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ABSTRACT

In this paper we deal with the multi-object tracking problem
in the particular case of pedestrians, assuming the detection
step already done. We use a Bayesian framework to com-
bine the likelihood term provided by an image correlation
algorithm with a prior distribution given by a discrete choice
model for pedestrian behavior, calibrated on real data. We
aim to show how the combination of the image information
with a model of pedestrian behavior can provide appreciable
results in real and complex scenarios.

1. INTRODUCTION

In the last years the problem of the automatic multi-object
detection and tracking in video sequences has become an
important task for a wide range of applications. Computer
vision, military and automatic surveillance systems, among
the others, need reliable object tracking algorithms. In the
literature we can find two main approaches. The first one is
based on the target detection, where ana-priori knowledge
of the object is necessary, for example in terms of shape,
color, or texture cues. For each frame a predefined class
of objects has to be detected and the tracking is performed
by linking the candidates between consecutive frames [1].
In the second approach, the objects are encoded in a state-
space representation [2], [3], where the state vectors (a feature-
based representation of the targets) evolve over time driven
by a dynamic model and noisy observations. Different hy-
pothesis on the noise term, gaussian/non-gaussian, and on
the dynamic model equations, linear/non-linear, give rise to
different and well known tracking algorithms, e.g. Kalman
filter, particle filtering. In this direction many efforts have
been done to improve the definition of the state-space vari-
ables and theirs dynamics, increasing the complexity of the
image processing algorithms. Unfortunately, the propaga-
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tion model is often defined on the image plan. As a conse-
quence, the reproduced object dynamic is not always mean-
ingful and reliable, being a 2D projection of the 3D real
world. The main contribution of this paper is the combina-
tion of a proposed behavioral model for pedestrian dynamic,
calibrated on real data, with a standard image processing
technique, as image correlation, to approach the pedestrian
tracking problem in real and complex scenarios. We assume
to use a calibrated camera to have a unique correspondence
between the image plan and the Top-View plan, i.e. the
plane obtained with the camera ideally placed at the top of
the scene to avoid occlusions between objects [4]. The pa-
per is structured as follows: in section 2 we formulate the
problem from a Bayesian point of view, in section 3 and 4
we describe the likelihood and the prior terms used and in
section 5 we combine them. We conclude presenting our
results and final remarks in section 6.

2. THE BAYESIAN FRAMEWORK

The Bayesian theorem represents a natural theoretical frame-
work to combine different sources of information, described
by different probability distributions. In its more general
formulation, the Bayes’s low is described by the well known
equation:

P (M |D) ∝ P (D|M) · P (M) (1)

where the left side represents the posterior distribution as
the result of the combination of the information coming
from the dataD, observations, and from a modelM de-
scribing the underlying process. In our approach we iden-
tify the P (D|M) term with an image correlation matrix,
opportunely normalized, and theP (M) term with the prob-
abilities given by our discrete choice model for pedestrian
behavior.
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Fig. 1. Using thea-priori knowledge on the averaged pedes-
trian heigth it is easy to have adaptive search regions on the
image plan

3. NORMALIZED CORRELATION MATRIX

We compute the image correlation working on a foreground
mask ( obtained by background subtraction ) for each frame.
A detailed description of the pre-processing tasks we use
can be found in [5]. Let betri

t the i-th target position at
framet and let beri

t and r̂i
t+1, respectively, the searching

region centered aroundtri
t at timet andt + 1. We compute

the correlation matrix betweenri
t andr̂i

t+1 by Fast Fourier
transforms. The use of this method is justified, apart from
its simplicity, by the assumption that a pedestrian can cover
a maximum displacement over the time interval[t, t + 1].
As a consequence, it is reasonable to assume that the true
pedestrian position at framet + 1 stays inside thêri

t+1 re-
gion. In order to look at the correlation matrix as a matrix
of probabilities and in order to use it in a Bayesian context,
we normalize it as follows:

NCi
t,t+1(h, k) =

Ci
t,t+1(h, k)∑

l

∑
m Ci

t,t+1(l,m)
(2)

whereCi
t,t+1(h, k) represents(h, k)-element of the original

correlation matrix betweenri
t and r̂i

t+1 for the i-th pedes-
trian. Using the same notation, NC represents the normal-
ized correlation matrix and the denominator is the sum of
all the elements of the original correlation. This normaliza-
tion implies the assumption that the probability of finding
pedestriani in a certain position, inside thêri

t+1 region, is
proportional to the corresponding correlation value.

3.1. Estimation of the region size

Normally the size of the searching region represents a criti-
cal point. To fix it is surely a coarse approximation while the
attempt to take into account the deformations due to the ge-
ometric perspective results in quite complicated appearance
models, with a consequent increase in the computational
cost. In our case, we use thea-priori information about the
target object to approach this tedious problem. We assume
an averaged height of pedestrians equal to 160 cm, ignoring
the error introduced by this approximation. As shown in

figure 1, we estimate the size of the target by projecting its
Top-View position on the image plan [5]. The searching re-
gion is then proportional to the target size and automatically
resized.

4. A DISCRETE CHOICE MODEL FOR
PEDESTRIAN DYNAMIC

The P (M) term of equation 1 is provided by the discrete
choice model probabilities [6],[7]. Without go into the model
specification details (see [8] and [9]), we describe here the
basic concepts:

• a pedestrian is adecision makerwho has to choose
his next position among a finite set of alternatives, the
so calledchoice set. These alternatives represent all
the possible spatial positions where the current pedes-
trian can put the next step. The size and orientation of
the choice set depend on the current pedestrian speed
module and direction (see figure 2);
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Fig. 2. The choice set is composed by 33 spatial alter-
natives.It is the result of 11 radial directions and 3 speed
regimes ( accelerated, constant speed and decelerated ).

• for each alternative positionj the decision makeri
perceives an utility valueUij which is a random vari-
able. It is composed by a deterministic termVij func-
tion of a set of attributes describing the alternatives
and a set of socio-economic attributes describing the
decision maker and a random termε that captures the
correlation between alternatives;

• the output of a discrete choice model consists in a set
of probabilities,Pj , representing the probability of
the alternativej to be chosen by pedestriani in a ran-
dom utility maximizationdecision process. Outside
the choice set, the model probability is assumed to be
zero.

The attributes used to define theVij term describe each al-
ternative in terms of the costs the decision maker should
meet to move the next step on that alternative. They derive
from the empirical knowledge we have about the pedestrian
behavior and can be summerized in the following points:



Fig. 3. The double nature of the correlation. The speed
regimes and the radial directions make the alternatives to
be correlated. This correlation has captured with specific
hypothesis on the disturbance terms of the utility function.

tendency to keep the current speed value; tendency to keep
the current direction; tendency to move, if it is possible, di-
rectly towards the fixed destination; tendency to avoid col-
lisions with other pedestrians; tendency to avoid crowded
positions. We remind the reader to [8] for a detailed expla-
nation about the operational definitions of these attributes.
They are combined as follows:

Vij = Lj + Sj (3)

where the linear termLj is defined as:

Lj =
K∑

k=1

βk · Xjk (4)

and the non-linear speed termSj as:

Sj = βacc · vλacc

dm + βdec · vλdec

dm (5)

The elementsXjk are theK attributes used to describe the
alternativej, measured from the real data set. We can think
about the attributes in term of costs with their weights (β’s).
The cost related to alternatives with a high occupation value
(presence of other pedestrians,βoccupation); the cost due to
a change in direction (βdirection); the cost due to an angular
displacement from an established destination (βdestination);
the cost due to collisions with other pedestrians (not esti-
mated). Theβacc and βdec coefficients are dummy vari-
ables for the accelerated and decelerated alternatives ( see
figure 3) andλacc andλdec representelasticityparameters,
expressing how responsive is the speed term to changes in
the decision maker current speed value (vdm). Theβ’s and
λ’s coefficients are unknown and have to be estimated. We
use the Biogeme package1, based on a maximum likeli-
hood estimation procedure. The data for the training process
are collected manually, using 36 pedestrians from a test se-
quence and storing their trajectories. The nature of the cor-
relation between alternatives is double ( see figure 3). On
one side we have the direction that plays an important role,

1Michel Bierlaire. An introduction to BIOGEME Version 0.6, February
2003. http://roso.epfl.ch/mbi/

infact seems reasonable to consider as correlated those al-
ternatives oriented along the same radial direction. On the
other side there are the speed regimes in such a way the
accelerated, decelerated and constant speed alternatives are,
respectively, correlated. To capture this correlation structure
we use a mixed nested logit formulation, where we model
the correlation due to speed with the usual Gumbel distur-
bance term and the correlation due to direction with an error
structure formulation [10]. The mixed formulation allows to
keep a closed-form solution for the choice probabilitiesPj .

5. THE POSTERIOR DISTRIBUTION

We have defined the two sources of information. The first is
related to the image correlation matrix, so it is defined on the
image itself. The second is represented by the model prob-
abilities, so it is referred to the probability of each position
to become the next position of the current pedestrian. This
source of information is therefore defined on the top-view
plan. To use the Bayes theorem, we need to project each el-
ement of the normalized correlation matrixNCi

t,t+1, whose
indexes define a position in thêri

t,t+1 image region, on the
top-view plan and multiply it for the corresponding proba-
bility value that has given, for the same projected position,
by the discrete choice model. As a result we obtain a new
probability matrix, the posterior, whose maximum point in-
dexes define a position in̂ri

t,t+1 having the maximum prob-
ability to be the next position choosen by the current pedes-
trian.

6. RESULTS AND CONCLUSIONS

Variable Coeff Asympt t-test
name estimate std err

βoccupation -0.1505 -2.6438
βdirection -0.0524 -5.4350

βdestination -0.0405 -8.0298
βacc -30.9221 -4.3163
βdec -0.6556 -5.5481
λacc +1.7525 +10.2921
λdec -0.7958 -8.5094

Summary statistics
Init log-likelihood = -4930.08
Final log-likelihood = -3384.94

Table 1. Estimation of the utility parameters

We have shown an integration of a discrete choice pedes-
trian behavioral model and image correlation techniques un-
der a Bayesian framework. The integration of the model al-
lows us to avoid some classical problems in multi-tracking



(a) frame 12 (b) frame 13 (c) frame 14

(d) frame 12 (e) frame 13 (f) frame 14

Fig. 4. Pure correlation tracking (a,b,c). At frame 14 the
track on the left pedestrian jumps on the right one. Integra-
tion of the model (d,e,f). We have no tracker’s jump.

(a) (b)

Fig. 5. Two examples of pedestrian tracking from real com-
plex scenarios

algorithms, as the jump of the trackers from one target to
a close other one. Adaptive systems, where a behavioral
model is computed for each object in the scene, are an useful
tool when we have ana-priori knowledge about the objects
that have to be tracked. We report in table 1 the model esti-
mation results. We can see how the estimated coefficient
are statistically significant and the initial and final likeli-
hood values show that the model matches quite good the
available data. In figure 4 we show some frames from a
test sequence. Finally, in figure 5, we report two exam-
ples of tracked pedestrians2. Although the complexity of
the scene is high and the camera field is quite large ( im-
plying a consistent perspective deformation of targets ), our
algorithm arrives to track several pedestrians. Multiple de-
tection is the drawback in our system. The incorporation of
shape cues and the study of trajectory similarity measures
to merge trackers that belong to the same target are works
in progress in our group.

2The interested reader can find the elaborated video
sequences at http://ltswww.epfl.ch/ltsftp/Venegas and
http://ltswww.epfl.ch/ltsftp/antonini
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