM ” ” 65.25%
SPARSEGD-POSNEG-GAUSS-NONE-NN 0.12 0.81 35.30%
SPARSEGD-POSNEG-GAUSS-PCA-NN ” ” 41.81%
SPARSEGD-POSNEG-GAUSS-PCA-SVM ” ” 59.62%
SPARSEMP-POSNEG-GAUSS-NONE-NN 0.04 0.33 17.49%
SPARSEMP-POSNEG-GAUSS-PCA-NN ” ” 28.42%
SPARSEMP-POSNEG-GAUSS-PCA-SVM ” ” 46.26%
SPARSEMP-POSNEG-GAUSS-NONE-NN 0.06 0.38 17.65%
SPARSEMP-POSNEG-GAUSS-PCA-NN ” ” 27.41%
SPARSEMP-POSNEG-GAUSS-PCA-SVM ” ” 45.24%

(CONV). The vectors after feature extraction are much sparser in the case of SPARSEGD. Af-
ter pooling, however, the two sets of vectors are not sparse anymore. In particular, in all the
experiments we have carried out and irrespectively of the chosen feature extraction and pool-
ing strategies, the results after pooling are dense. This suggests that, in all the architectures that
employ pooling stages, sparsity is a temporary condition only.

For the same combination of Subspace Selection and Classification, the two feature extraction
strategies give the same recognition rates. Enforcing the sparsity clearly does not help here.

To check this surprising results, we tried the Matching Pursuit algorithm to impose the spar-
sity constraints. Matching Pursuit is slower than gradient descent but produces much sparser
vectors for the same reconstruction error. The results are presented Table 4.2. After feature extrac-
tion with Matching Pursuit (SPARSEMP) the feature vectors are indeed sparser, and still remain
very sparse after pooling. The recognition rate, however, degrades significantly! Our interpreta-
tion is that the Matching Pursuit algorithm makes the feature vectors “unstable”: the number of
features shared by different samples of the same class becomes too small as well, which makes
the classification difficult.

A visual inspection of the featuremaps seems to suggest that the strongly-responding features
in an image are usually related to patch-specific details that correspond to intra-class dissimilari-
ties.

4.2.2 Sparsity is interesting when learning the filters

Although sparsity is not important for the feature extraction stage, and can even hurt the recogni-
tion rate when Matching Pursuit is used, it is still important for learning the filters. Table 4.3 com-
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Table 4.3: Comparisons between different filter banks

Method ‖t‖
0

‖v‖
0

Rec. rate

CONV-POSNEG-GAUSS-NONE-NN 1.00 0.99 39.94%
CONV-POSNEG-GAUSS-PCA-NN ” ” 44.50%
CONV-POSNEG-GAUSS-PCA-SVM ” ” 66.04%

CONVLM-POSNEG-GAUSS-NONE-NN 1.00 1.00 38.95%
CONVLM-POSNEG-GAUSS-PCA-NN ” ” 41.00%
CONVLM-POSNEG-GAUSS-PCA-SVM ” ” 63.60%
CONVMR8-POSNEG-GAUSS-NONE-NN 1.00 1.00 38.66%
CONVMR8-POSNEG-GAUSS-PCA-NN ” ” 39.92%
CONVMR8-POSNEG-GAUSS-PCA-SVM ” ” 61.31%

CONVRAND-POSNEG-GAUSS-NONE-NN 1.00 0.99 34.30%
CONVRAND-POSNEG-GAUSS-PCA-NN ” ” 36.29%
CONVRAND-POSNEG-GAUSS-PCA-SVM ” ” 54.36%

GRAD-POSNEG-GAUSS-NONE-NN 0.96 n.a. 37.17%
GRAD-POSNEG-GAUSS-PCA-NN ” ” 37.39%
GRAD-POSNEG-GAUSS-PCA-SVM ” ” 52.31%

Table 4.4: Comparisons of the results obtained by different strategies using randomly generated
filters

Method ‖t‖
0

‖v‖
0

Rec. rate

CONVRAND-POSNEG-GAUSS-NONE-NN 1.00 0.99 34.30%
CONVRAND-POSNEG-GAUSS-PCA-NN ” ” 36.29%
CONVRAND-POSNEG-GAUSS-PCA-SVM ” ” 54.36%
GDRAND-POSNEG-GAUSS-NONE-NN 0.81 1.00 34.95%
GDRAND-POSNEG-GAUSS-PCA-NN ” ” 37.30%
GDRAND-POSNEG-GAUSS-PCA-SVM ” ” 56.63%

SPARSEGDRAND-POSNEG-GAUSS-NONE-NN 0.45 0.99 34.95%
SPARSEGDRAND-POSNEG-GAUSS-PCA-NN ” ” 37.33%
SPARSEGDRAND-POSNEG-GAUSS-PCA-SVM ” ” 56.14%

pares the recognition rates for convolution with different filter banks: the filters obtained with the
Olshausen and Field algorithm (CONV), the Leung-Malik filter bank (CONVLM), the Maximum
Response 8 filter bank (CONVMR8), and a bank made of random filters (CONVRAND). None of
these filter banks produced sparse feature vectors, but even CONVRAND obtains decent classi-
fication rates already noticed in [17]. Convolution with the learned features (CONV) obtains the
best results. Learning filters while imposing sparsity constraints therefore improves the classifica-
tion results, even when done in an unsupervised way. As a comparison term for the classification
rate, we have also performed an experiment passing to the classifier the countours extracted by
gradient detectors in the x and y direction (GRAD). It is noticeable that, when Gradient Descent
is applied to the feature maps obtained by convolution with random filters in order to improve
the reconstruction quality, no improvement is obtained by enforcing sparsity (SPARSEGDRAND)
compared with the case when a good reconstruction only is sought (GDRAND) (see Table 4.4).

4.3 Best Results

Table 4.5 compares the recognition rates when varying the pooling method, for the best com-
bination for the other components: convolution with learned filters, PCA projection, and SVM
classification. Averaging with a BOXCAR filter slightly outperforms the MAX operation, and us-
ing a Gaussian kernel (GAUSS) slightly outperforms the BOXCAR filter. When no non-linearity
is introduced, the performance is negatively affected by more than 20%.

Table 4.5 also compares the two rectificationmethods, ABS and POSNEG, after fixing the other
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Table 4.5: Comparisons of the different pooling strategies, and the two different rectificationmeth-
ods

Method ‖t‖
0

‖v‖
0

Rec. rate

CONV-POSNEG-GAUSS-PCA-SVM 1.00 1.00 66.04%
CONV-POSNEG-BOXCAR-PCA-SVM 1.00 0.99 63.38%
CONV-POSNEG-MAX-PCA-SVM 1.00 0.99 59.56%
CONV-POSNEG-GAUSS-PCA-SVM 1.00 1.00 66.04%

CONV-ABS-GAUSS-PCA-SVM 1.00 1.00 59.56%
CONV-NONE-GAUSS-PCA-SVM 1.00 1.00 43.96%

components to the best combination: Convolution with learned filters, Gaussian smoothing for
pooling, PCA projection, and SVM classification. The POSNEG operation used in [48] outper-
forms the ABS operation used in [17].

These different evaluations give us the best combination for the full pipeline:
CONV-POSNEG-GAUSS-PCA-SVMyields the highest recognition rates. By running this method
on 32 × 32 grayscale images, we obtained a recognition rate of 71.53%, better than the 64.84% of
the state-of-the-art on the original color images of this dataset.



Chapter 5

Conclusion

We have performed an in-depth analysis on the impact of sparsity in image classification. Our
experimental results advocate that solely enforcing sparsity is not helpful in terms of recognition
rate, while it is important to learn structured filters that yield better recognition performances.
Given the high computational burden involved with sparse codes and the increasing interest in
biologically inspired multi-layer architectures, this insight heavily impacts on the design strate-
gies for feature extraction algorithms.

As more computational power becomes available, approaches aimed at automatically learn
how to face hard problems get an increasing relevance. It is mandatory, however, to devise clever
techniques to properly harness these learning systems, in order to fully exploit their capabilities.
Although further investigations are required to define a framework in which to cast the image
classification task in an effective manner, the evaluation performed in this paper accounts for
a set of candidate components of it, assessing their structure and their relative importance in a
quantitative way.

The analysis hereby presented has many possible, relevant extensions. In particular, it would
be interesting to investigate the behavior of sparsity in multi-layer architectures, and the impact
of normalization on the classification performances. The former architecture has, in fact, demon-
strated its power in the context of Deep Learning Machines and Convolutional Neural Networks,
whereas several recent works reported the effectiveness of subtractive and divisive normaliza-
tion in several image analysis tasks. Additionally, we argue that a sparse representation should
be tuned to provide a rough, class-specific sketch of the considered object, enforcing discrimi-
native traits during the sparsification step. An indepth analysis of discriminative sparsification
strategies, combined with sparseness-preserving pooling techniques, is therefore likely to provide
powerful, biologically-like classification algorithms.

13
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Appendix A

Filter bank derivation

Given the filter bankM and an image patch x, we can derive the initial feature map t by comput-
ing the cross-correlation between the patch and the filters,

t = x ⋆M . (A.1)

The reconstruction r can be computed as

r =
∑

i

(ti ⋆mi) , (A.2)

wheremi ∈ M is the i-th filter and ti is the corresponding featuremap. The gradient gi, needed to
perform a stochastic gradient descent update over each ti in order to minimize the reconstruction
error, can be obtained by the convolution of each filter with the residual r− x

gi = mi ∗ (r− x) . (A.3)

To enforce the sparsity of the solution, we periodically update the dictionary while keeping the
filter maps fixed. After having computed the reconstructed image r with Equation (A.2), we
estimate the error γi for the i-th filter as

γi = ti ⋆ (r− x) , (A.4)

and then alter the filters proportionally to this quantity.
To improve the convergence of the stochastic gradient descent learning, we empirically ob-

served that the regularization parameter λ can be relaxed in the first iterations (low penalty for
non-sparse solutions), while it can be increased when the reconstruction provided is sufficiently
accurate.
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