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ROADEF Challenge2009

Forewords:

We worked on an optimization algorithm for the Aircraft recovery
problem with maintenance constraints in collaboration with an IT
company (funded by the swiss government - CTI program).

The problem:

Recover within a given time horizon an airline schedule in a
disrupted state minimizing the recovery costs

The recent history of the schedule is given to obtain the state of the
resources
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Data

After data preprocessing, the relevant informations are:

F : a set of scheduled flights, together with an estimation of cancellation cost cf

P: a set of aircrafts

R: a set of passengers (itineraries)

Ip , Ir : a set of initial positions for both aircrafts and passengers

Sp ,Sr : a set of required final positions for both aircrafts and passengers

T : a time horizon

L: a set of airport slots

qDep
l ,qArr

l : slot capacities for take off and landings
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Master problem

We model the recovery problem for aircrafts as:

minzMP = ∑
r∈Ω

crxr + ∑
f ∈F

cf yf (1)

∑
r∈Ω

bf
r xr +yf = 1 ∀f ∈ F (2)

∑
r∈Ω

bs
r xr = 1 ∀s ∈ Sp (3)

∑
r∈Ω

bp
r xr ≤ 1 ∀p ∈ P (4)

∑
r∈Ω

bDep,l
r xr ≤ qDep

l ∀l ∈ L (5)

∑
r∈Ω

bArr ,l
r xr ≤ qArr

l ∀l ∈ L (6)

xr ∈ {0,1} ∀r ∈Ω, yf ∈ {0,1} ∀f ∈ F (7)

Solved by an optimization based heuristic (Column Generation + Dynamic Programming) on a
constraint specific recovery network. Eggenberg, S. And Bierlaire (2008a).
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Recovery Network

Given T , Ip and Sp the R.N. encodes all possible recovery schemes for
plane p.
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Recovery Network

Given T , Ip and Sp the R.N. encodes all possible recovery schemes for
plane p.
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Recovery Network

Given T , Ip and Sp the R.N. encodes all possible recovery schemes for
plane p.
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Time band discretization pseudo-polynomial size but unfeasible
recovery schemes are encoded
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Generating recovery schemes

Given Ω′, (x∗r ,y∗f ), (λ∗f ,η
∗
s ,µ

∗
p,ν

∗
l ,ρ

∗
l ) , new profitable schemes for plane p

are computed by solving an ERCSPP on the Recovery Network,
minimizing:

c̃p
r = cp

r − ∑
f ∈F

bf
r λ

∗
f − ∑

s∈S

bs
r η

∗
s −µ∗p −∑

l∈L

(bDep,l
r ν

∗
l +bArr ,l

r ρ
∗
l ) ∀p ∈ P

Remark: In principle, the R.N. is not necessary (we can use directly the
data) but it allows to compute resource bounds and statically eliminate
most of the unfeasible schemes.
Bi-directional bounded dynamic programming with DSSR. Righini and
Salani (2008).
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Implementation issues

The algorithm is implemented with BCP framework by COIN-OR.

Speed up, to comply with ROADEF rules:

Network size is reduced by some parameters: permitted delay,
permitted plane swaps

Pricing problem is solved heuristically with relaxed domination
criteria and label elimination

Heuristic search tree exploration
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Passenger routing

An integer solution to zMP gives the aircraft assignment and the flight
re-timing or cancellation.
From that solution we build a unique connection network which comply
with connectivity constraints:

Arc capacities represent available seats

Passenger itineraries are sorted according to dele-
tion cost and for each itinerary:

Dummy source and sink connections are
the only updated

Cost of arcs connecting the sink represent
the delay cost

A min-cost flow is solved and
decomposed into paths

Each path is a new itinerary
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Conclusions

The overall recovery procedure is not enough competitive with other
methods.

We easily adapted the code for aircraft disruption recovery with
maintenance constraints to comply with ROADEF rules.

Identified issues: neglected some cost structures, pricing“too
heuristic”, sequential approach.

Outlook: solution quality can be improved by a post-processing
phase.
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Approaches toward robustness

(Airline) schedule disruptions occur because of unpredicted events (noise
in the nominal data) which are of stochastic nature.
Reactive and proactive approaches

Online optimization (Albers (2003))

Stochastic optimization (with recourse) (Kall and Wallace (1994))

Worst-case (robust) optimization (Bertsimas and Sim (2004))

Risk-management/Light robustness (Kall and Mayer (2005),
Fischetti and Monaci (2008))
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Uncertainty set

Often uncertainty sets (characterization of data fluctuation) are difficult
to estimate.
Wrong estimation of uncertainty set may lead to bad or too
conservative solutions.

We aim to design an optimization framework which:

simple, has the same complexity as the deterministic problem

provides solutions with guaranteed deviation from optimum

does not need for probabilistic uncertainty sets

accounts for reactive strategies

We search a robust recoverable solution.
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Robustness features

Given a deterministic optimization problem:

min f (x)

s.t. Ax ≤ b

x ∈ X

Identify structural properties µ(x) of a solution which are exploited by the reactive
strategy. Solve a multi-objective optimization problem:

min f (x),max µ(x)

s.t. Ax ≤ b

x ∈ X

Relax original objective in a (budget) constraint:

max µ(x)

s.t. Ax ≤ b

f (x)≤ (1+ρ)f (x∗)

x ∈ X
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Robust recoverable aircraft scheduling

Tactical planning: Re-timing of flights is permitted in the definition of r ∈Ω within a
range of 60 minutes.

maxzRF =µ(x) (8)

(14)− (15) (9)

(17)− (21) (10)

∑
r∈Ω

drxr ≤ C (11)

xr ∈ {0,1} ∀r ∈Ω (12)

yf ∈ {0,1} ∀f ∈ F (13)
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Robust recoverable aircraft scheduling

The recovery algorithm perform better in presence of slack time between flights and
effective possibilities of swapping planes.

Increase the minimal idle time of schedule r

µIT (x) = ∑
r∈Ω

δ
min
r xr

Quadratic formulation

µCROSS (x) = ∑
r∈Ω

∑
p∈Ω

brpxrxp
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Robust recoverable aircraft scheduling

The recovery algorithm perform better in presence of slack time between flights and
effective possibilities of swapping planes.

Increase the minimal idle time of schedule r

µIT (x) = ∑
r∈Ω

δ
min
r xr

We define meeting points m

∑
r∈Ω

bm
r xr −ym ≥ 0 ∀m ∈M

µCROSS (x) = ∑
m∈M

(ym−1)
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Robust results

Results on ROADEF09 set A instances (average)

Original CROSS CROSS IT IT
BUDGET [min] 0 5000 10000 5000 10000
RECOVERY COST 788775.1 633395.6 555400.3 488701.9 493521.8
# Canceled Flts 6.9 6.9 5.3 5.8 5.9
Total Delay [min] 2142.9 2083.0 2421.8 2214.9 1895.6
Avg Delay[min] 41.0 37.9 42.0 36.9 36.5
# Cancelled Psg 582.8 499.3 420.0 384.5 385.3
# Delayed Psg 553.5 511.1 454.1 501.1 448.1
Avg Psg Delay [min] 34.6 38.7 24.6 29.5 29.8

Eggenberg And S. (2008b).
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Thanks

Thanks for your attention

Any question?
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