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1 Introduction

Microsimulation-based models of urban systems have provento be powerful tools
for prediction and scenario analysis, with a particular yetcontinuously expanding
focus on transportation and land use. They bring along a highlevel of detail, but
they also come at the cost of enormous data needs for their estimation. This article
develops a framework for the continuous deployment of a microsimulation-based
urban model that integrates existing and emerging data sources.

The text is structured in two parts. The first part, which consists of Sections 2 and
3, focuses on modeling and simulation: First, Section 2 defines the considered
urban processes and casts them into a basic formal framework. Second, Section 3
adopts a microsimulation-based perspective on these processes.

The integration of real data into an urban microsimulation is the topic of the sec-
ond part, which consists of Sections 4 through 6: First, Section 4 defines the
respective terminology and indicates two important and newdata sources. Sec-
ond, Section 5 discusses the urban state estimation problem, with a focus on the
different time scales on which an urban system unfolds. Third, Section 6 elab-
orates on the parameter estimation problem for urban models, with a focus on
the advantages and difficulties of estimating interacting model components in an
integrated manner. Finally, Section 7 summarizes the article.

2 Urban systems

An urban system consists of several interacting components, which are outlined
in the following. See Wegener (2004) for a more comprehensive introduction to
integrated transportation and land used models and Ghauche(2010) for a recent
review with an activity-based modeling focus (Bowman and Ben-Akiva, 1998).
Three processes are crucial to a microsimulation-based urban modeling approach:
activity participation, transportation, and relocation.Strongly related to these, one
may account for energy consumption, the economy, environmental effects, and
social interactions. The outline given below and depicted in Figure 1 focuses on
the mutual interactions of the basic processes activity participation, transportation,
and relocation.

Relocation. The relocation model takes as exogenous inputs the socio-economics
of households and firms, their long-term needs and strategies, the develop-
ment of the building infrastructure, and possible regulations regarding its
use. Its endogenous input are the accessibility measuresZacc obtained from
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Figure 1: Interactions between activity participation, transportation, and reloca-
tion

a transportation model. The relocation model captures how households se-
lect their dwellings, how businesses select their offices, how land prices
adapt in reaction to this (this may involve a separate economic model), and
how these in turn affect the relocation decisions of all involved actors. We
denote byXreloc the allocation of all households and firms to all buildings
in the system. The output of the relocation model are the facilities Zfac,
which provide activity opportunities to households and firms.

Activity participation. The activity participation model takes as exogenous in-
puts the socio-economics of households and firms, their long-term needs
and strategies, and possible travel demand management measures. Its en-
dogenous input are the facilitiesZfac defined by the relocation model. House-
hold members conduct activities in different places, including working, reg-
ular shopping, and spontaneous leisure activities, all of which may require
them to travel to the respective facilities. Firms obtain production inputs
such as raw materials or components to be assembled and deliver their prod-
ucts. We denote byXact the activity and travel plans of all households and
firms in the system. The output of the activity participationmodel(s) are
sequences of (desired) trips through the transportation network for different
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modes (or mode combinations) and demand sectors, which we collectively
refer to as the mobility demandZmob.

Transportation. The transportation model takes as exogenous inputs the trans-
portation infrastructure and possible transportation management measures.
Its endogenous input is the mobility demandZmob from the activity par-
ticipation model. The transportation model represents thephysical world of
mobility and describes how the mobility demand is served by the transporta-
tion infrastructure. The transportation model captures congestion, the tem-
porary over-utilization of the system. We denote byXtransp the state of the
transportation system, including all mobile entities (vehicles, buses, trains,
...), their occupations, and possibly the internal states of intelligent con-
trol mechanisms (such as adaptive traffic lights). The transportation model
has two outputs: it feeds back congestion informationZcong to the activ-
ity participation model, and it feeds back the resulting changes in location
accessibilityZacc to the relocation model.

Formally, we denote byZmob = Gmob(Xact) the mapping of activity participation
on mobility demand, byZcong = Gcong(Xtransp) andZacc = Gacc(Xtransp) the
mapping of the transportation system’s state on congestionand accessibility, and
by Zfac = Gfac(Xreloc) the mapping of the building infrastructure’s use on the
availability of facilities. Collecting allZ···, X···, andG···, one obtains theprocess
interaction equations

Z = G(X). (1)

The activitiesXact = Fact(Zcong,Zfac) are a function of congestion and available
facilities. The transportation system’s stateXtransp = Ftransp(Zmob) evolves de-
pending on the mobility demand. The building usageXreloc = Freloc(Zacc) is
a function of the accessibilities. Collecting allF···, this yields theprocess state
equations

X = F(Z). (2)

Combining (1) and (2), one obtains

X = F(G(X)), (3)

which fully specifies the stateX of the urban model in terms of a fixed-point
relationship, which states that all processes evolve consistently with each other.
We deliberately omit exogenous factors for notational simplicity and postpone the
introduction of model parameters to Section 4.

An explicit introduction of the time dimension into this model is postponed to
Section 5. For now, we observe that the presented notation allows for both a static
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equilibrium model or a dynamic (either equilibrium or out-of-equilibrium) model:
One may think ofX andZ as time-independent long-term average values and ofF

andG as likewise static functions. This turns (3) into an equilibrium model. One
may also think ofX andZ as time-dependent valuesX = {x(t)}t andZ = {z(t)}t
with t being the time dimension. In this case, (3) does not necessarily call for
an equilibrium but at least for the mutually consistent dynamic evolution of all
processes.

3 Microsimulation

A large number of urban microsimulations has evolved in the last decades. To
name a few, there are the transportation microsimulations DynaMIT (Ben-Akiva
et al., 1998) and MATSim (Raney and Nagel, 2006), the activity participation sim-
ulators TASHA (Miller and Roorda, 2004) and Albatross (Arentze and Timmer-
mans, 2004), and the more comprehensive land use simulatorsUrbanSim (Wad-
dell and Ulfarsson, 2004) and ILUTE (Salvini and Miller, 2005). The software
platform OPUS is a recent effort to provide a technical framework for integrated
urban microsimulations (Waddell et al., 2005).

Microsimulation can be seen both as a modeling paradigm and amodel solution
technique, and both perspectives apply in the context of urban models.

Microscopic modeling. If the system under consideration consists of interacting
entities, then a modeling approach that captures these entities individually
is structurally consistent. This holds in particular if thesystem is (i) coarse-
grained in that a continuous-limit perspective that aggregates individual en-
tities into real-valued quantities is not appropriate and/or (ii) heterogeneous
in that the entities differ too much from each other to be represented by a
limited number of homogeneous groups. If these properties do not apply
then a macroscopic model may sometimes be preferable, for example in
thermodynamics. In land use and transportation, however, there is broad
agreement that both the coarse granularity of and the differences between
the involved actors favor a microscopic modeling approach (Nagel and Ax-
hausen, 2001). Last but not least, microscopic models deal with entities that
have counterparts in the real world, which makes them more intuitive and
easier to communicate than abstract systems of equations.

Microscopic simulation. Even if macroscopic modeling is feasible, it usually is
uncertain and hence involves distributional assumptions about quantities
that cannot exactly be determined. The solution of such models requires
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to solve possibly complicated integrals over these distributions. This mere
computational problem can be solved by simulation in the numerical sense
(Ross, 2006): instead of evaluating the integral directly,a number of random
realizations is generated, the resulting indicators are calculated, and their
average is used as an approximation of the integral. The substantial uncer-
tainty clinging to land use and transportation models in combination with
the impossibility to evaluate them in closed form motivatesa simulation-
based approach from this technical perspective as well. In particular, the
uncertainty of microscopically modeled behavior calls fora probabilistic
analysis, which for all but the most simple models can only beconducted
through simulation.

The microscopic approach is essentially characterized by disaggregation. How-
ever, there may be different degrees of disaggregation. We make this observa-
tion formally concrete for the individually simulated actors in the system. These
agentsare indexed byn = 1 . . .N, whereN is the size of the simulated pop-
ulation. Consistently with the framework of Section 2, the stateXn of agentn
consists of its activity stateXact,n, its transportation stateXtransp,n, and its relo-
cation stateXreloc,n.

Xact,n represents the activity and travel plan of the agent.Xtransp,n describes
if, where, and how the agent is currently mobile in the transportation system.
Xreloc,n defines the dwelling of the agent (housing for a household and, e.g., office
space for a firm). If the agent represents more than one individual (members of
a household, employees of a firm), then the respective state variables represent
all of these individuals. The process statesXact, Xtransp, andXreloc comprise the
individual-level components for all members of the population but may contain
additional information, depending on the scope of the wholesimulation system.

The disaggregate activity participation, transportation, and relocation models for
agentn are written in the following way:

Xact,n = Fact,n(Ztransp,n, Zreloc,n, Zcong, Zfac) (4)

Xtransp,n = Ftransp,n(Zact,n, Zcong) (5)

Xreloc,n = Freloc,n(Zfac, Zacc). (6)

Equation (4) states that the activity and travel plansXact,n of an agentn depend on
the congestion statusZcong of the transportation network, the available facilities
Zfac, and the transportation and relocation state

Ztransp,n = Gtransp,n(Xtransp) (7)

and
Zreloc,n = Greloc,n(Xreloc) (8)
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of this very agent. (An explanation of theGn(X) notation follows immediately.
For now it may be read asGn(X) = Xn.) Equation (5) expresses the transporta-
tion stateXtransp,n of agentn as a function of the congestion stateZcong of the
transportation system and its activity and travel plan

Zact,n = Gact,n(Xact). (9)

Finally, (6) expresses the relocation stateXreloc,n of agentn as a function of the
available facilitiesZfac for relocation and their accessibilitiesZacc. Recall that all
of these models may be static or dynamic, as explained in the last paragraph of
Section 2.

The degree of model disaggregation, which has important implications for the
consistency of an individual agent’s state variables, differs between mesoscopic
and truly microscopic models.

Mesoscopic models.In the mesoscopic approach, disaggregation takes place with-
in the processes, but the interactions between processes are still based on
aggregate information. This disconnects individual entities in different pro-
cesses in that theGn(X) functions in (7)-(9) anonymously sample/infer the
state of an agent in one process when feeding it into another process:

• Gtransp,n(Xtransp) reconstructs what agentn experiences in the trans-
portation system, but without reference to a particular entity in that
system. Typically, this is done by following the agent’s path based on
aggregate travel time information.

• Greloc,n(Xreloc) assigns a relocation state to agentn based on the pop-
ulation’s distribution in the relocation model.

• Gact,n(Xact) infers agentn’s activity and travel plan from the distribu-
tion of all plans in the activity participation process. This is typically
done by (i) breaking down the activity patterns into trip sequences
(ii) aggregating these trips into origin/destination (OD)matrices (this
would beZmob in the process-based perspective), and (iii) re-sampling
individual trip-makers from these matrices.

Because of their aggregate process interactions, mesoscopic models can in-
tegrate macroscopic model components relatively naturally. Their major
deficiency is their limited ability to relate individual-specific information
obtained in one process to individuals in other processes.

Microscopic models. Microscopic models maintain the integrity of the simulated
entities, both in the processes and their interactions. Here, theGn(X) func-
tions in (7)-(9) are true identities:Gtransp,n(Xtransp), Greloc,n(Xreloc), and
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Gact,n(Xact) extract those components ofXtransp, Xreloc, and Xact that
uniquely belong to agentn.

While the microscopic approach guarantees consistency between the agent
representations in different processes, it does not keep disaggregate model
components from interacting through macroscopic quantities. For example,
the decision of a household to move into a certain region may be based on
aggregate characteristics like shopping facility densityand noise levels, the
decision of a land developer to construct a new building may depend on the
average propensity of the targeted household segment towards this type of
dwelling, or the mobility behavior of an individual may depend on average
travel times in the transportation network.

The notationZtransp,n, Zreloc,n, andZact,n in (4)-(6) allows to treat mesoscopic
and microscopic models within the same formal framework. Unless stated other-
wise, the following discussion therefore applies to both model classes. Further-
more, all statements in terms of the process-based notation(1), (2) can be mapped
on mesoscopic or microscopic models through appropriate composition of the
state (interaction) variablesX andZ.

4 Estimation

This section consists of two parts. First, Subsection 4.1 distinguishes the notions
of parameter estimation and state estimation and introduces some basic notation.
Second, Subsection 4.2 presents two emerging data sources of particular relevance
for the estimation of urban microsimulations.

4.1 Formal framework

We distinguish between the estimation of parameters and states. Parameters are
by definition time-independent. The parameter estimation problem is to identify
temporally stable system properties that identically apply in the future and for dif-
ferent scenarios. States, on the other hand, evolve over time. The state estimation
problem is to identify a complete configuration of the system’s endogenous vari-
ables. In either case, the estimation combines structural model information with
observations from the real system.

Parameter estimation. The process model is now assumed to depend on the pa-
rametersβ, i.e., (2) is augmented into

X = F(Z|β). (10)
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β comprises componentsβact, βtransp, andβreloc for the respective pro-
cesses. The parameter estimation problem is to infer aβ∗ that is most
consistent with the model structure and all available dataY. Denoting this
estimator byB, we write

β∗ = B(Y). (11)

Typical methods implemented inB are Bayesian or Maximum Likelihood
estimation (Greene, 2003).B also comprises all available information about
the model structure, in particular the interplay of the state (interaction) vari-
ablesX andZ through the process (interaction) functionsF andG.

State estimation. Even if the model parameters are well calibrated, some uncer-
tainty about the model stateX remains. The measurementsY can be used
to reduce this uncertainty. Denoting the respective state estimator byX , we
write

X∗ = X (Y|β) (12)

for the estimated stateX∗. Typical methods implemented inX are Kalman
Filtering or Bayesian inference (Arulampalam et al., 2002;Chui and Chen,
1999). Again, the estimatorX comprises all available information about
the model structure.

From (12), it is clear that the state estimation problem is solved conditionally on
the parameter estimation problem. The converse setting, where the parameters are
estimated conditionally on the estimated states, also has some practical relevance
and is visited later in Subsection 6.2.

4.2 New data sources

The amount of data needed to calibrate a model depends on its granularity. Macro-
scopic models that function in terms of aggregate quantities can be estimated
based on aggregate data alone. Microscopic models of individual behavior need
to be estimated from disaggregate data. This turns urban microsimulations into
data-hungry systems, and instruments for the affordable provision or substitution
of such data are essential for their estimation. In the following, we indicate two
emerging and particularly relevant data sources, smart phones and vehicle iden-
tification systems. Note, however, that all established data sources, ranging from
postal surveys that query complete activity and travel patterns to inductive loops
that merely count vehicles on roads, should be deployed in combination with these
new technologies.
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Smart phones. These devices collect a wealth of information about their users’
environment, travel, and activities. This includes GPS (global positioning
system) tracks and the MAC (media access control) addressesof nearby de-
vices as well as all communications and running applications on the phone,
and it can go as far as taking visual and acoustic samples of the environment.
Methodological work is underway for the identification of the user’s current
travel and activity from smart phones, and it is reasonable to anticipate that
the smart phones of selected individuals will soon serve as reliable travel
and activity sensors in the urban system (Bierlaire et al., 2010; Bohte and
Maat, 2009; Hato, 2010; Hurtubia et al., 2009; Raj et al., 2008; Schüssler
and Axhausen, 2009).

Vehicle identification systems.The identification of a vehicle at one or several
locations in the network reveals individual-level information about the cho-
sen destination, route, and departure time of the driver. Vehicle identifica-
tion systems usually rely on cameras and/or transponder-based short range
communications. These systems are crucial for electronic toll collection
systems, and hence this data source can be accessed whereversuch a sys-
tem is installed. The estimation of travel behavior from vehicle identifi-
cation systems is an active field of research that has alreadyresulted in the
implementation of operational prototypes (Antoniou et al., 2006; Vaze et al.,
2009; Zhou, 2004).

Both data sources continuously reveal individual-level behavior at a relatively low
cost once the system is installed. This makes them attractive not only for the
estimation of model parameters but also for real-time stateestimation purposes.
Note, however, that in the urban simulation context, the objective is to estimate
disaggregate behavior without a one-to-one mapping from simulated to real actors.
This differs from other applications of the same sensor technology that require
person-specific estimates. For example, a smart phone may internally keep track
of its user’s activity preferences in order to provide customized, context specific
information.

5 State estimation

The continuous tracking of the urban state allows to manage the system more ef-
fectively in response to its most recent internal changes. An important problem in
this context is that urban processes evolve at vastly different time scales. Based
on an analysis of these time scales in Subsection 5.1, a rolling horizon state esti-
mation framework is developed in Subsection 5.2.
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5.1 Time scales of an urban microsimulation

We distinguish short-, medium-, and long-term dynamics.

Short-term dynamics. This refers to dynamics within a day. The physical trans-
portation system evolves on the time scale of minutes or evenseconds. Its
state on subsequent days may be considered as decoupled if congestion does
not persist over night and vehicles are parked in the same location every
night. Travel behavior and activity participation are, within limits, also vari-
able within a single day, either in reaction to exogenous events or in reaction
to the transportation system’s performance.

Medium-term dynamics. This refers to dynamics across a limited number of
days. Many aspects of activity participation and the resulting travel behav-
ior are linked across a number of days. Households and firms schedule
their maintenance activities across weeks or even months. Travel behavior
is based on anticipated network conditions, which are extrapolated from in-
formation collected during many previous days. Relocationis also relevant
on medium-term time scales in that it continuously changes the facilities
that are available for activity participation.

Long-term dynamics. This refers to dynamics in the order of years. It is the time
scale of the relocation model. However, even if individual relocations are
unlikely to take place more than once per year, population relocation is a
continuous process that affects activity and travel behavior also on medium
time scales. The accessibility feedback from the transportation system on
relocation, however, occurs with such an inertia that the relocation model
can be considered as decoupled from the transportation system on short and
medium time scales.

This classification leaves out all but the three central processes identified in Sec-
tion 2. Apart from transportation and short-term activity participation, commu-
nication is another important short-term process. This comprises centralized in-
formation distribution systems (radio, Internet) as well as direct communications
along the edges of social networks. Energy consumption is toa large extent de-
rived from activity participation and hence occurs on shorttime scales as well.
Ecological and economical processes and the evolution of social networks, how-
ever, may safely be constrained to medium and long time scales.

Most of the existing literature on state estimation in the urban context focuses on
the tracking of the physical transportation system’s stateXtransp, e.g., (Chrobok
et al., 2003; Tampere and Immers, 2007; Wang and Papageorgiou, 2005). The
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real-time tracking of the behavioral statesXact is mainly constrained to limited
aspects of the derived travel patterns such as OD matrices orpath flows (Ben-
Akiva et al., 1998; Bell et al., 1997; Zhou and Mahmassani, 2007). A mention-
able exception is Flötteröd (2008); Flötteröd et al. (2010), where full-day activity
and travel plans are estimated from traffic counts and supplementary model infor-
mation. The relocation stateXreloc may be considered as completely measurable
based on sufficient data access rights and enough time to process it.

5.2 Rolling horizon framework

The simulation-based nature of an urban microsimulation model renders the appli-
cation of computationally and mathematically convenient recursive filtering tech-
niques infeasible. We therefore opt for a rolling horizon framework. Here, it
is advantageous to consider transportation, activity participation, and relocation
separately.

Estimation of Xtransp. A estimation of the transportation system’s state requires,
on the most disaggregate level, to track individually simulated (yet anony-
mous) transportation units (vehicles, pedestrians, ...).This requires to ac-
count for high-resolution dynamics in the order of seconds or minutes. A
reasonable length of the estimation time horizon is typically between 30 and
60 minutes. Formally, the transportation system state estimator is written as

X∗

transp = Xtransp(Ytransp|Zmob; βtransp) (13)

whereYtransp comprises all sensor data that is relevant for the transportation
state estimation problem. The estimator depends on the mobility demand
Zmob and the parametersβtransp of the transportation system. The conges-
tion informationZcong derived from the transportation system’s state is at
least locally visible to travelers and can be made more globally accessible
through information distribution systems (radio, Internet) and communica-
tions in social networks.

Estimation of Xact. Activity and travel scheduling happen both within-day and
day-to-day. However, it is not advisable to estimate daily activity schedules
during a limited time window within a day because activity scheduling is
not a temporally linear process. The complex internal logicof daily activ-
ity schedules, including their various constraints, require to schedule and
estimate a day as a whole (Bowman and Ben-Akiva, 1998). Formally, the
activity state estimator is written as

X∗

act = Xact(Yact|Zcong, Zfac; βact) (14)
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whereYact comprises all sensor data that is relevant for the activity estima-
tion problem. The estimator may be conditional on the activity participa-
tions of previous days and depends on the congestionZcong, the available
facilities Zfac for activity participation, and the parametersβact. (The ac-
tivity and travel participations of firms may be more difficult to observe than
those of individual volunteers for reasons of market competition, although
they are likely to be more structured and better documented.)

Estimation of Xreloc. It is reasonable to assume that, given enough time and ac-
cess to the necessary data bases, the relocation state of theurban system is
directly measurable. However, this is possible only with a lag, and a real-
time tracking of urban relocations appears infeasible. We may assume that
relocations are measurable in yearly intervals and that therelocations of the
upcoming year are planned with such a lag that that they are not affected
by the events within that year. This allows to simulate all upcoming reloca-
tions at once at the beginning of the year, to derive a day-by-day relocation
sequence from this, and to feed the resulting facility informationZfac ex-
ogenously into the mid- and short-term state estimation processes. Directly
observable facility changes such as openings of shopping malls can also be
exogenously incorporated.

These considerations suggest to estimate the urban system state on a daily basis,
where the transportation system’s state is tracked with a rolling horizon within the
day and the activity and travel behavior is estimated without a rolling horizon for
the day as a whole, possibly conditional on the activities ofprevious days. Figure
2 gives an overview, which is detailed in the following.

The physical transportation system and the activity and travel behavior need to be
estimated in mutual dependency; they are coupled through the mobility demand
and the congestion information. The coupling between the relocations and the
activity and travel behavior estimator is unidirectional in that relocation events
are predicted infrequently and then disaggregated across the time line in order to
allow for a continuous evolution of the boundary conditionsfor the activity and
travel behavior.

We close this section with the observation that a microsimulation-based state es-
timator is unlikely to represent distributional information differently but through
samples. Considering that a single sample represents an entire urban state, we
are facing a computationally enormous problem. Unless randomness is artifi-
cially reduced, this is likely to require (loosely coupled)parallel computing efforts
where a number of computers calculates one realization of the urban state each.
The sample-based approach connects the urban state estimator to particle filtering
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Figure 2: Rolling horizon urban state estimation

techniques (Arulampalam et al., 2002), however, on a vastlyincreased scale of
computational complexity.

6 Parameter estimation

We now consider the problem of how to calibrate the structural model parameters
β from some data setY. As stated in Section 4.1, one may assume a compre-
hensive estimatorB to be given that estimates all parametersβ jointly from all
available dataY. This, however, is a rather extreme case, and it is more likely
to assume that different components of the whole model are estimated separately
and possibly conditional on each other. In Subsection 6.1, we clarify this obser-
vation for the process-based decomposition of Section 2. Subsections 6.2 and 6.3
then discuss two techniques to approximately account for the process interactions
when estimating submodel parameters.
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6.1 Parameter estimation for interacting processes

In a process-based decomposition, the activity and travel participation, transporta-
tion, and relocation parametersβact, βtransp, andβreloc are estimated from sub-
setsYact, Ytransp, andYreloc of Y that are relevant to the respective processes, and
the process boundariesZ are considered as given:

β∗

act = Bact(Yact|Zcong, Zfac) (15)

β∗

transp = Btransp(Ytransp|Zmob) (16)

β∗

reloc = Breloc(Yreloc|Zacc). (17)

Since the boundaries of each process depend on the states of all adjacent pro-
cesses, which in turn depend on the respective parameters, one does not face three
independent parameter estimation problems but one large, coupled problem. The
least one can do to account for this coupling is to repeatedlysolve the individual
estimation problems conditional on each other until a stateof mutual consistency
is attained.

Since we are dealing with a microsimulation, the estimationof behavioral mod-
els from individual-level data sources deserves particular attention. Denoting by
m = 1 . . .M the observed individuals in reality, a typical parameter estimation
approach is to defineB as a maximum likelihood estimator

B(Y) = arg max
β

L(β) (18)

with the log-likelihood function

L(β) =

M∑

m=1

ln p(Ym|β). (19)

Again, this estimator can be decomposed by process. Assuming that the individual-
level observationsYm are related to the parametersβ only through the individual-
level stateXm, (4)-(6) yield

L(βact) =

M∑

m=1

ln p(Yact,m|Ztransp,m, Zreloc,m, Zcong, Zfac; βact) (20)

L(βtransp) =

M∑

m=1

ln p(Ytransp,m|Zact,m, Zcong; βtransp) (21)

L(βreloc) =

M∑

m=1

ln p(Yreloc,m|Zfac, Zacc; βreloc). (22)
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In the context of choice models, the individual-level boundary conditionsZm can
be considered as person-specific attributes and choice set information, whereas
the aggregate boundary conditionsZ define further attributes of the alternatives.
Together, they define the choice context of the observed individual.

The possibility to measure the choice context from smart phones or vehicle iden-
tification systems, in particular in terms of non chosen alternatives and perceived
attributes of the alternatives, is limited. It depends on unobservable information
the individual has gathered through experience in the urbanenvironment and, due
to the anticipatory nature of decision making, on attributes that are spatially and
temporally remote and hence not accessible to the sensor. Since this information
is crucial to the estimation of behavioral models (Ben-Akiva and Lerman, 1985;
Train, 2003), it appears plausible to impute the context information within the ur-
ban simulation. This requires to estimate behavioral models conditional on their
simulated environment – which in turn is defined through the estimated behavior.

Some previous research was conducted in this context. Balakrishna (2006) reports
on the joint calibration of travel demand and traffic flow parameters in the Dyna-
MIT traffic microsimulator. Sevcikova et al. (2007) calibrate the UrbanSim land
use simulator, which comprises, amongst other components,a relocation model
and an external transportation model. Methodologically, these efforts are con-
strained to the application of black box calibration techniques, which by defini-
tion exploit no problem structure. Also, they are limited tothe time scales of their
respective processes: DynaMIT operates in the order of days, whereas UrbanSim
runs from year to year.

The remainder of this section discusses two integrated parameter estimation ap-
proaches that account for system structure and different time scales. First, Section
6.2 describes a combined state and parameter estimator thatloosens the process
interactions based on data. Second, Section 6.3 proposes response surfaces and
metamodels as means to improve the tractability of integrated parameter estima-
tion approaches.

6.2 Decoupling of submodels through state estimation

Any set of decoupled parameter estimators can be written as

β∗ = B(Y|Z) (23)

whereZ comprises the boundary conditions between the respective processes.

An integrated parameter estimation is enabled if the boundary conditions are com-
puted conditional on the parameters, i.e., if (23) is solvedjointly with

Z = G(X) (24)

16



X = F(Z|β∗). (25)

The main difficulty of solving the integrated estimation problem is that the math-
ematical intractabilities of simulation-based components (such as a traffic flow
microsimulation) also enter other, themselves well-behaved estimation problems
(such as the maximization of a log-likelihood function for abehavioral model).

Essentially, the process interactionsZ in (24) result from a plausible combination
of structural model information and the dataY. Observing that a very similar
problem is solved by the urban state estimator (12), one may approximate the
calibrated process equation (25) by that estimator:

F(Z|β∗) ≈ X (Y|β0) (26)

whereβ0 is an initial guess of the process parameters used during thestate estima-
tion. The advantage of this approximation is that, given sufficient dataY, the state
estimation computes process interactionsZ that are close to those interactions that
would result from a simulation based on the estimated parameters. Hence, these
interactions need no adjustment during the parameter estimation, which decouples
the respective processes.

An operational implementation of this combined state and parameter estimation
approach is outlined in Figure 3. The urban state estimator is deployed continu-
ously based on given parameters. In regular intervals (e.g., monthly) these param-
eters are re-estimated based on all data collected so far. All process interactions
up to the present point in time are approximately known from the state estima-
tor. (Very old data may be discarded, which results in a rolling-horizon parameter
estimator.) After the parameter estimation, the urban state estimation is further
deployed based on the updated parameters. This approach iterates between pa-
rameter and state estimation, where the iterations take place along the time line. It
can be expected to result in increasingly consistent parameter and state estimates
as time progresses.

A complete decoupling of all model components may not be desirable. In partic-
ular, if the estimates during the early deployment of the system are far from their
true values, some of the interactions should be accounted for, but in a mathemati-
cally tractable setting. This is the topic of the following subsection.

6.3 Response surfaces and metamodels

Response surfaces and metamodels were originally developed in the context of
simulation-based optimization, e.g., Osorio (2010).
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Figure 3: Integrated parameter and state estimation

Response surfaces.A response surface is typically a linear or quadratic polyno-
mial that is fitted to the input/output signal of a complex simulation. Data
availability is only limited by the computational effort tosimulate it. How-
ever, a polynomial captures little to no structure about thesimulation, and
hence it may require a relatively large number of coefficients to reflect the
simulation’s relevant behavior.

Metamodels. Here, the polynomial is replaced by a mathematical model that
structurally resembles the simulation. Metamodels can be expected to re-
quire less parameters than response surfaces for the same measurement fit
because they contains more structural information. A drawback is that they
are likely to loose the convenient linear-in-parameters form of polynomial
models.

Both techniques can be used to approximately capture some interactions/processes
in the integrated simulation when estimating its parameters. We exemplify this
through a response surface and a metamodel for a vehicular traffic flow simula-
tion. Assume that the mobility demandZmob = (zod

t ) consists of the number of
vehicleszod

t that want to travel between each OD pair in each time periodt. The
traffic flow simulation takesZmob as input and outputs the congestion information
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Zcong = (zat) wherezat is the number of vehicles entering linka in time period
t.

To obtain a response surface approximation, a matrixA is introduced that maps
the OD flowsZmob on desiredlink entrance flowsD = (dat) = AZmob where
dat is the number of vehicles that plan to enter network linka during periodt.
A combines route choice information from the travel demand model with travel
time information from the traffic flow model. A linear response surfaceZcong =

BD = BAZmob is then fitted to the traffic flow simulator, where the matrixB

results from a regression as described above. An efficient approximation is to
choose a diagonalB, which relates the flow across a link only to those vehicles that
actually want to enter that link. The estimation ofB from simulated data accounts
for spillback in that some vehicle may be kept from entering their desired links
in time because of congestion. This approach has been successfully applied to
estimate disaggregate travel demand from traffic counts (Flötteröd and Bierlaire,
2009; Flötteröd et al., 2010).

The same problem can also be tackled based on the nonlinear metamodel de-
scribed by Osorio and Bierlaire (2009a). This model goes structurally beyond a
linear approximation in that it operates based on closed-form link state distribu-
tions and correctly accounts for spillback effects across network nodes. Its relative
tractability is owed to the fact that it captures stationaryconditions only, which
may be a drawback in highly dynamic conditions. The flexibility of a response-
surface approach and the structural power of a nonlinear metamodel can also be
combined, which is demonstrated in Osorio and Bierlaire (2009b).

7 Summary

We presented a framework for the data-consistent deployment of urban microsim-
ulations. In the first part of the article, we first adopted a process-oriented perspec-
tive on activity participation, transportation, and relocation and then refined this
perspective in the microsimulation context. The second part of the article consid-
ered the parameter and state estimation problem. First, thedifferent time scales
of an urban system were identified and a rolling horizon framework for its contin-
uous state estimation was developed. Second, the parameterestimation problem
for an integrated urban microsimulation problem was investigated. The opera-
tional difficulty of jointly estimating all parameters of the urban model was met
with two different approaches: the decoupling through estimated process interac-
tions and the deployment of response surfaces and metamodels to mathematically
approximate intractable, simulation-based processes.
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