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Abstract

Estimation of MEV models with large choice sets requires sampling
of alternatives, which might be a difficult task due to the correlated-
structure of the error terms. Standard sampling techniques like the
ones traditionally used for Multinomial Logit models can not be di-
rectly applied in the estimation of more complex MEV models. State
of the art estimators for MEV models with sampling of alternatives
either require knowledge of the full choice set or produce biased es-
timates for small sample sizes. This paper proposes two estimation
techniques for MEV models with sampling of alternatives. The first
technique is based on bootstrapping and allows to reduce the bias for
existing estimators. The second technique introduces a new estimator,
based on importance sampling, which generates unbiased parameter
estimates for small sample sizes.

1 Introduction

In discrete choice models, sampling of alternatives is commonly used when
the choice set is large. Typical examples of this are the problems of resi-
dential location choice, destination choice or route choice, where the iden-
tification of each available alternative becomes difficult.

Sampling a subset of alternatives from the full choice set allows for a simpler
estimation of the parameters in the utility function by reducing the com-
putational complexity of the estimator. In the case of a Multinomial Logit
model (MNL), where the error terms of the random utilities are indepen-
dent and identically distributed (2:id), it is possible to estimate parameters
that are consistent and unbiased by adding a corrective constant to the util-
ity of each alternative (McFadden, 1978). However, if the 12d assumption is
discarded, the sampling correction method usually utilized in MNL models
will generate biased estimates. This is the case for the Nested Logit model
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(NL), the Cross Nested Logit (CNL) and other members of the Multivariate
Extreme Value (MEV) family of models.

The estimation of nested-structured MEV models with sampling of alter-
natives is difficult because of the error-correlation structures that makes
the probability of choosing the sampled alternative dependent on the util-
ities of all the alternatives in the corresponding nest. For example, in a
Nested Logit model, the inclusive value (or logsum) will include the full
choice set in the nest, regardless of the selected alternatives in the sample
for the choice probabilities. Bierlaire et al. (2008) propose an estimator for
MEV models with sampling of alternatives. However it assumes that the
probability generating function of the MEV can be computed accurately,
which again requires the full choice set. They do not describe how to apply
sampling to compute it.

In the context of route choice models, Frejinger et al. (2009) introduce the
concept of “Extended Path Size”, where the Path Size is computed based on
a sample of alternatives, and corrected using an expansion factor. Guevara
and Ben-Akiva (2010) generalize this approach and derive an expansion
factor for a general MEV model. This method generates asymptotically
unbiased estimates of the unknown parameters; however, the quality of
the estimates depends on the sample size, generating biased results for
relatively small samples.

This paper proposes two improved estimators for MEV models with sam-
pling of alternatives. We take as a starting point (and benchmark) the
method proposed by Guevara and Ben-Akiva and develop two estimation
procedures that reduce the bias of the estimates. The first procedure uti-
lizes bootstrapping techniques to reduce the bias of the estimates generated
by the benchmark method while the second proposes a new approximation
of the logsum and an importance sampling strategy to reduce the bias in
the estimates of the parameters. Both procedures are tested over synthetic
data using Monte Carlo experiments; results are compared with those ob-
tained when using the method proposed by Guevara and Ben-Akiva.

The paper is organized as follows: Section 2 reviews the sampling methodol-
ogy for MEV models and the method proposed by Guevara and Ben-Akiva.
Section 3 introduces two techniques for bias reduction in the estimation
of MEV model under sampling of alternatives: importance sampling and
bootstrapping. Section 4 describes a Monte Carlo experiment using the
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bootstrapping approach. Section 5 shows the results of an experiment us-
ing the importance sampling approach. Finally, Section 6 concludes the
paper and identifies further research.

2 Sampling of alternatives in random utility
models

In the following section we analyze methods for sampling of alternatives in
MEV models. We start with the simple case of the Multinomial Logit to
then describe the more general method for sampling of alternatives in MEV
models. The section concludes describing the state of the art for sampling
of alternatives in Nested Logit models.

2.1 Multinomial Logit

In a MNL model, the probability of decision-maker n choosing alternative
i is given by :

. eV
P(i) = 7 (1)

jeCn

where Vi = V(xin, B), the systematic part of the utility of alternative i
for decision maker n, is function of the alternative’s attributes (xi,) and
a vector of unknown parameters (3). For notation simplicity the scale
parameter pu is omitted. The term C,, represents the full set of available
alternatives from where the decision-maker can choose.

If C, is large, the analyst might want to sample a smaller subset of al-
ternatives D,,. The probability of constructing the subset D, given that
alternative i was chosen is denoted by 7t(D,[i). Following McFadden (1978)
the probability of choosing alternative i given a subset D,, is:

el*vn.i.‘Hn m(Dnli)

PiD,) = (2)

g eHan +ln7t(Dnlj)

j€Dn
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where the term In7t(D,/i1) works like an alternative-specific expansion fac-
tor. The positive conditioning property (McFadden, 1978) ensures that, if
the probabilities 7t(D,,|j) are positive and known for all alternatives j € Dy,
consistent estimates of the parameters 3 can be obtained through maxi-
mum log-likelihood estimation, following:

InP(i/D, )Y 3
max ) 1nP(iID.) (3)

where y;, assumes the value of one if n chose alternative i and zero other-
wise.

The unbiased estimates resulting from solving (3) are possible thanks to
the 12d structure of the error terms in the MNL model. More complex
models, allowing for correlation between alternatives (like the NL or CNL
models), do not hold this property and therefore correction for sampling
can not be achieved by just adding an alternative specific correction, as
done in (2). This issue is reviewed in the next subsection.

2.2 MEV Models

Many random utility models (such as the MNL, NL and CNL models) can
be expressed as particular cases of the (more general) Multivariate Extreme
Value family of models (McFadden, 1978). The error-correlation structure
in MEV models (also named Generalized Extreme Value models) is defined
through the generating function G(e1, ..., eY7), such that the probability of
choosing alternative i is:

— G(eV,...,eY) (4)

where

Vin Van V]nn
Gi:E)G(e ,evan, . eVinn) (5)

a evin.

The choice probability of (4) can be re-written in the form of a multinomial
logit, but keeping the error-correlation structure defined by G (Ben-Akiva
and Lerman, 1985).
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P (i) (6)

Different functional forms for G generate different models. For example a
MNL model is obtained if G(y) = Z Y

j€Cn
Taking advantage of the closed form of equation (6), Bierlaire et al. (2008)
proposed an estimator over a sample of alternatives for MEV models. The
choice probabilities in this case are similar to those described by (2):

eV-m +1ln Gi+lnt(Dnli)
P.(i|D,) = 7
n(iDa) Zevjnﬂnejﬂmmnm (7)

j€Dn

It is important to notice that, unlike the case of (2), the choice probabilities
of (7) do not depend only on the utilities of the alternatives in subset D,,.
This is caused by the term G; which, with few exceptions like the MNL,
depends on the utilities of the alternatives in the full choice set. Therefore,
under sampling of alternatives, equation (7) can not be used for a consistent
maximum likelihood estimation of the unknown parameters.

Consistent estimation of the unknown parameters requires an unbiased
estimator of the derivative of the generation function (G;). The feasibility
and complexity of this estimator will depend on the functional form of G.
In this paper we analyze the case of the MEV formulation for a Nested Logit
model and the estimator originally proposed by Guevara and Ben-Akiva.

2.3 Sampling correction for the Nested Logit model

The MEV formulation of a Nested Logit model with M nests considers a
generating function with the following functional form:

1

G=) ( > e“mvin) b (8)

=1 \i€Cmn

where W, is the scale parameter for nest m and p is the scale parameter
for the higher level nest. C,,, is the full set of alternatives in nest m.
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The logarithm of the first order derivative of (8) is:

111Gm=< = —1> In Y etV fInp (pny —DVin  (9)
Hm(l) jecm(i)n

where m(i) is the nest containing alternative i.

Since the logsum depends on all the alternatives in the nest it needs to
be approximated if the probability is to be calculated over a sub-sample
Dyn. Guevara and Ben-Akiva (2010) proposed the following estimator of
the logsum for nest m(i):

In E etmVin | x| In E Wi eHm@Vin (10)

jecm(i)n jEDm(i)n

where D), is a sub-sample of the alternatives in nest m(i). The weights
(Wjn) are calculated as follows:

(11)

T EG)
where n;, is the number of times alternative j was sampled and E,(j) is
the probability for alternative j to be included in the sample, according
to the sampling protocol. In their analysis, Guevara and Ben-Akiva use
a sampling without replacement protocol for the sampling of alternatives,
therefore making 1, at most equal to one and E,,(j) equal to the probability
of drawing alternative j. They also propose to use the same sample for the
elements in the logsum and the alternatives in the choice set, this means
that the chosen alternative is always included in Dy ijn.

Their approximation generates asymptotically unbiased estimates of the
utility parameters and the scale parameters for each nest. However, for rel-
atively small sample sizes, the approximated logsum is unable to reproduce
the full logsum values and, therefore, the estimation results are biased.

The best results are obtained when E,, (j) is calculated using the true choice
probabilities; this implies the un-realistic assumption of the analyst being
able to observe the probabilities before estimation. Other more realistic
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estimators of the true choice probabilities were tested, generating more
biased coefficient estimates with the exception of an iterative estimator
which generated results statistically equal to those obtained with the true
probabilities.

In the following section we propose techniques to reduce the bias in the
estimation results for MEV models with sampling of alternatives.

3 Techniques for bias-reduction

Two statistical techniques are proposed for an improved estimation of the
logsum (10): importance sampling and bootstrapping.

3.1 Importance Sampling

Importance sampling allows to reduce the variance of an average that ap-
proximates an expectation. For this, (i) a proposal distribution needs to
be chosen that defines how sampling has to take place and (ii) the average
needs to be corrected for this sampling strategy. Essentially, a proposal
distribution that favors large values (in absolute terms) is more likely to
draw elements into the average that substantially contribute to the ap-
proximated expectation, and hence it leads to an improved reduction in
variance.

The bias in the estimator (10) is monotonously increasing with the variance
of the argument of the logarithm: For a zero variance, there is no bias
at all. The larger the variance gets, the more the nonlinear form of the
logarithm takes effect in distorting the distribution of its argument. It
hence is desirable to estimate this argument with a low variance. In the
following, we apply importance sampling for this purpose.

Defining for notational simplicity
Zin = Hm(i)vin (12)

and omitting the index n as from now, (10) becomes

In Z e”. (13)

]ecm(t)
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This expression can be rephrased as the logarithm of an expectation:

j~ g(j)}) . (14)

In order to compute the argument of the logsum, a proposal distribution
g(j) needs to be defined that is strictly positive for all j € Cy,;),. Based on
a set of R independent and identically distributed samples generated from
this distribution, (14) is then approximated by

_ 1 R ez . . _
In Z e]NIn(ﬁZM)’ )(T)~g()),1‘—1...R. (15)

j€Cmy) r=1

es o es
n ¥ s = (2 {5

j€ECm()

A concrete version of the proposal distribution g(j) will be described in
Section 5.2 (equation 27).

3.2 Bootstrapping

Bootstrap methods were first proposed by Efron (1979) as simulation-based
techniques for statistical inference. Bootstrapping is generally used to infer
the properties of an estimator from a limited sub-sample of observations;
this opens the possibility of measuring the bias of an estimator and cor-
recting for it.

The bootstrapping technique approximates a given distribution by a limited
set of samples and makes further inference about this distribution by re-
sampling from this set of samples. Let 0, be some statistic of x ~ g. The
statistic is estimated from a set of R samples x(r) ~ g, r = 1...R, using the
estimator

A

B(x(1),...,x(R)). (16)

The bias of this estimator, which is
EO(x(1),...,x(R)x(r) ~g, 1 =1...R} — 0, (17)

can be estimated using the bootstrap estimator

B
%Z@(X(Lb), oo x(Ry D)) = B(x(1),...,x(R)). (18)

b=1
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where x(1,b),...,x(R,b) is a set of independent and uniform re-samples
from the original sample x(1),...,x(R). Subtracting this bias from the
original estimator 8(x(1),...,x(R)) results in the corrected estimator

B

> 6(x(1,m),...,x(R,m)). (19)

b=1

A

20(x(1),...,x(R)) —

| =

In our case, the statistic under consideration is

0, = In (E{ - gm}) , (20)

and the respective estimator is
0(i(1),...,i(R)) =In (E; g(jm)) , jr)~g(G), r=1...R. (21)

An improved version of (15) can therefore be obtained by application of
the corrected estimator (19) using the definitions (20) and (21).

4 Experiment: bias-correction with bootstrap-
ing

We perform a Monte Carlo simulation experiment similar to the one pre-
sented in Guevara and Ben-Akiva (2010). This consists in a nested logit
model with 2 nests; the first containing 5 alternatives and the second con-
taining 1000 alternatives. All the alternatives of the first nest are included
in the estimation while a importance sampling protocol is applied in the
second nest: for each observation the chosen alternative is included and an
additional set of non-chosen alternatives is sampled without replacement
from the full choice set.

The utilities are linear-in-parameters and depend on 2 variables, a and b,
randomly generated from a uniform (-1,1) distribution. The values of the
true parameters are set to fo =1, fp, = 1, w1 = 2, w, = 3. Choices are
simulated for 1000 observations using the true parameters and the complete
choice set for both nests, following the probability distribution defined in

(6)-
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Two experiments are performed. The first applies the approximated logsum
proposed by Guevara and Ben-Akiva in order to have benchmark results
for comparison purposes. The second experiments uses the same approxi-
mation for the logsum, but includes a bootstrap correction which is used
in a second estimation instance.

4.1 Approximated logsum

First we attempt to reproduce the original results by using the approxima-
tion defined in (10). Also, to compare with the best possible results, we
use the “true probabilities” approach for E(j) as a benchmark. For this we
use the following choice probability in the estimation:

. e
Pn(l’Dn) - c

m (22)

j€Dn

where G/(D,,) is the derivative of the generating function (9) but replac-
ing the full logsum for the approximation defined in (10). The sampling
correction is calculated as the number of alternatives in the full choice set
(ICml) over the sample size (|Dyy)l). Since nest 1 considers all the avail-
able alternatives (Cy(1) = Dy, Vi) this correction is only applied in nest 2
where CZ(i) :_) Dz(i),Vi.

Table 1: Estimation results - Approximated logsum

‘ parameter ‘ average value | std-error | true value | t-test
Ba 0.831 0.052 1 3.226 *
Bo 0.848 0.054 1 2.788 *
LL1 2.982 0.419 2 2.339 *
153 3.646 0.189 3 3.428 *

* coefficients statistically different from the true parameters

Table 1 shows the results for the Monte Carlo experiment, using a sample
of 10 alternatives for nest 2 (sample size = 1% of |C;|) and estimating
with the probabilities defined by (22). As expected, given the relatively
small sample size, all the estimates are significantly different from the true
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parameters. This is shown by the t-test against the true values (a t-test
bigger than 1.96 indicates a 95% probability of the estimate being different
from the true parameter).

4.2 Bootstrapping

We repeat the experiment, but implementing a sequential estimation pro-
cedure: the first iteration considers a regular estimation using the approx-
imated logsum. The second iteration repeats the estimation but incor-
porates the bootstrap correction (p,) in the logsum. This correction is
calculated with the parameters obtained from the first estimation (f*, u*),
following the method described in Section 3.2

1 B * * * *
pn=g D [l ) wpetnn ) — (ln S wynerntinl® >) (23)
b

]'GD%“ jeDmn

where B is the number of re-sampling instances of the bootstrap estimator
and DY, defines the alternatives in the sample at each instance.

The parameters are re-estimated using the following choice probability:

1€yl
Vin+ln G{(Dm(i)n)_pn""ln Doniinl

1Cm ()l
D min

Z ern+1n Gj’[Dm(j)n)*anrln
j€Dn

The Monte Carlo experiment is performed with the same sample size used
in Section 4.1 (|D;| = 10); results are shown in Table 2. In this case
the parameters were re-estimated after calculating the bootstrap correction
for the bias, following the probability distribution defined in (24). The
estimated parameters are closer and statistically equal to the true values;
therefore the bias has been reduced with respect to the original estimation.

The results confirm the usefulness of the bootstrapping correction in the
estimation of MEV models. However, the quality of the bootstrapped pa-
rameters depends on the quality (in terms of bias) of the first-instance
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Table 2: Estimation results - Bootstrap correction
‘ parameter ‘ average value | std-error | true value ‘ t-test ‘

Ba 0.949 0.099 1 0.518
Bo 0.936 0.095 1 0.672
Ly 2.505 0.732 2 0.690
L 3.232 0.285 3 0.811

estimates. In the results shown in Table 2 the parameters used for the cal-
culation of the bootstrap correction are those obtained in the first instance
with the approximated logsum which, in average, have the values shown
in Table 1. The unbiased estimates obtained after bootstrapping are only
possible thanks to the relatively good original estimates, where the bias
exists but is not extreme.

Therefore bootstrapping is an appropriate tool to reduce the bias of the
estimates, but it necessarily requires a good initial approximation of the
logsum. To illustrate this, Figures 1 and 2 show the evolution of the param-
eter values in two particular realizations of the Monte Carlo experiment.
The realizations were selected as examples of a “good” and a “bad” start-
ing point (which depends on the random sampling of alternatives). In both
cases, the iterative estimation process converges very quickly to a stable re-
sult. In the case of a good starting point (Figure 1) the values are slightly
shifted, but enough to reduce the bias significantly. In the case of the bad
starting point (Figure 2), the bootstrapping and re-estimation technique is
unable to move the values close enough to the true parameters.

Figure 1: Estimation iterations (good initial point)
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Figure 2: Estimation iterations (bad initial point)
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These results indicate that bootstrapping alone will not solve the bias prob-
lems of an estimator: a good estimator is required beforehand. The next
section proposes a method to obtain unbiased estimators for MEV models
under sampling of alternatives.

5 Experiment: importance sampling for log-
sum estimation

The relevance of the initial estimates for the bootstrapping procedure mo-
tivates the search of a new strategy for sampling of alternatives in MEV
models. As explained in Section 3.1, the quality of the the estimator for
the logsum will depend on the sampling protocol. A new experiment is
performed and the approximated logsum approach is compared with a new
methodology described in Section 5.2

The experiment is performed with synthetic data built over a real dataset
from a stated preferences survey to evaluate a high-speed train in Switzer-
land (Bierlaire et al., 2001). The original dataset considers three possible
alternatives: Car (C), Train (T) and High-speed Train (HS). We estimate
a model over the original dataset in order to have proper true values for
the parameters in the experiment. The model assumes two nests: an “in-
novative” nest including only the high-speed train and a “traditional” nest
including both car and train. Utilities are linear in parameters with some
alternative-specific parameters. Results for the estimation over the original
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Table 3: Estimation results over original dataset

‘ parameter affectedV‘ value ‘std—error‘ t-test ‘
Beost C-T-HS |-0.849 | 0.122 -6.96
Btime c C -1.760 | 0.148 | -11.84
Btime T T-HS -1.840 0.173 -10.65
Bheadway T-HS -0.496 0.227 -2.19
i (innovative) - 1* _ -
u,(traditional) - 1.55 0.201 | 2.76%*

* fixed parameter
** t-test against 1

data are presented in Table 3.

Synthetic data is generated by generating new alternatives based on the
original ones, introducing a multiplicative disturbance in the attributes
with a uniform distribution (0.5,1.5). We generate 4 new High-speed-based
alternatives, 49 new car-based alternatives and 49 new train-based alter-
natives. Therefore, in our synthetic data, the innovative nest has 5 alter-
natives and the traditional nest has 100 alternatives. Since the number
of alternatives in each nest is different from the original problem we arbi-
trarily define new true values for the scale parameters: @ =2 and y, =4.
Simulation of choices is performed over the synthetic dataset using the true
choice probabilities defined by (6).

Two experiments were performed. The first using Guevara and Ben-Akiva’s
approximation for the logsum and the second using importance sampling
for the logsum estimator. In both cases the sample size for nest 2 was of
10 alternatives (10% of |C,|).

5.1 Approximated logsum

The method proposed by Guevara and Ben-Akiva is applied to the synthetic
dataset. Estimation is done using the probability described by (22) and
alternatives for both the choice set and the logsum are randomly sampled
without replacement and including the chosen alternative. Results for this
experiment are shown in Table 4.
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Table 4: Estimation results: approximated logsum

‘ parameter average value | std-error | true value | t-test
Beost -1.033 0.149 -0.849 1.237

Btime c -2.382 0.302 -1.760 2.055 *
Brime T -2.264 0.295 -1.840 1.439
Preaaway -0.742 0.119 -0.496 | 2.069 *

w; (innovative) 1.507 0.269 2 1.838
u,(traditional) 3.431 0.294 4 1.938

* coefficients statistically different from the true parameters

Results show two parameters that are biased with respect to the true ones:
Btime c and Preadway- The scale parameters, although not statistically bi-
ased, have values which are far from the true ones and t-tests that are close
to 1.96.

5.2 Importance sampling for the logsum estimator

The approximated logsum described in Section 2.3 (equation 10) and used
in the previous experiment utilizes the same alternatives that were sampled
for the choice set: the chosen alternative and a set of alternatives that are
randomly sampled, without replacement, from the full choice set. How-
ever meaningful for the alternatives in the choice probability, this sampling
procedure is not the best for the estimation of the logsum.

The bias of the parameter-estimates will depend on the bias of the es-
timated logsum. Importance sampling of alternatives should generate a
better estimate than random sampling, as explained in Section 3.1.

We propose a sequential estimation procedure that keeps the sampling pro-
tocol for the alternatives in the choice probability, but considers an impor-
tance sampling protocol for the alternatives in the approximated logsum.

In the first instance, since the choice probabilities are unknown, the alterna-
tives to be included in the logsum are randomly sampled (with replacement)
from the full choice set. The alternatives of the choice set are sampled fol-
lowing the same protocol described in Section 5.1. The parameters are
estimated using choice probabilities following:
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ICon (i)l

Vin+ln G/i(Lm(i)n)‘Hn

e ‘Dm(i)n\
Pn(l|Dn) - ’ ‘Cm(i)‘ (25)
Z ern-Hn GilEmam I Hn o 0T

j€Dn

where L., is the set of sampled alternatives (from the nest containing
i: m(1)) for the logsum and In G;(L,,(1)n) is the expression described in (9)
but using the following approximated logsum:

In Z Wy, elmnVin (26)

jeLm(i)n

Given the sampling protocol for L,,,, the weights (wj’n) are calculated, in
the first instance, as the full set size (|C,,(1)|) over the sample size (|D)l)-

The parameters obtained in the first estimation (*, u*) are used to cal-
culate the importance sampling distribution that will generate the sample
for the logsum in the second estimation. The probability of sampling an
alternative from a particular nest m is defined as a Multinomial Logit:

evni(ﬁ*»p-*)
I 9
j€Cm
The new sample of alternatives to estimate the logsum (L, ) is done fol-

lowing g, (ilm).

A new estimation is performed, similar to the first one but replacing the
approximated logsum for:

1
In Z | . etmi)Vi (28)

Ll - gn(jim)

Estimations are repeated until a stable value is achieved for all parameters.

Table 5 shows the results for the proposed methodology. The importance
sampling procedure generates unbiased estimates for all the parameters,
outperforming the results of the approximated logsum shown in Table 4.
Also, the bias of the final estimates does not depend strongly on the bias of
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Table 5: Estimation results: importance sampling

‘ parameter average value | std-error | true value | t-test
Beost -0.863 0.069 -0.849 | 0.204

Btime c -1.805 0.148 -1.760 0.300
Btime T -1.791 0.160 -1.840 0.309
Preaaway -0.590 0.066 -0.496 | 1.428

w; (innovative) 2.052 0.187 2 0.280
u,(traditional) 3.984 0.338 4 0.046

the original estimates. As seen in Figure 3, in a particular realization of the
Monte Carlo experiment, the estimated parameters in the first iteration are
far from the true values. Despite this, in the following estimations, good
estimates are achieved. This implies that the importance sampling method
also outperforms the bootstrapping method which, as explained in Section

4.2, requires good initial estimates.

Figure 3: Evolution of the estimates
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6 Conclusions and further research

This paper proposed two method to reduce the bias of the parameters
when estimating MEV models under sampling of alternatives. The boot-
strap method allows to reduce the bias in the parameters of any estimator,
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but depends on the quality of the estimator itself. The importance sam-
pling method allows to estimate unbiased parameters with a relatively small
sample size.

The main contribution of the importance sampling method is a better sam-
pling distribution for the elements in the logsum. The use of a different
sample for the choice set and for the logsum allows to reach better results
while still having an estimator that is consistent with choice theory.

Both methods reach unbiased estimates with small samples sizes, further
research will analyze the effect of different sample sizes in the quality of the
estimates. The combination on the two methods proposed on this paper
is also part of further research. The bias (if any) of the estimates in the
importance sampling method can be reduced by applying bootstrapping.
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