Clip-Air: a modular air transportation system

Bilge Atasoy, Matteo Salani

Transport and mobility laboratory EPFL

AGIFORS
June 25, 2010

joint work with: Claudio Leonardi, Alexandre de Tenorio and Prem Kumar Viswanathan

Outline

(1) Introduction

(2) Clip-Air
(3) Itinerary-Based Fleet Assignment Models
(4) Results

Outline

(1) Introduction

(3) Itinerary-Based Fleet Assignment Models

4 Results

Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020¹:

- Lower CO_{2} emissions by 50%

[^0]
Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020¹:

- Lower CO_{2} emissions by 50%
- Lower NO_{x} emissions by 80%
${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020^{1} :

- Lower CO_{2} emissions by 50%
- Lower NO_{x} emissions by 80%
- Increase transportation capacity (by 3 times) at lower fares
${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020^{1} :

- Lower CO_{2} emissions by 50%
- Lower NO_{x} emissions by 80%
- Increase transportation capacity (by 3 times) at lower fares
- Decrease of noise by one half
${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020^{1} :

- Lower CO_{2} emissions by 50%
- Lower NO_{x} emissions by 80%
- Increase transportation capacity (by 3 times) at lower fares
- Decrease of noise by one half
- Max of 15-30 minutes of delay
${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020^{1} :

- Lower CO_{2} emissions by 50%
- Lower NO_{x} emissions by 80%
- Increase transportation capacity (by 3 times) at lower fares
- Decrease of noise by one half
- Max of 15-30 minutes of delay
- Five-fold reduction in the average accident rate (fatalities)
${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

Motivation

ACARE (Advisory Council for Aeronautic Research in Europe) has set ambitious objectives for 2020^{1} :

- Lower CO_{2} emissions by 50%
- Lower NO_{x} emissions by 80%
- Increase transportation capacity (by 3 times) at lower fares
- Decrease of noise by one half
- Max of 15-30 minutes of delay
- Five-fold reduction in the average accident rate (fatalities)
- To answer all these issues an innovative approach is needed!
${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

X-48B - Boeing/NASA

$(+)$ reduced fuel consumption, because of reduced drag.
Some open issues for cargo (shape), frontal surface still important. FEDERALE DE LAUSANNE

NACRE - Airbus

$(+)$ reduced fuel consumption, because of reduced drag.
Some open issues for cargo (shape), frontal surface still important.

Outline

(1) Introduction

(2) Clip-Air

3 Itinerary-Based Fleet Assignment Models

4 Results

Clip-Air

Key ideas

Mixed air-land transportation system (Passenger Container): A passenger from Lausanne can travel to London without living his/her train wagon

Modular-detachable transportation unit (capsule): flexibility, security, reduced storage and maintenance costs

Carrier unit (wing): Carries the capsules (max 3) and the engines, improved aerodynamic structure and less fuel consumption with decreased total weight

Clip-Air - Main entities in the system

Modularity

Enhanced potential in capsule routing:

ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Configuration - Comparison with Airbus A320

		Clip-Air	A320
Maximum Capacity			
\quad Engines	$3 \times 145(435$ seats)	150 seats	
Maximum	1 (plane $/$ capsule)	$\mathbf{3}$ engines	126 t
Aircraft Weight	2 (planes $/$ capsules)	153 t	77.5 t
	3 (planes $/$ capsules)	180 t	$2 \times 77.5 \mathrm{t}(155 \mathrm{t})$
			$3 \times 77.5 \mathrm{t}(232 \mathrm{t})$

When Clip-Air flies with 2 or more capsules it becomes advantageous in terms of weight, therefore fuel consumption.

Operating Costs

operatingCostsOfFlight=flightRevenues * (1-profitMargin)

where flightRevenues is average fare times the total number of sold seats.

Operating costs compose of:

- 16\% Fuel
- 14\% Crew cost
- 14\% Aircraft cost
- 11\% Maintenance
- 10\% Airport and Air Nav charges
- 35\% Others
C.J. Smith - Airline operating costs - the variations in Managing airline operating costs - SH\&E (2004)

Operating costs for Clip-Air

- Based on standard flight operating costs
- Fuel costs (16\%) and Airport and air navigation charges (10\%) are separated for wings and capsules, corrected with the weight differences
- A saving of 1.3% and 23% is obtained when Clip-Air flies with 2 and 3 capsules respectively.
- Crew cost (14%) is separated between wing (flight crew) and capsules (cabin crew):
- Wing (flight crew): 8\%
- Capsules (cabin crew): 6\%

Since for A320 it is found out that flight crew constitutes 60% of crew cost.

Objectives of the study

Comparative analysis of Clip-Air and standard fleet.

- Estimate operating costs: Detailed cost structure for Clip-Air is not yet known \rightarrow advantage standard fleet to have a fair comparison.

Objectives of the study

Comparative analysis of Clip-Air and standard fleet.

- Estimate operating costs: Detailed cost structure for Clip-Air is not yet known \rightarrow advantage standard fleet to have a fair comparison.
- Itinerary based fleet assignment model which minimizes the operating costs and spill costs.

Objectives of the study

Comparative analysis of Clip-Air and standard fleet.

- Estimate operating costs: Detailed cost structure for Clip-Air is not yet known \rightarrow advantage standard fleet to have a fair comparison.
- Itinerary based fleet assignment model which minimizes the operating costs and spill costs.
- Analyze demand satisfaction: Demand analysis is needed for the new system.

Assumptions

- Every capsule has the same capacity
- Fleet's configuration on the airport network is the same at the beginning and end of the period
- All assumptions regarding the operating costs

Outline

(1) Introduction

(3) Itinerary-Based Fleet Assignment Models

4 Results

Considered literature

Papers:

- FAM: solving large scale IPs - Hane et al - MP (1995)
- Itinerary based FAM - Barnhart, Kniker and Lohatepanont - TS (2002)
- Integrated schedule design and FAM - Barnhart and Lohatepanont TS (2004)
- Periodic FAM with TW, spacing, time dependent revenues Bélanger, Desaulniers, Soumis, Desrosiers - EJOR (2006)
- Market-oriented airline service design - Shoen - Tech.Rep. (2007)

Considered literature

Papers:

- FAM: solving large scale IPs - Hane et al - MP (1995)
- Itinerary based FAM - Barnhart, Kniker and Lohatepanont - TS (2002)
- Integrated schedule design and FAM - Barnhart and Lohatepanont TS (2004)
- Periodic FAM with TW, spacing, time dependent revenues Bélanger, Desaulniers, Soumis, Desrosiers - EJOR (2006)
- Market-oriented airline service design - Shoen - Tech.Rep. (2007)

Considered literature

Barnhart and Lohatepanont (2004)
Key concepts:

- Optimizes operational costs and loss of revenue
- Schedule design is modeled with two subsets of mandatory and optional flights (exogenous)
- Itinerary based demand (average unconstrained, exogenous)
- Schedule evaluation model (exogenous)
- Demand adjustment and recapture (deletion and spill)
- Based on time-space network to represent the schedule

Parameters

$A:$	Set of airports indexed by a
$F:$	Set of all flight legs indexed by f
$I:$	Set of all itineraries indexed by i or j
$c_{f}^{k}:$	Operational cost for a capsule for flight leg f
$c_{f}^{w}:$	Operational cost for the wing for flight leg f
$N_{w}:$	Number of available wings
$N_{k}:$	Number of available capsules
$k_{\max }:$	Capacity of capsule in number of seats available
$s^{k}:$	Number of passengers requesting itinerary i
$D_{i}:$	Number of passengers requesting flight leg f
$Q_{f}:$	

Parameters

fare $_{i}:$
$b_{i}^{j}:$
$\delta_{f}^{i}:$
$T:$
$N(a, t):$
$C T:$
$\ln (a, t, f):$
$\operatorname{Out}(a, t, f):$
$\min E_{a}:$
$\max E_{a}:$

Average fare for a passenger to fly on itinerary i
The rate of passengers that can be redistributed from itinerary i to j when i 's capacity is full 1 if itinerary i includes flight leg $f, 0$ otherwise Sorted set of all events on the time-line, indexed by t Set of nodes in the time-line network Set of flight legs flying through the count time Set of inbound flight legs to node (a, t) Set of outbound flight legs from node (a, t) First event in the time-line at airport a Last event in the time-line at airport a

Decision Variables

$x_{f}^{k}:$	number of capsules on flight $f, x_{f}^{k} \in\left\{0, \ldots, k_{\max }\right\}$ $x_{f}^{w}:$ $y_{a, t^{+}}^{k}:$
$y_{a, t^{-}}^{k}:$	number of capsules on the ground at airport a just after time t
$y_{a, t^{+}}^{w}:$	number of capsules on the ground at airport a just before time t number of wings on the ground
$y_{a, t^{-}}^{w}:$	at airport a just after time t number of wings on the ground
$t_{i}^{j}:$	at airport a just before time t number of passengers redirected from itinerary i to j

Model

Itinerary based fleet assignment model

- minimizing the operating and spill costs

$$
\begin{array}{lr}
\text { Min } \sum_{f \in F}\left(c_{f}^{w} x_{f}^{w}+c_{f}^{k} x_{f}^{k}\right)+\sum_{i \in I, j \in I} t_{i}^{j}\left(f a r e_{i}-b_{i}^{j} f a r e_{j}\right) & \\
\text { s.t. } x_{f}^{w}=1 & \forall f \in F^{M} \\
x_{f}^{k} \geq 1 & \forall f \in F^{M} \\
x_{f}^{k} \leq k_{\max } x_{f}^{w} & \forall f \in F \\
y_{a, t^{-}}^{w}+\sum_{f \in I(a, t)} x_{f}^{w}=y_{a, t^{+}}^{w}+\sum_{f \in O(a, t)} x_{f}^{w} & \forall[a, t] \in N \\
\sum_{a \in A} y_{a, t_{n}}^{w}+\sum_{f \in C T} x_{f}^{w} \leq N_{w} & \\
y_{a, \min E_{a}^{-}}^{w}=y_{a, \max E_{a}^{+}}^{w} & \forall a \in A
\end{array}
$$

Model

$$
\begin{array}{lr}
y_{a, t^{-}}^{k}+\sum_{f \in I(a, t)} x_{f}^{k}=y_{a, t^{+}}^{k}+\sum_{f \in O(a, t)} x_{f}^{k} & \forall[a, t] \in N \\
\sum_{a \in A} y_{a, t_{n}}^{k}+\sum_{f \in C T} x_{f}^{k} \leq N_{k} & \\
y_{a, \text { min } E_{a}^{-}}^{k}=y_{a, \max E_{a}^{+}}^{k} & \forall a \in A \\
s^{k} x_{f}^{k} \geq Q_{f}+\sum_{i \in I, j \in I} \delta_{f}^{j} b_{i}^{j} t_{i}^{j}-\sum_{i \in I, j \in I} \delta_{f}^{j} t_{j}^{j} & \forall f \in F \\
\sum_{j \in I} t_{i}^{j} \leq D_{i} & \forall i \in I \\
x_{f}^{w} \in\{0,1\} & \forall f \in F \\
x_{f}^{k} \in\left\{0,1, \ldots, k_{\max }\right\} & \forall f \in F \\
y_{a, t}^{w} \geq 0 & \forall[a, t] \in N \\
y_{a, t}^{k} \geq 0 & \forall[a, t] \in N \\
t_{i}^{j} \geq 0 & \forall i, j \in I
\end{array}
$$

Outline

(1) Introduction

(2) Clip-Air
(3) Itinerary-Based Fleet Assignment Models

4 Results

Towards Results

- Input: data from a major European airline company
- set of optional and mandatory flights
- set of airports
- set of itinerary demands and fares
- set of aircrafts for the standard fleet
- C++ program to format input data
- data resizing to study specific instances
- operating costs and spill rate computing
- instances generation
- Problem resolution with GLPK+CPLEX solver
- output: an optimized schedule design and fleet assignment for the given instances
- Results comparison

Instances

- Airport pairs
- Airport hubs
- Special cases
- Larger instance

Airport Pairs

	Standard		
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	85\%	84\%	87\%
Spill costs	15\%	16\%	13\%
Total costs	160,150 €	+2,678 €	+2,781 €
Fleet size (in seats)	295	295	295
Transported passengers	1,272	1,260	1,289
Flight count	9	12	12
Average pax/flight	141	105	107
Flight Hours / cap unit	1h57	2h36	2h36
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	93\%	90\%	94\%
Spill costs	7\%	10\%	6\%
Total costs	156,906 €	+2,247 €	+4,226 €
Fleet size (in seats)	328	328	328
Transported passengers	1,118	1,085	1,118
Flight count	12	14	14
Average pax/flight	93	77	79
Flight Hours / cap unit	1h56	2h15	2h15
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	89\%	88\%	84\%
Spill costs	11\%	12\%	16\%
Total costs	173,556 €	+3,566 €	+4,302 €
Fleet size (in seats)	380	380	380
Transported passengers	1,268	1,254	1,216
Flight count	14	18	16
Average pax/flight	90	69	76
Flight Hours / cap unit	1h45	2h15	2h00

Airport Pairs

Airports	2
Flights	12
Capsule capacity	59
Passengers	1,425
Std Deviation (pax)	16.9
Av. Pax/Flight	118.8

	Standard		
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	85\%	84\%	87\%
Spill costs	15\%	16\%	13\%
Total costs	160,150 €	+2,678 $€$	+2,781 $€$
Fleet size (in seats)	295	295	295
Transported passengers	1,272	1,260	1,289
Flight count	9	12	12
Average pax/flight	141	105	107
Flight Hours / cap unit	1h57	2h36	2h36
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	93\%	90\%	94\%
Spill costs	7\%	10\%	6\%
Total costs	156,906 €	+2,247 €	+4,226 €
Fleet size (in seats)	328	328	328
Transported passengers	1,118	1,085	1,118
Flight count	12	14	14
Average pax/flight	93	77	79
Flight Hours / cap unit	1h56	2h15	2h15
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	89\%	88\%	84\%
Spill costs	11\%	12\%	16\%
Total costs	173,556 €	+3,566 €	+4,302 €
Fleet size (in seats)	380	380	380
Transported passengers	1,268	1,254	1,216
Flight count	14	18	16
Average pax/flight	90	69	76
Flight Hours / cap unit	1h45	2h15	2h00

Airport Pairs

Same fleet size

Less flights, smaller costs

More passengers/flight

	Standard		
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	85\%	84\%	87\%
Spill costs	15\%	16\%	13\%
Total costs	160,150 €	+2,678 €	+2,781€
Fleet size (in seats)	295	295	295
Transported passengers	1,272	1,260	1,289
Flight count	9	12	12
Average pax/flight	141	105	107
Flight Hours / cap unit	1h57	2h36	2h36
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	93\%	90\%	94\%
Spill costs	7\%	10\%	6\%
Total costs	156,906 €	+2,247 €	+4,226 €
Fleet size (in seats)	328	328	328
Transported passengers	1,118	1,085	1,118
Flight count	12	14	14
Average pax/flight	93	77	79
Flight Hours / cap unit	1 h 56	2h15	2h15
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	89\%	88\%	84\%
Spill costs	11\%	12\%	16\%
Total costs	173,556 €	+3,566 €	+4,302 €
Fleet size (in seats)	380	380	380
Transported passengers	1,268	1,254	1,216
Flight count	14	18	16
Average pax/flight	90	69	76
Flight Hours / cap unit	1h45	2h15	2h00

(P)fl

ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Airport Hubs

Airport Hubs

Airports	4
Flights	45
Capsule capacity	39
Passengers	3,511
Std Deviation (pax)	37
Av. Pax/Flight	78.0

	Standard		
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	82\%	73\%	75\%
Spill costs	18\%	27\%	25\%
Total costs	406,188 €	+7,016 €	+7,882 €
Fleet size (in seats)	858	858	858
Transported passengers	2,876	2,593	2,642
Flight count	32	32	32
Average pax/flight	89	81	82
Flight Hours / cap unit	1h44	1 h 44	1h44
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	83\%	81\%	77\%
Spill costs	17\%	19\%	23\%
Total costs	280,487 €	+10,562 €	+11,646 €
Fleet size (in seats)	540	540	540
Transported passengers	1,836	1,811	1,746
Flight count	22	26	26
Average pax/flight	83	69	67
Flight Hours / cap unit	1h48	2h07	2h07
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	85\%	83\%	83\%
Spill costs	15\%	17\%	17\%
Total costs	359,696 €	+5,021 €	+4,789 €
Fleet size (in seats)	713	713	713
Transported passengers	2,077	2,062	2,068
Flight count	33	36	36
Average pax/flight	62	57	57
Flight Hours / cap unit	1h57	2h06	2h06

(
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Airport Hubs

Same fleet size

Less flights, smaller costs

More passengers carried

(PPfl
ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Airport Hubs - Separated costs for wing and capsules

Higher improvement in cost

Less flights

More transported passengers

	Standard		
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	82\%	73\%	75\%
Spill costs	18\%	27\%	25\%
Total costs	390,956 €	+22,248 $€$	+23,114 €
Fleet size (in seats)	858	858	858
Transported passengers	2,807	2,593	2,642
Flight count	32	32	32
Average pax/flight	88	81	82
Flight Hours / cap unit	1h44	1 h 44	1 h 44
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	83\%	81\%	77\%
Spill costs	17\%	19\%	23\%
Total costs	269,132 €	+21,917 €	+23,001 $€$
Fleet size (in seats)	540	540	540
Transported passengers	1,836	1,811	1,746
Flight count	22	26	26
Average pax/flight	83	69	67
Flight Hours / cap unit	1h48	2h07	2h07
		Standard	
	Clip-Air	6 aircrafts	3 aircrafts
Operating costs	85\%	83\%	83\%
Spill costs	15\%	17\%	17\%
Total costs	349,460 €	+15,257 $€$	+15,025 $€$
Fleet size (in seats)	713	713	713
Transported passengers	2,110	2,062	2,068
Flight count	35	36	36
Average pax/flight	60	57	57
Flight Hours / cap unit	2h04	2h06	2h06

Special Case

		Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts	
	Operating costs	69%	68%	
Spill costs	31%	32%	67%	
Total costs	$\mathbf{3 , 4 2 0 , 4 0 3} €$	$\mathbf{- 1 3 0 , 5 4 0} €$	$\mathbf{- 1 1 1 , 0 9 7} €$	
Fleet size (in seats)	1,512	1,512	1,512	
Transported passengers	1,501	1,508	1,501	
Flight count	8	8	8	
Average pax/flight	187	188	187	
Flight Hours / cap unit		$4 h 32$	$4 h 32$	

Special Case

		Standard					
					Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
	Operating costs	69%	68%				
Total costs	31%	32%	67%				
	Spill costs		$\mathbf{3 , 4 2 0 , 4 0 3 €}$				
Fleet size (in seats)	1,512	$\mathbf{- 1 3 0 , 5 4 0} €$	$\mathbf{- 1 1 1 , 0 9 7} €$				
Transported passengers	1,501	1,512	1,512				
Flight count	8	1,508	1,501				
Average pax/flight	187	8	8				
Flight Hours / cap unit	4 h 32	188	187				

Special Case

Airports	5
Flights	8
Capsule capacity	126
Passengers	2,025
Std Deviation (pax)	88.49
Av. Pax/Flight	253.1

	Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
Total costs	69%	68%	67%
Spill costs	31%	32%	33%
Fleet size (in seats)	$3,420,403 €$	$\mathbf{- 1 3 0 , 5 4 0} €$	$\mathbf{- 1 1 1 , 0 9 7} €$
Transported passengers	1,512	1,512	1,512
Flight count	1,501	1,508	1,501
Average pax/flight	8	8	8
Flight Hours / cap unit	187	188	187

Special Case

Unable to use capsule's modularity

		Standard					
					Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
	Operating costs	69%	68%				
Spill costs	31%	32%	67%				
		$3,420,403 €$	$\mathbf{- 1 3 0 , 5 4 0} €$				
Total costs	1,512	$\mathbf{- 1 1 1 , 0 9 7} €$					
Fleet size (in seats)	1,501	1,512	1,512				
Transported passengers	8	8	1,501				
Flight count	187	8	8				
Average pax/flight	$4 h 32$	$4 h 32$	187				
Flight Hours / cap unit			4 h 32				

Special Case

Unable to use capsule's modularity

	Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
Total costs	69%	68%	67%
Spill costs	31%	32%	33%
Fleet size (in seats)	$3,420,403 €$	$\mathbf{- 1 3 0 , 5 4 0} €$	$\mathbf{- 1 1 1 , 0 9 7} €$
Transported passengers	1,512	1,512	1,512
Flight count	1,501	1,508	1,501
Average pax/flight	8	8	8
Flight Hours / cap unit	187	188	187

Cost separation between wing and capsules

Better but still higher costs

		Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts	
	Operating costs	66%	68%	67%
	Spill costs	34%	32%	33%
Total costs		$\mathbf{3 , 3 3 1 , 8 4 3} €$	$-\mathbf{4 1 , 9 8 0} €$	$\mathbf{- 2 2 , 5 3 7} €$
Fleet size (in seats)	1,512	1,512	1,512	
Transported passengers		1,414	1,508	1,501
Flight count	6	8	8	
Average pax/flight		236	188	187
Flight Hours / cap unit	3 h 43	4 h 32	4 h 32	

FEDERALE DE LAUSANNE

Special Case

Unable to use capsule's modularity

	Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
Total costs	69%	68%	67%
Spill costs	31%	32%	33%
Fleet size (in seats)	$3,420,403 €$	$\mathbf{- 1 3 0 , 5 4 0} €$	$\mathbf{- 1 1 1 , 0 9 7} €$
Transported passengers	1,512	1,512	1,512
Flight count	1,501	1,508	1,501
Average pax/flight	8	8	8
Flight Hours / cap unit	187	188	187

Cost separation between wing and capsules

Less flights

		Standard		
		Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
	Operating costs	66%	68%	67%
	Spill costs	34%	32%	33%
Total costs		$\mathbf{3 , 3 3 1 , 8 4 3 €}$	$-\mathbf{4 1 , 9 8 0} €$	$\mathbf{- 2 2 , 5 3 7} €$
Fleet size (in seats)	1,512	1,512	1,512	
Transported passengers		1,414	1,508	1,501
Flight count	6	8	8	
Average pax/flight		236	188	187
Flight Hours / cap unit	3 h 43	4 h 32	4 h 32	

FEDERALE DE LAUSANNE

Special Case

Unable to use capsule's modularity

	Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts
Total costs	69%	68%	67%
Spill costs	31%	32%	33%
Fleet size (in seats)	$3,420,403 €$	$\mathbf{- 1 3 0 , 5 4 0} €$	$\mathbf{- 1 1 1 , 0 9 7} €$
Transported passengers	1,512	1,512	1,512
Flight count	1,501	1,508	1,501
Average pax/flight	8	8	8
Flight Hours / cap unit	187	188	187

Cost separation between wing and capsules

More passengers per flight

		Standard		
	Clip-Air	$\mathbf{6}$ aircrafts	$\mathbf{3}$ aircrafts	
	Operating costs	66%	68%	67%
	Spill costs	34%	32%	33%
Total costs		$\mathbf{3 , 3 3 1 , 8 4 3} €$	$-\mathbf{4 1 , 9 8 0} €$	$\mathbf{- 2 2 , 5 3 7} €$
Fleet size (in seats)	1,512	1,512	1,512	
Transported passengers		1,414	1,508	1,501
Flight count	6	8	8	
Average pax/flight	236	188	187	
Flight Hours / cap unit	3 h 43	4 h 32	4 h 32	

FEDERALE DE LAUSANNE

Illustration: if we confine standard fleet

1 type of aircraft for standard fleet (126 seats)

		Standard 1 aircraft
	Operating costs	69%
Spill costs	31%	58%
Total costs		$3,420,403 €$
Fleet size (in seats)	1,512	$+84,989 €$
Flight count	1,501	1,512
Transported passengers	8	1008
Flight Hours pax/flight cap unit	187	8

Cost separation between wing and capsules

Improvement is more

	Clip-Air	Standard 1 aircraft
Operating costs	66\%	58\%
Spill costs	34\%	42\%
Total costs	3,331,843€	+173,549 €
Fleet size (in seats)	1,512	1,512
Transported passengers	1,414	1,008
Flight count	6	8
Average pax/flight	236	126
Flight Hours / cap unit	3h43	6h49

ÉCOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Larger Instance

Larger Instance

Conclusion \& Future Work

- The results give idea about the potential in decreasing the operating costs with Clip-Air.
- The aim of increasing the capacity seems to work with more number of transported passengers with less number of flights.
- CO_{2} emissions will be studied to be able to assess the potential reduction.
- Improve operating cost function
- Cost separation between wing and capsule
- Scenario analysis for the operating cost
- Improve spill rate function (Discrete Choice Analysis)
- Extension of the model
- Multi-modal transportation (passenger container)
- Mixed passenger and cargo

Thanks

Any question?

Spill factor Approximation

Computing the spill factor from itinerary it1 to it2, 2 factors :

- Fare difference
fareRatio $=\frac{\text { fare }_{i t 2}}{\text { fare }_{i t 1}}$
- Time gap
timeGapRatio $=10 \% \times \frac{\mid \text { dep }_{i t 1}-\text { dep }_{i t 2}\left|+\left|a r r_{i t 1}-\operatorname{arr}_{i t 2}\right|\right.}{2}$
spillRatio $=$ fareRatio \times timeGapRatio

[^0]: ${ }^{1}$ European Aeronautics: A vision for 2020 - EU 2001

