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Abstract

Air transport is a fast developing area. Airlines competeaftimited resource, namely airport
capacity. The consequence is an increase in airport caagesthich generates huge delays
that are enhanced due to delay propagation through the wietleork. Currently, in the US,
the Federal Aviation Association (FAA) only controls op@yaal capacity allocation when
disruptions occur with Ground Delay Programs (GDPs), arlthas are free to schedule their
operations. In this paper, we propose a theoretical framewaitowing to evaluate different
regulations or incentives.
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1 Introduction

In the US, the market is mainly competition-driven, and th®& gbvernment works hard to
ensure fairness of the competition. This holds for therarbusiness as well as for many other.
The airline business has, as the energy supply or the healé) a capital socio-economic
impact: both industry and people’s daily life depend on ensportation, whether it is for
business travel, tourism or simply keeping proximity wighatives. It is thus important that
the provided service quality meets high standards. In echowever, air transportation is
increasingly faced with the problem of congestion: aimihgeavice quality increase tends to
increase frequency to meet each passenger’s time requitemias, airlines share a limited
resource, whose bottleneck is the capacities at the a#patiich have a limited extension
potential at medium term.

For this reason, many airports are congested, which implige delay propagation through-
out the whole air traffic network. The Joint Economic Comegt{JEC) reports that the total
amount of observed arrival delays for 2007 reaches a redot@anillion hours {four Flight
Has Been Delayed Again, 2008). These delays obviously have huge impacts: firstlofred
airlines’ operational cost increase is estimated by JECl®$llion. The value of the pas-
sengers’ lost time, and thus unproductiveness due to thelagsdis estimated to $12 billion,
and finally, the spill out to other industries is estimate&1® billion. In addition to the eco-
nomical aspect, JEC also reports the environmental imdabtiese delays: the total amount
of additional fuel consumed because of delays is estimatéd@million gallons of jet fuel,
generating 7.1 million metric tons of carbon dioxide: thepresents almost 1%2of the total
US emission in 2007: the Energy Information Administratiestimates the total US emissions
of carbon dioxide to be 6021.8 million metric tons.

As alarming as these numbers are, the forecasts are thaésttrg and thus delays, get from
bad to worse: the Federal Aviation Association (FAA) preslia yearly increase of 2.5% for
the number of flights until 2025A6nual Report 2008, 2008). As pointed out by Schaefer
et al., 2005, each 1% increase of the number of flights incGe% ancrease in delays.

The National Airspace System, because of its tight netwatkine with interconnections be-
tween passengers, aircraft and crews, is subject to hugkslef/propagations in the system.
Due to this, delays at one congested airport can affect theearetwork. For example, the
New York Aviation Rulemaking Committee (NYARC) reports thlaree-quarters of nationwide
flight delays in the US originated from the New York area in sugn 2007 (NYARC, 2007).

This illustrates the impact of delay propagation from a k&ragrport to the nationwide network.

It is thus imperative that operations at congested air@rgontrolled in order to protect the
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entire system. The multi-billion dollar question the reggaly authorities are thus faced with
is what to do to improve the current situation and turn pessiondelay forecasts into more
optimistic ones. The underlying question is whether coimtipatwill force airlines to adapt
their scheduling strategy by themselves due to the higlyaelsts or if competition-regulatory
measures are required.

In this paper, we study the impact of a voluntary frequenduotion of an airline in a com-

petitive environment using the Passenger Origin-Destin&imulator (PODS). The detail of
PODS as a revenue management simulator tool is describedsan@, 2003. We show that
airlines cannot benefit from frequency reduction in a coitipetenvironment. However, al-

though we provide some ideas on possible regulations, weotistudy the question of their
effects in application.

This study is the first step of an extensive exploratory woeeging as different aspects of
the airline business as revenue management, operatiodutigeand on-the-day operation
management. Although we do not provide a solution to the estign problem, we show that
the current system of air traffic requires to be revised ferghality of service to be improved.

The contributions are mainly that we provide, to our knowledhe first comprehensive study
on the relationships between schedule, market share aaduewn the context of reducing air-
line operations, and hence congestion, at a given airparthérmore, we introduce a frame-
work allowing a comprehensive study of the real problemraed are faced with, namely con-
gestion in a competitive environment. We are thus able totifyethe tools lacking to address

a real-size problem, and list possible FAA regulations tddsted. Finally, we show the ap-
plication of the framework on a single-market scenario inolhtwo airlines compete, and

show that, from the airlines’ point of view, a voluntary frency reduction at an airport is not
profitable.

The paper is structured as follows: in sectidn 2, we brieflyeng the literature on air-traffic
control and the existing measures that are currently uséldeirdS. Sectiofill3 describes the
theoretical framework used for our simulations. In secHhwe present a case study on a
single-market for which two airlines compete. In seclibrw®, give a detailed description of
the extensions to be considered to be able to study a re#-wase, and we conclude with
sectiorb.

2 Literature Review

Due to its complexity and different publication deadlinas,airline schedule is usually elab-
orated in a succession of iterative sub-problems whichsstaound one year before the day
of operations. We focus here on the revenue managementpénatmnal scheduling and the



daily operational part of the process; for more details k&g et al., 2007 and Weide, 2009.

The first problem an airline is faced with is to decide whichtes to fly and at which frequency.

The choice is mainly based on market demand estimationsaaadasts, but also depends on
competitor airlines. The revenue management starts witdrianing markets and frequencies,
and then manages the ticket prices on each market to maxih@zevenue. The route choice
is made with the objective of maximizing revenue; operatlaosts are, if at all, considered

using rough cost estimations only, and recovery costs areamsidered at all.

Once the legs are determined, the operational part of thexdsitd is constructed (fleet assign-
ment, tail assignment, crew pairing and crew rosteringe dbjective of operational schedul-
ing is to ensure that all flights are flown such that the totat od operations is minimized.

Alas, on the day of operations, unexpected events such agdsttier, crew illness or technical
failures disturb the schedule. Such events are caliadiptions, and face the airline with
the recovery problem, consisting in retrieving the original scheduldast as possible while
minimizing recovery costs (incurred by delays, compepseatd passengers and crew...). As
shown in sectiofll1, recovery costs are huge and mitigate ofitisé revenue of an airline.

As a well known fact in Operations Research, the iteratiec@ss leads to sub-optimal so-
lutions. Many studies on integrated approaches exist, @eexiample Cordeau et al., 2001,
Mercier and Soumis, 2007, Weide et al., 2008 or Papadak69, 2fowever, all of them assume
the route choice as given. Lately, secondary objectivels asicobustness or recoverability (see
for example Ageeva, 2000, Lan et al., 2006, Yen and Brige62B8§genberg and Salani, 2009
or Weide, 2009) are used at the operational scheduling phaseer to make schedules less
sensitive to delay propagation and build schedules gengrigiss recovery costs. All of these
methods also assume the route choice as a provided inpoiadl at most the retiming of
flight departures within a limited time window.

Finally, the whole scheduling process is performed inddpatly by each airline. The external
constraints for the whole schedule design are maintenantsraints for aircraft and contract
constraints for crew, but airlines are free to schedule tigind frequencies at most airports
in the US. Exceptions are the JFK, EWR, LGA, ORD and DCA aitpwhich have been slot
controlled in various ways since 1968 (Harsha, 2009).

On the day of operations, the recovering from disruptions alao addressed independently
by airlines. As congestion grew, the FAA introduced a callabive inter-airline regulation to
make the recovery more efficient; the regulation is@meund Delay Program (GDP), which
determines all flights’ departures within a geographicgiae using a greedy push-back strat-
egy at airports operating at reduced landing capacity.

Airlines were first reluctant to comply with GDPs, mainly fiairness issues but as it turned



out, all airlines complying with the regulation eventuaikalized that the compliance allowed
for delay reduction on the whole network. Capacity allamatmechanisms used by the FAA
during GDPs however provide benefits to all airlines. Indé&edsen and Ball, 2005 show that
the current scheme in practice, ration-by-schedule (RB8)imizes the maximum ground de-
lays allotted to the different flights. However, Hanowsk§08 also shows that there might be
inequities in the allocation of delay across airlines amks/of planes, and points out the im-
portance of equity and the several metrics of fairness. lgatnet al., 2009 studies alternative
capacity allocation mechanisms based on airline-netwairkdss.

Ongoing research has involved studies on the different odstiof FAA interventions, by ex-
plicitly allocating capacity and managing demand. Thege lma classified into two types:
strategic and operational initiatives. The former are apyplied to a limited extent. Tradi-
tionally used mechanisms for strategic initiatives arellimcate capacity using grandfathering
of slots and a lottery system. More proactively, administeacontrols place caps on the air-
port capacity, and limit the number of operatio@ode of Federal Regulations, Title 14, Part
93). Alternatively, mechanisms such as congestion priaitdjairport slot allocation have been
proposed (Harsha, 2009). In 2007, US Transportation Sagrbtary Peters announced a goal
of reducing the number of operations per hour from the Nevk érports, first by voluntary
means, and also indicated a possible use of market-basdnisims (Marks, 2003). However,
the implementation of slot-auction mechanisms receivedrsecriticism from the industry, and
was finally not implemented (WilmerHale, 2009).

Operational strategies for capacity allocation have ietluslot allocation during Ground De-
lay Programs (GDP) and Airspace Flow Programs (AFP). Meshasuch as RBS are being
used by the FAA (Mossen and Ball, 2005). Alternatives to tlBSRhat address issues such
as network-fairness based allocations (Barnhart. et @09Ror slot exchange mechanisms
(Harsha, 2009) are being proposed and studied.

Most of these studies make assumptions about the airlingpassenger response by consid-
ering average revenues instead of explicitly consideravgmue management, which has not
yet been considered when modeling capacity controls andethdting schedule changes of
airlines.

Airline Revenue management is an effort by the airlines tgimee revenues using differential
pricing. Because the operating costs of the flight are fixékershort run, revenue management
aims to maximize the revenue per flight in order to maximizdip(Barnhart et al., 2003). This
paper also indicates that the studies in the field of compitire effects of airline schedule
planning and recovery with those in revenue managementiyesm limited.

We thus see that, although controlling airline operatiana proactive way seems beneficial,
only few studies address the problem of evaluating suchralmteasures by considering the



entire problem, namely including competition, operati@mgestion and responses to irregu-
larities.

3 Global Simulation Framework

The objective of the simulations is to get insight about tinglications of schedule modifi-
cations (whether imposed or not) on revenue in a compegtiveronment. We sketch here a
detailed framework, which is schematized in Figire 1.
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Figure 1: Simulation process to evaluate the global perdmee of a schedule. An oracle de-
cides on the routes and frequencies including potential Fégulations (dashed ar-
row).

The simulation starts from a schedule obtained from an erablis schedule corresponds to
the output of the route choice problem, i.e. the set of flightse flown. We then estimate the
quality of the schedule according to three aspects:

1. the estimated revenue
2. the operational costs
3. the estimated recovery costs



The operational costs can be evaluated using optimizabi@is br using cost approximations.
The revenue is estimated using market simulations; the diffioulty in the simulation is the
passenger demand estimation, especially as changes inhtedute might affect the demand
itself. In this paper, we use PODS as revenue estimator.

PODS is a computer simulation tool used to test airline regenanagement methods. It has
been developed by Craig Hopperstad at the Boeing Compaeyosexample Hopperstad,
1997, Carrier, 2003. For a selection of different pricingesones and airlines, PODS models
passenger decisions using choice models; it simulatesrineanetwork with several O-D
markets and price structures and is composed of four diffemdules: passenger choice
model, revenue management, forecaster, and historic&ligpdatabase, which are linked in a
simulator. A schematic of PODS and details of the framewoekaaailable in Cusano, 2003.

The estimation of recovery costs is also critical, as thgyede on the severity of a given dis-
ruption. Currently, recovery costs are not explicitly dolesed and only non-monetary metrics
such as total delay, total passenger delay, 15 minute omenformance or number of can-
celed flights are used. However, in order to get a correamnesiton of a schedule, monetary
estimations are required.

As shown in Figur&ll, the only FAA regulation is the GDP on thg df operations. However,
if explicit FAA regulations were to be introduced at the shieng phase, they would have to
be considered by the oracle (dashed arrow in Fiflre 1). Asgdéuregulation is, for example,
a limited number of departing and/or landing flights at a gig@port within a time window.

The global performance of a schedule is then obtained byatbtg the estimated operational
and recovery costs from the estimated revenue. Using thaeofar different airlines at the
same time (or using one specific oracle for each airlineyallo simulate a real-world situation
of competing airlines and to determine the profit (or the d¢fid each individual airline with
respect to changes in the system.

The proposed framework thus allows us to compare the glabafit of airlines with respect
to explicit FAA regulations such as airport capacity coaistts, but it also allows us to evaluate
the potential benefit of incentives such as rewards for gaqy-reduction or a first-priority
rule during GDPs for airlines that reduced their number arafions at a given airport.

4 Casestudy

The framework introduced in secti@h 3 is theoretical, astrobshe tools required are either
missing or not able to solve large scale problems, as rafdjireaddress real problems. In
this section, we focus on a single market for which two a@dircompete. We assume that



Flight F1 F2 F3 F4 F5
Departure| 8.11 | 11.00| 14.61| 17.11| 19.00
Arrival 11.50| 14.39| 18.00| 20.50| 22.39

Table 1: Arrival and departure times of the 5 daily flights biase scenariBASE.

the passenger demand is independent of schedule changeth(anconstant throughout the
simulations) and we do not consider disruptions. We thuagam the analysis of the effects
of airline schedule management on the revenue managemdet.sifgle origin-destination
(OD) market with the following specifications:

Distance 1440 miles

Block hours: 3.39 hours

Nbr airlines: 2 (Al and A2)

Flights per airline perday 5

Nbr seats per flight 100

0 Nbr of fare classes 6 (class 1 being the highest, 6 the Ipwest

In the BASE scenario, both airlines share the market equally with idahtieparture times and
capacities. We denote the two airlines by A1 and A2. Tabletaildehe departure and arrival
times for the 5 daily flights.

Starting from this even market, we derive two distinct sétsagnarios. The former is a set
of 4 scenariosl(0 to | 3) for which airline A1 modifies its schedule and A2 remainshwit
original one. The latter is a set of 3 scenariBs (o R3) for which A2 responds to the schedule
changes made by Al in a competitive way.

The revenues are estimated using PODS, which takes as inmagsenger demand profile,
the airlines’ pricing strategy (that we assume is the saithe),airline schedule (frequency,
departure and arrival times and aircraft capacities). dnthimulates the booking process of
the passengers and the adaptive airlines’ pricing stedesnd outputs revenue management
statistics such as total revenue, load factors, numberssgrayers per fare class. . .

4.1 Scenario set without competitive response

In this instance set, airline Al voluntarily modifies its ednle as reported in Taklé 2, while
A2’s schedule remains unchanged aSASE.

In 1 0, Al retimes all flights, postponing each of them by 1 hour.dersriol 1, A1 decides
to cut its schedule by one flight, namely F3; the other fligateain as originally scheduled. In



Instance BASE| |0 1 | 2 I3
Departure F1| 8.11 | 9.11 | 8.11 | 8.11 | 8.11
Capacity F1 || 100 | 100 | 100 | 100 | 100
Departure F2| 11.00| 12.00| 11.00| 11.00| 11.00
Capacity F2 || 100 | 100 | 100 | 100 | 100
Departure F3| 14.61| 15.61| # # #
Capacity F3 || 100 | 100 # # #
Departure F4| 17.11| 18.11| 17.11| 15.50| 15.50
Capacity F4 || 100 | 100 | 100 | 100 | 125
Departure F5| 19.00| 20.00| 19.00| 18.00| 18.00
Capacity F5 || 100 | 100 | 100 | 100 | 125

Table 2: Scenarios for initiatives by Al, A2 having the sardleesiule tharBASE for all in-

stances.

Instance BASE 10 11 |2 13

Airline Al A2 Al A2 Al A2 Al A2 Al A2
Revenue [$] 87376 87613| 85137 89901| 74823 94916| 76973 92667| 80908 91475
Total Pax 399.24 399.8| 396.97 401.75 333.06 412.8| 334.65 411.32 368.36 405.67|
% Business paX| 46.39 46.42| 45.81 47.18| 47.51 49.95| 50.19 47.86| 46.09 48.80
ALF [%] 79.85 79.96| 79.39 80.35| 83.27 82.56| 83.66 82.26| 81.86 81.13
Yield 0.1563 0.1565 0.1558 0.1578 0.1643 0.1609 0.1605 0.1642 0.1569 0.1611

Table 3: Results of simulation using PODS for the scenaritisont competitive response.

| 2, Al reschedules the last two flights of the day with a betteetcoverage of the afternoon.
Finally, in1 3, additionally to the rescheduling of the afternoon flighgsral 2, Al increases
the capacity of F4 and F5 by 50 seats to compensate the cajmstibecause of the canceled

flight.

The objective of these scenarios is to highlight the impacthe revenue management (sim-
ulated by PODS) of Al’s scheduling decisions. We summabheer¢sults of the simulations

in Table[3, showing, for each airline in each scenario, thal tevenue, the total number of

transported passengers, the percentage of business gassehe average load factor (ALF)
and the yield. TablEl4 reports the average load factors fcr efithe 6 fare classes (fare class
1 being the highest and 6 the lowest).

Instance BASE 10 11 12 13
Airline Al A2 Al A2 Al A2 Al A2 Al A2
Fare Class 1 [%]| 5.00 507| 494 517| 516 554| 543 529| 559 535
Fare Class 2 [%]| 8.17 8.21| 8.07 8.33| 8.92 9.36 | 946 8.84| 9.46 8.80
Fare Class 3 [%]| 13.63 13.71] 13.33 14.01| 15.19 15.88| 16.09 14.96| 15.89 14.80
Fare Class 4 [%]| 13.32 13.18| 13.09 13.65| 15.66 15.48| 16.41 15.04| 15.83 14.53
Fare Class 5 [%]| 5.86 529 | 5.92 7.01| 12.16 11.15] 13.58 11.96| 10.25 9.26
Fare Class 6 [%]| 33.87 34.50| 33.92 32.26| 26.19 25.16| 22.70 26.16| 35.06 28.38
Empty [%0] 20.15 20.04| 20.73 19.57| 16.72 17.43| 16.33 17.75 7.92 18.88

Table 4: Load factors for each of the 6 fare classes for smnaithout competitive response.
Fare class 1 is the highest and fare class 6 the lowest.



As expected, iIrBASE, both airlines equally share the single market, with a simiiverage
load factor of around 80% and around 46.5% business passengée situation however
changes significantly when Al takes retiming initiative®). around2% of the revenue is
directly transferred from Al to A2. Looking at the number cdrisported passengers, we
again observe a direct transfer of around 0.5% from Al to A@stnof them being business
passengers; the average load factor changes by the samatarRatiming thus does affect
revenue management of both airlines, and interestinglydifetly benefits from Al’s (poor)
retiming decision.

When simply canceling one flight (), the loss of revenue for Al is of 14.37%, although
20% of the frequency (and total capacity) is cut; 16.57% ofspagers are lost compared
to BASE. This means that Al is able to mitigate the frequency/capaeduction thanks to
revenue management. Furthermore, we observe that, uckkesol 0, the loss of Al is not
equivalent to the gain of A2. Indeed, A2 increases its reedaw8.43% and carries only 3.25%
more passengers with respecB®SE. This means that A2 makes its additional profit by selling
more high-fare tickets: indeed, as shown in Tdble 4, theameeload factors for the 3 highest
fare classes (classes 1, 2 and 3) are increased by 0.47,Md 151 respectively, whereas the
lowest fare class (class 6) decreases by 9.34 compaBA8i6. This comes because A2 has the
monopole on flight F3, whose revenue jumps from $18,996 tosli$23,770, i.e. an increase
of 25.13%. The most interesting part is the increase of laatbf for both airlines, although
the total number of transported passengers decreases@®s.6The reason is that the capacity
of Al is reduced due to the flight cancellation, implying atatpacity reduction in the system
of 10%.

When compensating the canceled flight by retiming the remginvo afternoon flights (F4 and
F5), Al actually loses some passengers comparéd t®.48%), but increases its revenue by
2.87%. The revenue gain is made by additional business pgese who move from 47.51%
inl1to50.19% inl 2. The gain of Al is comparable to the loss of A2, which losesuabs
many business passengers as Al recaptures; interestivgghymber of transported passengers
and the average load factors for both airlines are similar foandl 2. However, compared to
BASE, Al still loses 11.90% of its revenue.

Finally, when compensating the flight cancellation by betiming and additional capacity on
flights F4 and F5 (scenaria3), Al is able to limit the loss of revenue compare®®SE: the

loss is of 7.4%, i.e. almost half of the revenue lost due tdltgkt cancellation is recaptured.
Remarkably, unlike scenario2, the revenue comes from a significant passenger recapturing
(10% more than for 2 for 12.5% additional capacity). The load factor howeverdases from

| 2 to| 3, meaning that not all the additional capacity is exploitgdMi. Looking at the class
load factors in Tabl€l6, we see that they are similar for tlghdst two fares classes; ir2
however, classes 3 to 5 have slightly higher load factorsisTA1 makes its additional revenue
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Flight F1 F2 F3 | FAdd| F4 F5
Departure| 8.11 | 11.00| 14.33| 16.50| 18.00| 19.50
Arrival 11.50| 14.39| 17.72| 19.89| 21.39| 22.89

Table 5: Updated schedule of A2 in response to the removadbt #3 by A1 used in scenarios
R1-R3.

by allocating the additional capacity to low fare passesd@average load in class 6 increases
from 22.7% inl 2 to 35.06% inl 3). Looking at A2, we observe similar results: load factors of
classes 1 to 3 are similar, classes 4 and 5 decrease and al@ssa&&es; the magnitude of the
changes is, however, smaller than for Al. Interestinglynpared toBASE, A2 make 5.87%
more revenue for only 1.8% more passengers; comparkd,tthe revenue decreases by 6.9%
while the number of carried passengers diminues by 11.26%.

We conclude from these preliminary results that, as expenta competitive environment, A2
benefits from the frequency/capacity reduction of Al evetheit modifying its schedule. We
see two main phenomena: retiming mainly changes the fass diatribution of both airlines,
with a direct transfer between airlines, i.e. the gain of amkne is almost equal to the loss
of the other. Changing capacity and/or frequency has a gomesee on both load factors and
fare class distribution, and the changes are no longer synom&1 loses more than A2 gains.
This clearly highlights the efficiency of revenue managetyshowing that airlines with higher
capacity/frequency are able to manage it better in ordetttach more high fare passengers.

4.2 Scenario set with competitive response

In this set of scenarios, we allow airline A2 to respond cotitigely to the frequency reduction
of Al: in scenarioR1, A2 adds a flight FAdd in response to Al canceling flight F3. Asda
slightly retimes its afternoon flights (F3-F5), as showraible®.

In scenaridR1, Al simply cancels flight F3 (no retiming nor capacity changéile A2 uses
the schedule shown in Talllke 5 with 100 seats for each flight§00 seats in total). IR2, A1
retimes and increases the capacity of its afternoon flighitsla3, while A2’s schedule remains
as inR1. Finally, in R3, Al has same schedule thanli, and A2 reduces the capacity by
25 seats on flights F3, FAdd, F4 and F5; A2 thus has 500 seatsB#&SE, but with higher
frequency.R1 is thus the extension of1 with A2’s competitive response, af®? andR3 are
two different extensions df3.

Table[® shows the revenue, passenger, average load fatiby éAd yield statistics and Table
[ summarizes the average load factor for the 6 fare classesdoariofR1-R3.

Looking at the revenues of A2, it is clear that the compeditigsponse benefits to A2: in
all scenarios, the revenue is higher than in the correspgnsitenario without competitive
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Instance BASE R1 R2 R3

Airline Al A2 Al A2 Al A2 Al A2
Revenue [$] 87376 87613| 74166 100975 78035 99633| 79485 92752
Total Pax 399.24 399.8| 329.61 468.84| 360.39 458.63 367.53 407.01
% Business pax| 46.39  46.42| 49.35 4445 | 4573 45.84| 44.46  50.05
ALF [%] 79.85 79.96| 82.40 78.14 | 80.09 76.44| 81.67 81.40
Yield 0.1563 0.1565 0.1607 0.1538| 0.1547 0.1552 0.1545 0.1628

Table 6: Results of simulation using PODS for the scenaritis @mpetitive response.

Instance R1 R2 R3
Airline Al A2 Al A2 Al A2
FareClass1[%]| 5.33 4.84| 557 5.00| 541 454
Fare Class 2 [%]| 894 7.62| 9.01 7.63| 9.08 7.57
Fare Class 3 [%]| 15.09 12.67| 14.99 12.59 15.30 12.82
Fare Class 4 [%]| 14.92 12.33] 14.61 12.13| 15.35 12.33
Fare Class5[%]| 851 6.29| 521 3.87| 9.30 7.20
Fare Class 6 [%]| 29.61 34.39| 40.71 35.22| 37.45 23.38
Empty [%0] 17.60 21.86] 9.90 23.56| 8.11 32.16

Table 7: Load factors for each of the 6 fare classes for semharith competitive response.
Fare class 1 is the highest and fare class 6 the lowest.

response. IR1, the introduction of an additional flight (increasing freqey and capacity
by 20%) generates 6.38% more revenue for A2 comparéd toThe number of transported
passengers is increased by 13.53%, but the average load ictecreased from 82.56% to
78.14%. Comparing the average fare class loads shows thaelis2proportionally few high
fare seats irR1 than inl 1. In absolute, this also holds except for the highest faresgla
for which A2 sells 4.98% more tickets in average. Al is alseaéd by the competitive
response: the revenue is decreased by 0.89% comparddand 1.04% fewer passengers are
transported. The fare class loads are similar for the high ¢asses; loads for fare classes 4
and 5 are decreased and increased for class 6. For botlesjdire loads of high fare classes
are almost unchanged after A2’s competitive response. Menvir both airlines, fare classes
4 and 5 have significantly lower loads (in particular classb} more seats are sold at lowest
fare (class 6). We see that the additional flight barely #dféloe high fare passengers, but
allows more passengers to obtain tickets at the lowest &8eA2 has more capacity, it is
able to balance the loss of revenue per passenger by selbng tiokets, which explains the
differences in revenue betweed andR1.

When retiming its afternoon flight&R), Al is able to recapture some of the lost revenue: Al
gains 5.22% more than in scenaRa. All observations made fdr3 (lower load factors but
more transported passengers, similar load factors forfaighclasses, decrease in load factors
for fare class 5 and increase in fare class 6) holdR@as well, but the magnitude is reduced,

mainly for A2.

ScenarioR3 is the case in which Al has low frequency with higher capaaitg A2 has high
frequency and low capacity. Clearly, A2 is dominant on thekeacompared t8ASE: it has
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Aircraft Size 75 seats 100 seatg 125 seats
Block hour cost| 2000 2500 3000
Cost/departure| 700 800 900

Table 8: Cost structure used to compute operating costz.oatk are in US$.

increased its revenue by 5.87%. Although total capacity dfifdunchanged betweddASE
and R3, the number of passengers transported by A2 is increased8%y; the additional
revenue is generated by low fare passengers who buy the dsebaapest ticket instead of
the cheapest one. Al actually loses more than Al gains, agtkaue is reduced by more
than 9%. Although the average load factor and the averagefémaors by fare class increase
relatively, this is only due to the capacity reduction (4B@ts in total folR3 for 500 inBASE):

in absolute, all fare classes but fare class 5 have lower puoflpassengers. Although it is not
reflected by the relative numbers in Tablle 7, A2 sells moiestgin high fare classes than Al.

Finally, looking at the evolution of the average revenuefpight, per passenger and per seat
(see Figur&l3), we see that Al has a higher revenue per fligieeimarioR3, but a clear lower
revenue per passenger and per seat. This is enhanced blidhewhich is clearly higher for
A2 than Al (the yield irR3 is 0.1545 and 0.1628 for A1 and A2 respectively).

We thus see that in a system with over-capacity, airlined tersell more tickets at lowest fare
to fill up the aircraft, whereas in the case the capacity istéich more tickets in fare class 5
are sold. Additionally, we remark that the low-frequendgkicapacity schedule of A1 cannot
compete with the high-frequency-low-capacity of A2: thétéetime coverage of the flights
allows A2 to attract passengers with higher willingnessap he conclusion is that an airline
cannot benefit from voluntarily reducing frequency, whethe competing airlines respond or
not. This conclusion has, however, to be contrasted: itdwalen considering revenue indeed,
but we do not consider operational costs. The followingiesaaddresses this issue, including
approximate operating costs and comparing the airlineditprinstead of the raw revenue.

4.3 Including operational costs

As shown previously, an airline has no interest of reducnegdency in terms of revenue. In
this section, we consider approximate operational costotopare the airlines’ profits for
scenarioBASE andR3. We use the cost structure shown in Tdlile 8:

Additionally, we assume a constant cost of $37 per passdogeatering, an overhead of 15%
and a distribution of 9%. The operating cost of a single fliglgfiven by the following formula:

Cost= (1 + Overheagix ([BlockTime x CostPerBlockHouyr+ [NbrPaxx CostPerPax+ DepCost,

13



Flight F1 F2 F3 F4 F5 FAdd TOTA
Airline | Al A2 Al A2 Al A2 Al A2 Al A2 | A1l A2 Al

L
A2

BASE | 2595 2691| 3779 3816| 3079 3087| 1291 1427| -1551 -1638| # # 9192 9383
R3 2405 2350| 3953 3124 # 4813| 3147 -99 | 395 -942 | # 2099| 9900 11345

Table 9: Profits for all flights for instanc&ASE andR3. All values are in US$, non exiting
flights are marked by #.

and the profit of a single flight is given by

profit = (1 — Distribution) x (Revenue- Cos.

Table[® shows the profit for each flight of instan82SE andR3.

Remarkably, Al is actuallyncreasing its profit when removing one flight and adding capacity.

However, its profit increases by only 2.1%, whereas A2 iregeat by 14.6%. We also see
that the late afternoon flights have negative values, megathiat the flight costs more than
it generates revenue. Actually, with the high-frequermy-capacity schedule of A2 iR3,
two flights are in deficit. However, both airlines reduce tleéiat with respect tdASE and
increase the profit on the remaining flights.

We thus see that even when considering operating costs, ighefrlequency-low-capacity
schedule performs better than the low-frequency-higlacidyp one, although both airlines in-
crease their profit.

5 Further requirementsand research directions

The content of this exploratory study is to introduce a methogy to evaluate incentives or
regulations in a realistic model of the current air traffidustry. In order to achieve a full
evaluation of the problem; tools that are able to evaluatksiged problems are thus required.
Each module represented in Figlife 1 has to be adapted in avpaigpe way an implemented
within a global simulator. We hereafter briefly describe lih@tations and requirements for
each module independently.

Schedule Oracle The oracle is certainly one of the most sensitive module#,ragst model

the competitive responses of airlines with respect to eglencentives or regulations. Ideally,
schedules should be optimized according to different aives modeling the airlines’ business
intentions. The additional difficulty is due to the numbeddferent objectives, as the oracle
might consider not only expected revenue, but also the tipaed and/or recovery costs. The
methods used for the oracle thus range from expected reagtimization to robustness or
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recoverability approaches, which all differ depending stemal regulations or incentives.

Revenue Simulator Currently, PODS, the revenue management simulator, is eoalyle
to simulate a nation-wide network. But, before even congidetackling the simulation of
the whole problem, there are several preliminary issuestsedived with respect to revenue
management. First of all, as revenue management is marketllfas opposed to leg-based),
it is non-trivial to evaluate revenue on a leg-based badi®e dsual technique is to useeo-
rated revenue, i.e. the revenue of a multi-leg ticket is distrdolto each flight according to its
duration.

Operational Costs Evaluating the operational costs is not trivial, but it is @ely studied
field in literature. The difficulty is that it is hard to definesaitable cost-structure for opera-
tional costs, especially with the continuously fluctuatinel prices.

Recovery Costs The difficulty of estimating recovery costs is twofold: firs¢covery costs
are hard to evaluate a priori as they depend on the seveitgisfuption and the used recovery
strategy; second, they involve non-monetary costs suchsisrmer and/or crew dissatisfaction
which may impact the revenue in addition to the directly gatesl costs. For the monetary
cost evaluation, it is most likely that simulation would det the best results, which raises
the question of choosing a set of disruptions. Furthermeaeh disruption scenario has to be
adapted with respect to other airlines, different regals] etc.

Global Simulator Once the issues of the individual modules are resolved, eéaaed with
the problem of integrating them. Indeed, the different meslinteract among themselves as,
for example, passenger dissatisfaction may influence tbsepger demand.

FAA Regulations Testing different regulations or incentives is the primpoypose of the
simulator, but it does not answer the question of what thegalations should be. Clearly,
using airport capacity caps, slot auctioning or a reward fot complying airlines are possible
measures, but if one expects regulations to be approvedlimeai on certainly has to elaborate
them by taking into account their compliance.
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6 Conclusion

In this exploratory work, we introduce a theoretical franoekvto estimate the effects of con-
gestion, competition and external regulations within adator. We discuss the requirements
of each of the modules contained in the simulator.

We illustrate part of the simulator on a single market caadystWe show that in a competi-
tive environment, an airline does not benefit from reductadlight frequency with respect to
revenue. Additionally, considering approximations onragienal costs, we show that this also
holds in terms of profits.

This study is intended to set milestones for future resefaramaking air traffic a mode reliable
and profitable business for both customers and carriers.
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