Comparative analysis of hedonic rents and maximum bids in a land-use simulation context

Ricardo Hurtubia Francisco Martínez Gunnar Flötteröd Michel Bierlaire

> October 1-3, 2010 Monte Verità, Ascona

Outline

- 1. Motivation
- 2. Bid-auction approach
- 3. Bid-choice equivalence
- 4. Hedonic rent models
- 5. Simulation experiment
- 6. Simulation results
- 7. Conclusions / Discussion

Motivation

- Evolution of land use (location choice) models:
 - Aggregated → Disaggregated
 - Equilibrium → Dynamic microsimulation
 - Bid-auction / Choice
- Bid approach: consistent with economic theory. Usually implemented in equilibrium models
- Choice approach: easier to implement. Hedonic rents
- Hedonic rent models take some simplifying assumptions

Bid-auction approach

- Assumption: auction market (Alonso, 1964; Ellickson, 1981)
- Willingness to pay of household h for a residential unit i can expressed in the form of a bid: B_{hi}
- Probability of household *h* being the best bidder for location *i*:

$$P_{h/i} = \frac{\exp(\mu B_{hi})}{\sum_{g} \exp(\mu B_{gi})}$$

• Rent: expected maximum bid:

$$r_i = \frac{1}{\mu} \ln \left(\sum_g \exp(\mu B_{gi}) \right)$$

Bid-choice equivalence

- Choice approach assumes that households are price takers
- The utility (consumer surplus) can be written as:

$$V_{hi} = B_{hi} - r_i$$

$$\longrightarrow P_{i/h} = \frac{\exp(\mu(B_{hi} - r_i))}{\sum_{j} \exp(\mu(B_{hj} - r_j))}$$

• If prices are the outcome of an **auction**, the location distribution is the same for the bid and choice approaches (Martínez 1992, 2000)

Hedonic rents

• Assumption: rents can be described as a function of the location attributes (z_i) ... if a market equilibrium has been reached (Rosen, 1974)

• In general
$$r_i = \sum_k \alpha_k z_{ik} \longrightarrow \alpha_k = \frac{\partial r_i}{\partial z_{ik}}$$

• From the bid approach:

$$\frac{\partial r_i}{\partial z_{ik}} = \sum_h \left(\frac{\partial \left(\ln \left(\sum_g \exp(B_{gi}) \right) \right)}{\partial B_{hi}} \cdot \frac{\partial B_{hi}}{\partial z_{ik}} \right) \longrightarrow \frac{\partial r_i}{\partial z_{ik}} = \sum_h \left(P_{h/i} \cdot \beta_{hk} \right)$$

Objective Compare rents obtained from:

- Maximum bid (logsum)
- Different specifications of hedonic rent models

- Synthetic city with:
 - 10 zones (*i*)
 - 3 types of residential units (v)
 - 3 types of household (h)

$$B_{hvi} = \beta_{hz}z_i + \beta_{hy}y_v + \beta_{hH_1}H_{1i} + \beta_{hH_3}H_{3i} + b_h$$

parameter	h = 1	h=2	h=3
β_{hz}	1.5	1.0	0
β_{hy}	1.5	1.0	0
β_{hH_1}	1.5	1.0	0
β_{hH_3}	-1.5	-1.0	0

- Synthetic city with:
 - 10 zones (*i*)
 - 3 types of residential units (v)
 - 3 types of household (h)

$$B_{hvi} = \beta_{hz}z_i + \beta_{hy}y_v + \beta_{hH_1}H_{1i} + \beta_{hH_3}H_{3i} + b_h$$

parameter	h = 1	h=2	h = 3
β_{hz}	1.5	1.0	0
β_{hy}	1.5	1.0	0
β_{hH_1}	1.5	1.0	0
β_{hH_3}	-1.5	-1.0	0

- b_h represents adjustments in the bid accounting for:
 - Rich households realizing that they don't have to bid their full willingness to pay
 - Poor households realizing that, in order to locate somewhere, they have to increase their bid
- Equivalent to ensure that all households are located somewhere

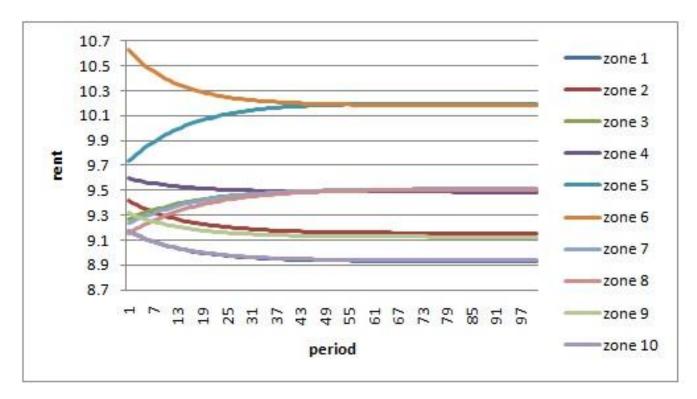
$$H_h = \sum_{vi} S_{vi} P_{h/vi} \longrightarrow b_h = -\ln \left(\sum_{vi} S_{vi} \exp \left(B_{hvi} - r_{vi} \right) \right) \quad \forall h$$

Simulation of location choices following bid approach

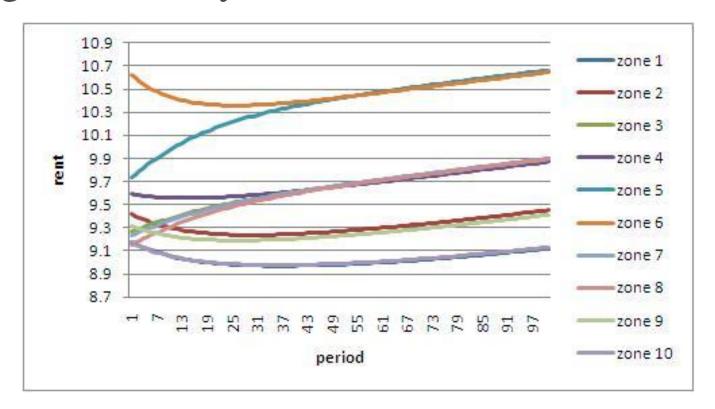
$$P_{h/vi} = \frac{H_h \exp(B_{hvi})}{\sum_g H_g \exp(B_{gvi})} \qquad r_{vi} = \ln\left(\sum_g H_g \exp(B_{gvi})\right)$$

- In each period:
 - 1. A fraction of the households relocate
 - 2. All households adjust their bids
 - 3. Rents are recalculated
- 2 scenarios:
 - a) Constant income distribution
 - b) Increment of high income / decrease of low income

Logsum rents by zone



Logsum rents by zone



- Hedonic rent models to compare:
- "naive":

$$r_{vi} = c + \alpha_z z_i + \alpha_y y_v + \alpha_{H_1} H_{1i} + \alpha_{H_3} H_{3i}$$

Pseudo-logsum:

$$r_{vi} = c + \sum_{h} P_{h/vi} \left(\alpha_{hz} z_i + \alpha_{hy} y_v + \alpha_{hH_1} H_{1i} + \alpha_{hH_3} H_{3i} \right)$$

Pseudo-logsum2:

$$r_{vi} = c + \sum_{h} \frac{H_{hi}}{H_i} \left(\alpha_{hz} z_i + \alpha_{hy} y_v + \alpha_{hH_1} H_{1i} + \alpha_{hH_3} H_{3i} \right)$$

Estimation over data generated for period 1

· "naive"

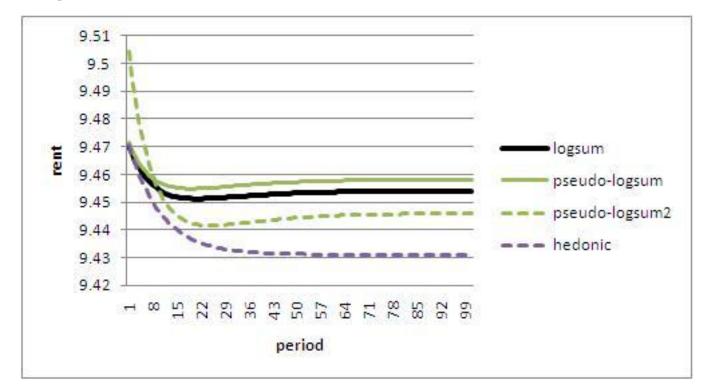
parameter	estimate	std-error		
c	8.555	0.011		
α_z	0.825	0.005		
α_y	0.927	0.004		
α_{H_1}	1.007	0.013		
α_{H_3}	-0.822	0.018		
R^2 =0.991				

pseudo-

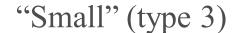
logsum

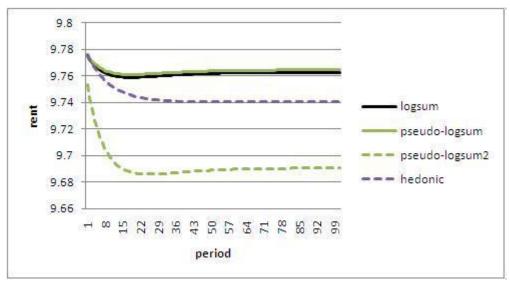
parameter	estimate for $h = 1$	estimate for $h = 2$	estimate for $h = 2$	
c	8.776 (3.21E-05)			
α_{hz}	1.232 (2.09E-04)	0.634 (1.09E-04)	0.302 (1.56E-04)	
α_{hy}	1.241 (1.79E-04)	0.629 (1.30E-04)	0.306 (2.03E-04)	
α_{hH_1}	1.238 (5.03E-04)	0.630 (3.16E-04)	0.305 (3.25E-04)	
α_{hH_3}	-1.244 (1.26E-03)	-0.626 (6.48E-04)	-0.308 (1.90E-04)	
R^2 =0.995				

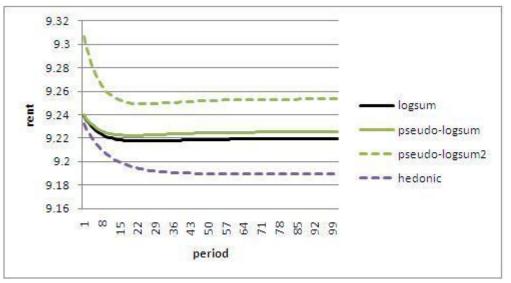
Average rents



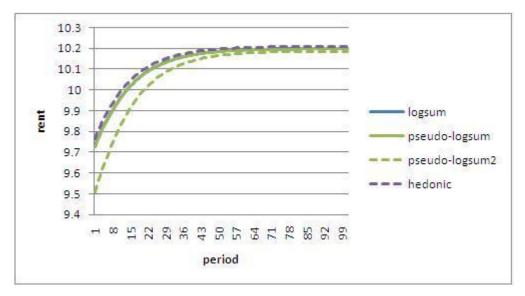
- Rents by housing unit type
 - "Big" (type 1)



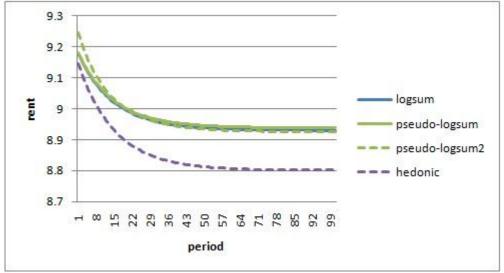




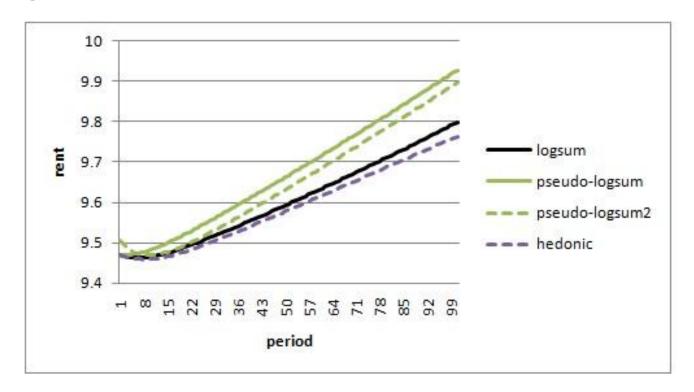
- Rents by zone
- High income (zone 5)



Low income (zone 1)

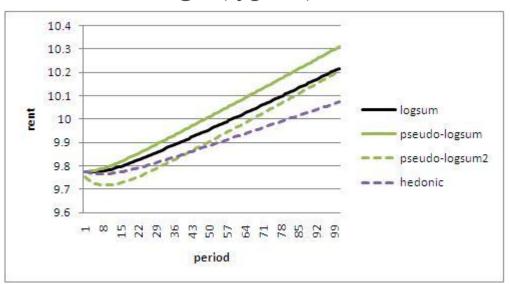


Average rents

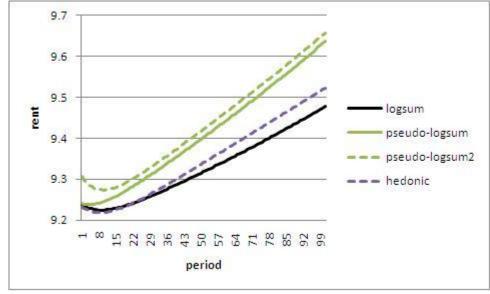


Rents by housing unit type

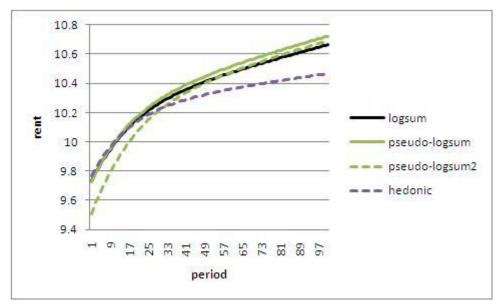
- "Big" (type 1)



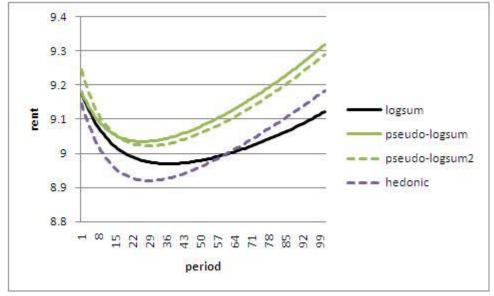
"Small" (type 3)



- Rents by zone
- High income (zone 5)



Low income (zone 1)



Conclusions / Discussion

- Maximum bid and hedonic approaches generate different results
- Maximum bid approach naturally captures heterogeneity in households preferences
- It is hard to reproduce maximum bids using hedonic rent models
- Hedonic models are insensitive to changes in general market conditions (like income distribution)

Conclusions / Discussion

- Adjustment of the willingness to pay (b_h) is not explicitly modeled in most models, however, any assumption of location of all households requires some adjustment in the prices.
- Is it possible to directly replace a hedonic rent model by the expected maximum bid (logsum)?
- Further work:
 - Analysis with real data
 - Combination of logsum with hedonic approach

