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1 Stochastic integrals

Let (Ft, t ∈ R+) be a filtration and (Bt, t ∈ R+) be a standard Brownian motion with respect to
(Ft, t ∈ R+), that is :

- B0 = 0 a.s.

- Bt is Ft-measurable ∀t ∈ R+ (i.e., B is adapted to (Ft, t ∈ R+))

- Bt −Bs ⊥⊥ Fs ∀t > s ≥ 0 (independent increments)

- Bt −Bs ∼ Bt−s −B0 ∀t > s ≥ 0 (stationary increments)

- Bt ∼ N (0, t) ∀t ∈ R+

- B has continuous trajectories a.s.

Reminder. In addition, B has the following properties :

- (Bt, t ∈ R+) is a continuous ans square-integrable martingale with respect to (Ft, t ∈ R+), with
quadratic variation 〈B〉t = t a.s. (i.e. B2

t − t is a martingale).

- (Bt, t ∈ R+) is Gaussian process with mean E(Bt) = 0 and covariance Cov(Bt, Bs) = t∧ s := min(t, s).

- (Bt, t ∈ R+) is a Markov process with respect to (Ft, t ∈ R+), that is, E(g(Bt)|Fs) = E(g(Bt)|Bs) a.s.,
∀t > s ≥ 0 and g : R→ R continuous and bounded.

1.1 Ito’s integral with respect to the standard Brownian motion

Let (Ht, t ∈ R+) be a process with continuous trajectories adapted to (Ft, t ∈ R+) and such that

E
(∫ t

0

H2
s ds

)
<∞, ∀t ∈ R+.

It is then possible to define a process ((H · B)t ≡
∫ t
0
Hs dBs, t ∈ R+) which satisfies the following

properties (see lecture notes of the fall semester):

- E((H ·B)t) = 0, E((H ·B)2t ) = E
(∫ t

0

H2
s ds

)
.

- Cov((H ·B)t, (H ·B)s) = E
(∫ t∧s

0

H2
r dr

)
.

- ((H · B)t, t ∈ R+) is a continuous square-integrable martingale with respect to (Ft, t ∈ R+), with
quadratic variation

〈(H ·B)〉t =
∫ t

0

H2
s ds.

- Let

(H(n) ·B)t =
n∑
i=1

H(t(n)
i−1)

(
B(t(n)

i )−B(t(n)
i−1)

)
,

where 0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n = t is a sequence of partitions of [0, t] such that

max
1≤i≤n

|t(n)
i − t(n)

i−1| →n→∞ 0.

Then (H(n) ·B)t
P→ (H ·B)t as n→∞, that is, ∀ε > 0,

P
(∣∣∣(H(n) ·B)t − (H ·B)t

∣∣∣ > ε
)
→

n→∞
0
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Remark. In general, (H ·B) is not a Gaussian process; it does not have neither independent increments,
nor stationary increments. Moreover, 〈(H ·B)〉t =

∫ t
0
H2
s ds is not deterministic.

Remark. Processes such as
∫ t
0
H(t, s) dBs are not martingales in general: at each time t, the integrand

H changes. Nevertheless, the above isometry properties remains valid:

E
(∫ t

0

H(t, s) dBs

)
= 0, E

((∫ t

0

H(t, s) dBs

)2
)

= E
(∫ t

0

H(t, s)2 ds
)

and

Cov
(∫ t

0

H(t, s) dBr,
∫ s

0

H(s, r) dBr

)
= E

(∫ t∧s

0

H(t, r)H(s, r) dr
)
.

1.2 Wiener’s integral

Let f : R+ → R be a deterministic continuous function (so
∫ t
0
f(s)2 ds <∞, ∀t ∈ R+). Then the process

((f ·B)t, t ∈ R+), in addition of all the above properties (f is a particular case of H), satisfies also:

- (f ·B) is a Gaussian process, with mean and covariance:

E((f ·B)t) = 0, Cov((f ·B)t, (f ·B)s) =
∫ t∧s

0

f(r)2 dr.

- (f ·B) has independent increments.

- 〈(f ·B)〉t =
∫ t
0
f(s)2 ds is deterministic.

Remark. In general, (f ·B) does not have stationary increments and processes such as
∫ t
0
f(t, s) dBs do

not have independent increments.

1.3 Ito’s integral with respect to a martingale

Let (Ft, t ∈ R+) be a filtration and (Mt, t ∈ R+) be a continuous square-integrable martingale with
respect to (Ft, t ∈ R+).

Reminder. The quadratic variation of M is the unique process (〈M〉t, t ∈ R+) which is increasing,
continuous and adapted to (Ft, t ∈ R+), such that 〈M〉0 = 0 a.s. and (M2

t − 〈M〉t, t ∈ R+) is a
martingale with respect to (Ft, t ∈ R+).

Lemma 1.1. For all t > s ≥ 0,

E
(
(Mt −Ms)2 | Fs

)
= E(〈M〉t − 〈M〉s | Fs).

Proof.

E
(
(Mt −Ms)2 | Fs

)
= E(M2

t − 2MtMs +M2
s | F2

s ) = E(M2
t | Fs)− 2E(Mt | Fs)Ms +M2

s

= E(M2
t − 〈M〉t + 〈M〉t | Fs)− 2M2

s +M2
s = M2

s − 〈M〉s + E(〈M〉t | Fs)−M2
s

= E(〈M〉t − 〈M〉s | Fs).

Remarks. - Since t 7→ 〈M〉t is increasing, it is a process with bounded variation, so
∫ t
0
Hs d〈M〉s is a

well-defined Riemann-Stieltjes integral, as long as H has continuous trajectories.

- In general, 〈M〉t is not deterministic, but when M has independent increments, then 〈M〉t = E(M2
t )−

E(M2
0 ) (and is therefore deterministic).
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Let (Ht, t ∈ R+) be a continuous process adapted to (Ft, t ∈ R+) such that

E
(∫ t

0

H2
s d〈M〉s

)
<∞, ∀t ∈ R+.

It is then possible to define a process ((H · M)t ≡
∫ t
0
Hs dMs, t ∈ R+) which satisfies the following

properties:

- E((H ·M)t) = 0, E((H ·B)2t ) = E
(∫ t

0

H2
s d〈M〉s

)
.

- Cov((H ·M)t, (H ·M)s) = E
(∫ t∧s

0

H2
r d〈M〉s

)
.

- ((H ·M)t, t ∈ R+) is a continuous square-integrable martingale with respect to (Ft, t ∈ R+), with
quadratic variation

〈(H ·M)〉t =
∫ t

0

H2
s d〈M〉s.

- Let

(H(n) ·M)t =
n∑
i=1

H(t(n)
i−1)

(
M(t(n)

i )−M(t(n)
i−1)

)
,

where 0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n = t is a sequence of partitions of [0, t] such that

max
1≤i≤n

|t(n)
i − t(n)

i−1|
n→∞→ 0.

Then (H(n) ·M
)
t

P−→ (H ·M)t as n→∞, that is, ∀ε > 0,

P
(∣∣∣(H(n) ·M)t − (H ·M)t

∣∣∣ > ε
)
→

n→∞
0.

Let us give here a short explanation regarding the construction of the integral in this case and the isometry
property. For a simple predictable process of the form

Hs(ω) =
n∑
i=1

Xi(ω) 1]ti−1,ti](s), s ∈ [0, t],

where 0 = t0 < t1 < . . . < tn = t is a partition of [0, t] and Xi is Fti−1 -measurable and bounded, the
stochastic integral H ·M is defined as

(H ·M)t =
n∑
i=1

Xi (M(ti)−M(ti−1)).

Let us then compute

E
(
(H ·M)2t

)
=

n∑
i,j=1

E(XiXj (M(ti)−M(ti−1)) (M(tj)−M(tj−1)))

=
n∑
i=1

E(E(X2
i (M(ti)−M(ti−1)2 | Fti−1))

+2
∑
i<j

E(E(XiXj (M(ti)−M(ti−1)) (M(tj)−M(tj−1)) | Ftj−1)).

Since Xi is Ftj−1 -measurable and Xi, Xj and M(ti)−M(ti−1) are Ftj−1-measurable for i < j, we have

E
(
(H ·M)2t

)
=

n∑
i=1

E(X2
i E((M(ti)−M(ti−1))2 | Fti−1))

+2
∑
i<j

E(XiXj (M(ti)−M(ti−1)) E(M(tj)−M(tj−1) | Ftj−1)).
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Since M is a martingale, E(M(tj) −M(tj−1) | Ftj−1) = 0, so the second term on the right-hand side
drops. For the first term, Lemma 1.1 tells us that

E((M(ti)−M(ti−1))2 | Fti−1) = E(〈M〉ti − 〈M〉ti−1 | Fti−1),

so

E
(
(H ·M)2t

)
=

n∑
i=1

E(X2
i E(〈M〉ti − 〈M〉ti−1 | Fti−1)) =

n∑
i=1

E(X2
i (〈M〉ti − 〈M〉ti−1)).

On the other hand,

E
(∫ t

0

H2
s d〈M〉s

)
= E

(
n∑
i=1

X2
i

∫ ti

ti−1

d〈M〉s

)
=

n∑
i=1

E(X2
i (〈M〉ti − 〈M〉ti−1)),

which shows the above isometry property.

Remark. We now have a map
(H,M) 7→ (H ·M)

where H is a continuous and adapted process, M is a continuous square-integrable martingale and (H ·M)
is a continuous square-integrable martingale. So we can iterate the procedure:

- (H,B) 7→Mt = (H ·B)t =
∫ t
0
Hs dBs.

- (K,M) 7→ Nt = (K ·M)t =
∫ t
0
Ks dMs (=

∫ t
0
KsHs dBs) etc.

We will also use in the sequel the following (formal) differential notations:

- Mt =
∫ t
0
Hs dBs reads dMt = Ht dBt.

- 〈M〉t =
∫ t
0
H2
s ds reads d〈M〉t = H2

t dt, etc.

Reminder. The quadratic covariation of two continuous square-integrable martingales M and N with
respect to the same filtration (Ft, t ∈ R+) is the unique process (〈M,N〉t, t ∈ R+) which is continuous,
has bounded variation and is adapted to (Ft, t ∈ R+), such that 〈M,N〉0 = 0 a.s. and (MtNt −
〈M,N〉t, t ∈ R+) is a martingale with respect to (Ft, t ∈ R+). Remember also the following properties:

- 〈M,M〉t = 〈M〉t.

- 〈M,N〉t = 0 if M and N are independent.

- 〈M,N〉t = 1
4 (〈M +N〉t − 〈M −N〉t) (polarization identity).

Remark. If M , N are continuous square-integrable martingales (with respect to the same filtration
(Ft, t ∈ R+)) and H, K are continuous adapted processes such that

E
(∫ t

0

H2
s d〈M〉s

)
<∞ and E

(∫ t

0

K2
s d〈N〉s

)
<∞, ∀t ∈ R+,

then we have

Cov((H ·M)t, (K ·N)s) = E
(∫ t∧s

0

HrKr d〈M,N〉r
)

and

〈(H ·M), (K ·N)〉t =
∫ t

0

HsKs d〈M,N〉s.
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2 Ito-Doeblin’s formula(s)

2.1 First formulations

(I) Let (Bt, t ∈ R+) be a standard Brownian motion with respect to (Ft, t ∈ R+) and f ∈ C2(R) be such

that E
(∫ t

0

f ′(Bs)2 ds
)
<∞, ∀t ∈ R+. Then

f(Bt)− f(B0) =
∫ t

0

f ′(Bs) dBs +
1
2

∫ t

0

f ′′(Bs) ds a.s., ∀t ∈ R+.

(II) Let now f ∈ C1,2(R+ × R) be such that E
(∫ t

0

f ′x(s,Bs)2 ds
)
<∞, ∀t ∈ R+. Then

f(t, Bt)− f(0, B0) =
∫ t

0

f ′t(s,Bs) ds+
∫ t

0

f ′x(s,Bs) dBs +
1
2

∫ t

0

f ′′xx(s,Bs) ds a.s., ∀t ∈ R+.

In particular, if f is such that

f ′t(t, x) +
1
2
f ′′xx(t, x) = 0, ∀(t, x) ∈ R+ × R,

then

f(t, Bt) = f(0, B0) +
∫ t

0

f ′x(s,Bs) dBs

is a martingale. Particular examples of such functions are f(t, x) = x2 − t and f(t, x) = ex−
t
2 .

For an idea of the proofs, see lecture notes of the fall semester.

2.2 Generalizations

(III) Let (Mt, t ∈ R+) be a continuous square-integrable martingale with respect to a filtration (Ft, t ∈

R+) and f ∈ C2(R) be such that E
(∫ t

0

f ′(Ms)2 d〈M〉s
)
<∞, ∀t ∈ R+. Then

f(Mt)− f(M0) =
∫ t

0

f ′(Ms) dMs +
1
2

∫ t

0

f ′′(Ms) d〈M〉s a.s., ∀t ∈ R+.

(IV) Let also (Vt, t ∈ R+) be a continuous process with bounded variation, adapted to the same filtration
(Ft, t ∈ R+) as (Mt, t ∈ R+), and f ∈ C1,2(R× R) be such that

E
(∫ t

0

f ′x(Vs,Ms)2 d〈M〉s
)
<∞, ∀t ∈ R+. (1)

Then

f(Vt,Mt)−f(V0,M0) =
∫ t

0

f ′t(Vs,Ms) dVs+
∫ t

0

f ′x(Vs,Ms) dMs+
1
2

∫ t

0

f ′′xx(Vs,Ms) d〈M〉s a.s., ∀t ∈ R+.

In particular, if Vt = 〈M〉t and f is again such that f ′t(t, x) + 1
2f
′′
xx(t, x) = 0, ∀(t, x) ∈ R× R, then

f(〈M〉t,Mt) = f(〈M〉0,M0) +
∫ t

0

f ′x(〈M〉s,Ms) dMs

is a martingale. Again, examples are f(t, x) = x2 − t (we already knew that M2
t − 〈M〉t is a martingale)

and f(t, x) = exp
(
x− t

2

)
: exp

(
Mt − 〈M〉t2

)
is a martingale, called the exponential martingale associated

to M , provided that condition (1) is satisfied!

Remark. The above integrals may seem to be quite abstract ones. Remember nevertheless that in
most cases, we will consider processes such as Vt =

∫ t
0
Ks ds (so dVs = Ks ds) and Mt =

∫ t
0
Hs dBs, (so

dMs = Hs dBs, and 〈M〉t =
∫ t
0
H2
s ds, so d〈M〉s = H2

s ds).
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2.3 Continuous semi-martingales

Definition 2.1. A continuous semi-martingale is a process (Xt, t ∈ R+) that can be written as Xt =
Mt + Vt, where

- (Mt, t ∈ R+) is a continuous square-integrable martingale with respect to a filtration (Ft, t ∈ R+),

- (Vt, t ∈ R+) is a continuous process with bounded variation, adapted to the same filtration (Ft, t ∈ R+)
and such that V0 = 0 a.s.

Remarks. - The above terminology is non standard. There are variations in the definition.

- From the above definition, it is tempting to deduce that “basically any continuous process is a semi-
martingale”. This is however far from being true!

Example 2.2. - By Doob’s decomposition theorem, every continuous (square-integrable) submartingale
may be written as the sum of a martingale and an increasing process : it is therefore a semi-martingale.

- Let H and K be adapted and continuous processes such that E
(∫ t

0

H2
s ds

)
<∞, ∀t ∈ R+. Then the

process (Xt, t ∈ R+) defined as

Xt = X0 +
∫ t

0

Hs dBs︸ ︷︷ ︸
Mt

+
∫ t

0

Ks ds︸ ︷︷ ︸
Vt

.

is a continuous semi-martingale (in the literature, this particular type of semi-martingales are called Ito
processes).

- Let (Bt, t ∈ R+) be a standard Brownian motion and f ∈ C2(R) be such that E
(∫ t

0

f ′(Bs)2 ds
)
<∞,

∀t ∈ R+. The process (Xt = f(Bt), t ∈ R+) is a continuous semi-martingale, since by Ito-Doeblin’s
formula (I),

f(Bt) = f(B0) +
∫ t

0

f ′(Bs) dBs︸ ︷︷ ︸
Mt

+
1
2

∫ t

0

f ′′(Bs) ds︸ ︷︷ ︸
Vt

.

Definition 2.3. - Let (Xt = Mt + Vt, t ∈ R+) be a continuous semi-martingale. Its quadratic variation
is defined as

〈X〉t = 〈M〉t, t ∈ R+.

- Let (Yt = Nt+Ut, t ∈ R+) be another continuous semi-martingale. The quadratic covariation of X and
Y is defined as

〈X,Y 〉t = 〈M,N〉t, t ∈ R+.

Properties.

- 〈X,X〉t = 〈X〉t, 〈Y,X〉t = 〈X,Y 〉t.

- If X has bounded variation, then 〈X〉t = 0 and 〈X,Y 〉t = 0, whatever Y is.

- If X and Y are independent, then 〈X,Y 〉t = 0.

Remark. Pay attention that the process (X2
t − 〈X〉t, t ∈ R+) is not a martingale in general. It is

actually a martingale only if X is. Likewise, (XtYt − 〈X,Y 〉t, t ∈ R+) is not a martingale in general.
Nevertheless, the polarization identity, which was established previously for martingales, still holds:

〈X,Y 〉t =
1
4

(〈X + Y 〉t − 〈X − Y 〉t).
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Definition 2.4. Let (Xt = Mt + Vt, t ∈ R+) be a continuous semi-martingale. Let (Ht, t ∈ R+) be a
continuous process, adapted to the same filtration as (Xt, t ∈ R+) and such that

E
(∫ t

0

H2
s d〈X〉s

)
≡ E

(∫ t

0

H2
s d〈M〉s

)
<∞, ∀t ∈ R+.

Then the stochastic integral of H with respect to X is defined as

(H ·X)t ≡
∫ t

0

HsdXs =
∫ t

0

HsdMs︸ ︷︷ ︸
Ito’s integral

+
∫ t

0

HsdVs︸ ︷︷ ︸
Riemann-Stieltjes integral

(V) Ito-Doeblin’s formula for a semi-martingale. Let (Xt = Mt + Vt, t ∈ R+) be a continuous

semi-martingale. Let g ∈ C2(R) be such that E
(∫ t

0

g′(Xs)2 d〈X〉s
)
<∞, ∀t ∈ R+. Then

g(Xt)− g(X0) =
∫ t

0

g′(Xs) dXs +
1
2

∫ t

0

g′′(Xs) d〈X〉s a.s., ∀t ∈ R+.

Notice that the first integral on the right-hand side is now the sum of two integrals of different kind.

Proof. We use the version (IV) of Ito-Doeblin’s formula with f(t, x) = g(t + x): f ′t = f ′x = g′ and
f ′′xx = g′′, so

g(Xt)− g(X0) = f(Vt,Mt)− f(V0,M0)

=
∫ t

0

f ′t(Vs,Ms) dVs +
∫ t

0

f ′x(Vs,Ms) dMs +
1
2

∫ t

0

f ′′xx(Vs,Ms) d〈M〉s

=
∫ t

0

g′(Xs) dXs +
1
2

∫ t

0

g′′(Xs) d〈X〉s.

2.4 Integration by parts formula

This is still another variation on the theme of Ito-Doeblin’s formulas. Let X,Y be two continuous

semi-martingales such that E
(∫ t

0

X2
s d〈Y 〉s

)
<∞ and E

(∫ t

0

Y 2
s d〈X〉s

)
<∞, ∀t ∈ R. Then

XtYt −X0Y0 =
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X,Y 〉t a.s., ∀t ∈ R+.

In differential form, the above formula reads:

d(XtYt) = Xt dYt + Yt dXt + d〈X,Y 〉t

Proof. By using Ito-Doeblin’s formula (V), we have:

- (Xt + Yt)
2 − (X0 + Y0)2 = 2

∫ t

0

(Xs + Ys) d(Xs + Ys) + 〈X + Y 〉t

- (Xt − Yt)2 − (X0 − Y0)2 = 2
∫ t

0

(Xs − Ys) d(Xs − Ys) + 〈X − Y 〉t

Subtracting these two formulas gives:

4XtYt − 4X0Y0 = 4
∫ t

0

Xs dYs + 4
∫ t

0

Ys dXs + (〈X + Y 〉t − 〈X − Y 〉t)︸ ︷︷ ︸
=4〈X,Y 〉t

which completes the proof.
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Remark. We are back to the classical integration by parts formula if 〈X,Y 〉 = 0, i.e., if either X or Y
has bounded variation (or if they are independent).

2.5 Back to Fisk-Stratonovič’s integral

Definition 2.5. Let B be a standard Brownian motion with respect to (Ft, t ∈ R+) and H be a

continuous semi-martingale adapted to (Ft, t ∈ R+) such that E
(∫ t

0

H2
s ds

)
< ∞ ∀t ∈ R. Then the

Fisk-Stratonovič integral of H with respect to B is defined as

(H ◦B)t ≡
∫ t

0

Hs ◦ dBs =
∫ t

0

HsdBs +
1
2
〈H,B〉t, t ∈ R+.

Remarks. - H ◦B is in general not a martingale.

- The second term on the right-hand side is equal to zero if H has bounded variation (in which case H ◦B
becomes a martingale).

Fisk-Stratonovič’s formula. Let (Bt, t ∈ R+) be a standard Brownian motion. Let f ∈ C3(R) be such

that E
(∫ t

0

f ′(Bs)2 ds
)
<∞ and E

(∫ t

0

f ′′(Bs)2 ds
)
<∞, ∀t ∈ R+. Then

f(Bt)− f(B0) =
∫ t

0

f ′(Bs) ◦ dBs a.s., ∀t ∈ R+,

which is the rule of classical calculus.

Proof. Let g = f ′. Then ∫ t

0

g(Bs) ◦ dBs =
∫ t

0

g(Bs) dBs +
1
2
〈g(B), B〉t.

By applying Ito-Doeblin’s formula (I),

g(Bt) = g(B0) +
∫ t

0

g′(Bs) dBs +
1
2

∫ t

0

g′′(Bs) ds = Mt + Vt.

Notice that all the integrals are well defined, because E
(∫ t

0

(g′(Bs))2ds
)
<∞ and f ∈ C3(R). So

〈g(B), B〉t = 〈M,B〉t =
∫ t

0

g′(Bs) ds.

Therefore, ∫ t

0

g(Bs) ◦ dBs =
∫ t

0

g(Bs) dBs +
1
2

∫ t

0

g′(Bs) ds

i.e., ∫ t

0

f
′
(Bs) ◦ dBs =

∫ t

0

f ′(Bs) dBs +
1
2

∫ t

0

f ′′(Bs) ds = f(Bt)− f(B0),

by a second application of Ito-Doeblin’s formula (I). This completes the proof.

10



3 Stochastic differential equations (SDE’s)

3.1 Reminder on ordinary differential equations (ODE’s)

A (time-homogeneous) ODE is of the form

X ′(t) =
dX

dt
(t) = f(X(t)), t ∈ R+, X(0) = x0, (2)

where f : R→ R and x0 ∈ R.

Solving method. - Write dX
f(X) = dt→

∫
dX

f(X)
=
∫
dt.

- Let G be a primitive of 1
f (i.e., G′ = 1

f ). Then we have G(X(t)) = G(x0) + t.

- When possible, invert G to obtain X(t) = G−1 (G(x0) + t).

Examples.

1) X ′(t) = cX(t): dX
X = c dt→ lnX − lnx0 = c t→ X(t) = x0 e

ct.

2) X ′(t) = X2(t): dX
X2 = dt→ − 1

X + 1
x0

= t→ X(t) = 1
1
x0
−t . Notice that the solution explodes in t = 1

x0
.

3) X ′(t) =
√
X(t): dX√

X
= dt → 2(

√
X −√x0) = t → X(t) =

(
t
2 +
√
x0

)2. Notice that if x0 = 0 in this

last example, then X(t) = t2

4 is a solution, but X(t) ≡ 0 is also a solution, as well as

X(t) =

{
(t−c)2

4 , t > c,
0, t ≤ c,

for any c ≥ 0. So the solution is not unique in this case.

Definition 3.1. A function f : R→ R is said to be Lipschitz if there exists a constant L > 0 such that

|f(x)− f(y)| ≤ L |x− y|, ∀x, y ∈ R.

Remark. - If f is Lipschitz, then it is continuous (clear).

- If f is continuously differentiable and its derivative is bounded, then it is Lipschitz. Indeed,

|f(x)− f(y)| =
∣∣∣∣∫ x

y

f ′(z) dz
∣∣∣∣ ≤ sup

z∈R
|f ′(z)|︸ ︷︷ ︸
<∞

|x− y|.

Theorem 3.2. If f is Lipschitz, then (2) admits a unique solution (X(t), t ∈ R+).

Back to the examples.

1) f(x) = c x is Lipschitz (L = |c|) : X(t) = x0 e
ct exists ∀t ∈ R+.

2) f(x) = x2 is not Lipschitz (it is actually “locally Lipschitz”, but the constant L explodes at infinity):
X(t) = 1

1
x0
−t exists only up to t = 1

x0
, where it explodes.

3) f(x) =
√
x is not Lipschitz at x = 0 (the function has infinite slope): the solution X(t) is not unique

if one starts from x0 = 0.

3.2 Time-homogeneous SDE’s

While seeing applications of Ito-Doeblin’s formula, we have already seen an instance of an SDE. Indeed,
if X(t) = eBt , where B is a standard Brownian motion, then applying the above mentioned formula leads
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to the conclusion that X satisfies the following SDE (in integral form):

Xt = 1 +
∫ t

0

Xs dBs +
1
2

∫ t

0

Xs ds a.s., ∀t ∈ R+.

This SDE may be rewritten in differential form as

dXt = Xt dBt +
1
2
Xt dt, X0 = 1.

(in order to avoid writing dBt
dt , which does not exist).

A generic time-homogeneous SDE is of the form

dXt = f(Xt) dt︸ ︷︷ ︸
drift term

+ g(Xt) dBt︸ ︷︷ ︸
diffusion term

, X0 = x0,

where x0 ∈ R, f, g : R→ R and (Bt, t ∈ R+) is a standard Brownian motion.

Preliminary remarks. - Solving an SDE is in general much harder than solving an ODE. There are
many functions f and g for which we do not know an analytic expression for the solution (Xt, t ∈ R+)
(or do not even know whether such a solution exists).

- But the good news is that sometimes, only knowing that a process X is solution of an SDE provides
already lots of information on X.

Theorem 3.3. Let (Bt, t ∈ R+) be a standard Brownian motion with respect to (Ft, t ∈ R+), x0 ∈ R
and f, g : R → R be Lipschitz functions. Then there exists a unique continuous process (Xt, t ∈ R+),
adapted to (Ft, t ∈ R+) and such that

Xt = x0 +
∫ t

0

f(Xs) ds+
∫ t

0

g(Xs) dBs a.s., ∀t ∈ R+.

(Xt, t ∈ R+) is called a strong solution of the above equation.

Remark. It can also be proven that E(X2
t ) < ∞, ∀t ∈ R+, so the process X is a continuous semi-

martingale. Indeed, Xt = Mt + Vt, where

Mt = x0 +
∫ t

0

g(Xs) dBs and Vt =
∫ t

0

f(Xs) ds.

Besides, the quadratic variation of X is given by

〈X〉t = 〈M〉t =
∫ t

0

g(Xs)2 ds.

Example: Ornstein-Uhlenbeck process. Let us consider the SDE

dXt = −aXt dt+ σ dBt, X0 = x0,

where a, σ > 0 and x0 ∈ R. Here, f(x) = −ax and g(x) = σ are Lipschitz, so there exists a unique strong
solution (Xt, t ∈ R+) to the above equation.

Solving method. - Let φ be the (deterministic) process solution of

dφt = −aφt dt, φ0 = 1.

i.e., φ′t = −aφt, so φt = e−at.
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- Let us write Xt = φt Yt and search for an equation for Yt. By the integration by parts formula (in
differential form), we have

dXt = d(φt Yt) = φt dYt + Yt dφt + d〈φ, Y 〉t
= φt dYt − aφtYt dt+ 0,

since φ has bounded variation. On the other hand :

dXt = −aXt dt+ σ dBt = −aφtYt dt+ σ dBt,

so
σ dBt = φt dYt, i.e., dYt =

σ

φt
dBt

with Y0 = X0/φ0 = x01 = x0. This implies that

Yt = x0 + σ

∫ t

0

1
φs

dBs = x0 + σ

∫ t

0

e−as dBs

and

Xt = φt Yt = e−at x0 + σ

∫ t

0

e−a(t−s) dBs.

Example: Black & Scholes equation. Let us consider the SDE

dXt = µXt dt+ σXt dBt, X0 = x0,

where µ ∈ R, σ > 0 and x0 > 0. Here, f(x) = µx and g(x) = σx are Lipschitz, so there exists a unique
strong solution (Xt, t ∈ R+) to the above equation. The solving of this equation is left as an (important)
exercise.

3.3 Time-inhomogeneous SDE’s

A generic time-inhomogeneous SDE is of the form

dXt = f(t,Xt) dt+ g(t,Xt) dBt, X0 = x0,

where x0 ∈ R, f, g : R+ × R→ R and B is a standard Brownian motion.

Theorem 3.4. If f, g are jointly continuous in (t, x) and Lipschitz in x (i.e., there exists a constant L > 0
such that |f(t, x) − f(t, y)| ≤ L |x − y|, ∀t ∈ R+ x, y ∈ R), then there exists a unique strong solution
(Xt, t ∈ R+) to the above equation, that is,

Xt = x0 +
∫ t

0

f(s,Xs) ds+
∫ t

0

g(s,Xs) dBs, a.s., ∀t ∈ R+.

Again, X is a continuous semi-martingale.

A particular subclass: linear SDE’s. Let us consider the SDE

dXt = a(t)Xt dt+ σ(t) dBt, X0 = x0,

where x0 ∈ R, a, σ : R+ → R are continuous and bounded. Here, f(t, x) = a(t)x and g(t, x) = σ(t)
are jointly continuous in (t, x) and Lipschitz in x, so by the above theorem, there exists a unique strong
solution (Xt, t ∈ R+) to this equation.

Solving method. It is a slight generalization of that used for the Ornstein-Uhlenbeck process.

- Let (φt, t ∈ R+) be the (deterministic) process solution of

dφt = a(t)φt dt, φ0 = 1.
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It turns out that φt = exp
(∫ t

0
a(s) ds

)
.

- Let Xt = φt Yt. By the integration by parts formula, we have

dXt = φt dYt + Yt dφt + 0 = φt dYt + a(t)φt Yt dt
= a(t)X(t) dt+ σ(t) dBt

so

φt dYt = σ(t) dBt, i.e., Yt = x0 +
∫ t

0

σ(s)
φs

dBs,

and

Xt = φt x0 +
∫ t

0

σ(s)φt
φs

dBs

Remark. Being a Wiener integral, X is a Gaussian process (but it is not a martingale, nor a process
with independent increments, because of the presence of φt in the integral).

3.4 Weak solutions

Let (Xt, t ∈ R+) be the strong solution (assuming it exists) of the SDE

dXt = f(Xt) dt+ g(Xt) dBt, X0 = x0.

Then notice that

- Mt = Xt −
∫ t

0

f(Xs) ds = x0 +
∫ t

0

g(Xs) dBs is a martingale.

- 〈X〉t =
∫ t

0

g(Xs)2 ds, so Nt = M2
t −

∫ t

0

g(Xs)2 ds is also a martingale.

This gives rise to the following definition.

Definition 3.5. A weak solution to the above equation is a continuous process (Xt, t ∈ R+) such that

- Mt = Xt −
∫ t

0

f(Xs) ds is a martingale.

- Nt = M2
t −

∫ t

0

g(Xs)2 ds is also a martingale.

Remark. There is no more B in this definition! The weak solution X of an equation need therefore not
to be related to it; in particular, it need not be adapted to the same filtration. The weak solution of an
SDE can actually be seen as the distribution of the process X satisfying the above two properties. Notice
also that if X is a strong solution, then it is a weak solution, by what has been said above.

Examples. - A weak solution of dXt = aXt dt +
√
Xt dBt is a continuous process X such that the

processes

Mt = Xt − a
∫ t

0

Xs ds and Nt = M2
t −

∫ t

0

|Xs| ds

are martingales.

- A weak solution of dXt = sgn(Xt) dBt is a continuous process X such that both

Mt = Xt and Nt = M2
t −

∫ t

0

sgn(Xs)2 ds = X2
t − t

are martingales. Therefore, X is a standard Brownian motion (by Lévy’s theorem). But notice that X
cannot be equal (nor adapted) to B!
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4 Change of probability measure

Let us first give a brief motivation. Let X be the solution of the Black-Scholes SDE :

dXt = µXt dt+ σXt dBt, X0 = x0,

representing the evolution over time of a stock price with drift µ and volatility σ. Let now φ be an
investment strategy on X (i.e., φt represents the number of shares of X owned at time t). Then the
process G defined as

Gt =
∫ t

0

φs dXs

represents the gain made over the period [0, t] by investing with the strategy φ on the stock X. If X is
a martingale, then the process G is also a martingale. For computational reasons (see next section), G
being a martingale is very useful. The problem is that when µ 6= 0, the process X (and therefore also the
process G) is a semi-martingale, but not a martingale. So the question is: can one change the underlying
probability measure P so as to transform X into a martingale? The answer is yes: this is Girsanov’s
theorem.

4.1 Exponential martingale

Let M be a continuous square-integrable martingale and let Y be the process defined as

Yt = exp
(
Mt −

〈M〉t
2

)
, t ∈ R+,

Notice that Y is not necessarily a martingale, a priori.

Fact. (to be proven later)
If there exists a constant K > 0 such that

〈M〉t ≤ K t a.s., ∀t ∈ R+, (3)

then Y is a continuous square-integrable martingale. Y is said to be the exponential martingale associated
to M .

Example. If Mt = Bt, then 〈B〉t = t and Yt = exp
(
Bt − t

2

)
is indeed a martingale.

Remarks. - There exists a more general condition than (3) which ensures that the process Y is a
martingale up to a finite time horizon T > 0. This more general condition, called Novikov’s condition,
reads:

E
(

exp
(
〈M〉T

2

))
<∞.

- Under condition (3), one can apply Ito-Doeblin’s formula to conclude that

Yt = 1 +
∫ t

0

Ys dMs a.s., ∀t ∈ R+.

i.e., Y is solution of the SDE:
dYt = Yt dMt, Y0 = 1.

4.2 Change of probability measure

Let (Ω,F ,P) be a probability space and (Ft, t ∈ R+) be a filtration defined on this probability space.
Let also M be a square-integrable martingale M with respect to (Ft, t ∈ R+), satisfying condition (3)
and let Y be the exponential martingale associated to M .
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Let now T > 0 be a given (fixed) horizon in time. We then define a new probability measure P̃T on
(Ω,F):

P̃T = E(1AYT ), A ∈ F .

Let us first check that P̃T is indeed a probability measure :

- P̃T (A) ≥ 0, ∀A ∈ F , since YT = eMT−〈M〉T /2 > 0.

- P̃T (∅) = 0 (clear) and P̃T (Ω) = E(YT ) = E(Y0) = 1, since Y is a martingale.

- Let (An)∞n=1 be such that An ∩Am = ∅, ∀n 6= m. Then

P̃T

( ∞⋃
n=1

An

)
= E

(
1∪∞n=1An

YT
)

= E

( ∞∑
n=1

1AnYT

)
=
∞∑
n=1

E (1AnYT ) =
∞∑
n=1

P̃T (An),

where the third equality follows from the dominated convergence theorem.

Next, notice that P and P̃T are equivalent, which means

P(A) = 0 if and only if P̃T (A) = 0.

Indeed, if P(A) = 0, then E(1AYT ) = 0, since 1A = 0 a.s. On the other hand, if E(1AYT ) = 0, then the
fact that YT > 0 implies that 1A = 0 a.s., i.e., P(A) = 0.

Notice also that alternate definitions of the two probability measures being equivalent are:

P(A) > 0 if and only if P̃T (A) > 0,

P(A) = 1 if and only if P̃T (A) = 1,

P(A) < 1 if and only if P̃T (A) < 1.

Finally, it can be shown that the expectation with respect to the new probability measure P̃T of a random
variable X such that E(|XYT |) <∞ is given by

ẼT (X) = E(X YT ).

Remark. In the literature, YT is called the Radon-Nikodym derivative of P̃T with respect to P.

4.3 Martingales under P and martingales under P̃T

Lemma 4.1. Let t ∈ [0, T ] and Z be an Ft-measurable random variable such that E(|Z YT |) <∞. Then
ẼT (Z) = E(ZYt)

Proof. By definition, we have

ẼT (Z) = E(Z YT ) = E(E(Z YT |Ft)) = E(Z E(YT |Ft)) = E(Z Yt),

where the third equality holds since Z is Ft-measurable and the last equality holds since Y is a martingale.

Lemma 4.2. Let t ∈ [0, T ] and Z be an Ft-measurable random variable such that E(|Z YT |) <∞. Then

ẼT (Z | Fs) = E
(
ZYt
Ys

∣∣∣∣Fs) a.s., ∀0 ≤ s ≤ t.
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Proof. Set W = E
(
ZYt
Ys

∣∣∣Fs). We need to check that ẼT (Z | Fs) = W , that is:

i) W is Fs-measurable: this holds since W is by definition a conditional expectation with respect to Fs.

ii) ẼT (ZU) = ẼT (WU), for any random variable U Fs-measurable and bounded: indeed, since WU is
Fs-measurable, we can use Lemma 4.1 to obtain

ẼT (WU) = E(WUYs) = E
(

E
(
ZYt
Ys

∣∣∣∣Fs)UYs) = E
(

E
(
ZYt
Ys

UYs

∣∣∣∣Fs)) = E(ZYtU) = ẼT (ZU),

by Lemma 4.1 again and the fact that ZU is Ft-measurable.

With these lemmas in hand, we can now establish the following relation between martingales under P
and martingales under P̃T .

Proposition 4.3. Let (Xt, t ∈ [0.T ]) be a continuous and adapted process such that E(|XtYT |) < ∞,
∀t ∈ [0, T ]. Then (Xt, t ∈ [0, T ]) is a martingale under P̃T if and only if (Xt Yt, t ∈ [0, T ]) is a martingale
under P.

Proof. Assume that ẼT (Xt | Fs) = Xs, ∀0 ≤ s ≤ t ≤ T . Then, by Lemma 4.2, we have

E(Xt Yt | Fs) = E
(
Xt Yt
Ys

∣∣∣∣Fs) Ys = ẼT (Xt | Fs)Ys = Xs Ys,

given the assumption made. The reciprocal statement follows the same logic.

The above proposition establishes a correspondence between martingales under P and martingales under
P̃T . This is nevertheless not sufficient for our purpose, which is to “transform” martingales under P into
martingales under P̃T .

4.4 Girsanov’s theorem

Theorem 4.4. Let (Zt, t ∈ [0, T ]) be a continuous square-integrable martingale under P. Then the
process (Zt − 〈M,Z〉t, t ∈ [0, T ]) is a continuous square-integrable martingale under P̃T .

Proof. Let At = 〈M,Z〉t. In order to show that (Zt − At) is a martingale under P̃T , it suffices to show,
by Proposition 4.3, that ((Zt −At)Yt) is a martingale under P. By the integration by parts formula, we
have :

(Zt −At)Yt − (Z0 −A0)Y0 =
∫ t

0

(Zs −As) dYs +
∫ t

0

Ys d(Zs −As) + 〈Y,Z −A〉t

=
∫ t

0

(Zs −As) dYs +
∫ t

0

Ys dZs −
∫ t

0

Ys dAs + 〈Y, Z〉t,

since A has bounded variation. Moreover, since Y and Z are martingales under P, the first two terms
are also martingales under P. In order to conclude, we therefore need to show that∫ t

0

Ys dAs = 〈Y,Z〉t.

Remember that dYt = Yt dMt, so dMt = 1
Yt
dYt and dAt = d〈M,Z〉t = 1

Yt
d〈Y,Z〉t. Therefore,∫ t

0

Ys dAs =
∫ t

0

Ys
1
Ys
d〈Y,Z〉s = 〈Y,Z〉t,

which concludes the proof.
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4.5 First application to SDE’s

Let (Bt, t ∈ R+) be a standard Brownian motion, x0 ∈ R and f : R+ × R → R be jointly continuous in
(t, x), Lipschitz in x and bounded (i.e., ∃K1 < ∞ such that |f(t, x)| ≤ K1, ∀(t, x) ∈ R+ × R). Let also
(Xt, t ∈ R+) be the strong solution of the SDE

dXt = f(t,Xt) dt+ dBt, X0 = x0,

i.e.,

Xt − x0 =
∫ t

0

f(s,Xs) ds+Bt a.s., ∀t ∈ R+.

Under which probability measure P̃T is the process (Xt, t ∈ [0, T ]) a martingale?

In order to use Girsanov’s theorem, we need to start from a martingale Z under P and find another
martingale M under P such that

Xt − x0 = Zt − 〈M,Z〉t.

A priori, the only martingale Z under P that is present in the above equation is B. Let us now assume
that the martingale M is of the form

Mt =
∫ t

0

Hs dBs

for some continuous adapted process H (we will see later that this is not such a restriction), and deduce
what the process H should be. We want

Xt − x0 = Zt − 〈M,Z〉t = Bt −
∫ t

0

Hs ds.

As X satisfies the SDE

Xt − x0 =
∫ t

0

f(s,Xs) ds+Bt,

we deduce that Hs = −f(s,Xs). Indeed, the martingale

Mt = −
∫ t

0

f(s,Xs) dBs

is a continuous square-integrable martingale, that moreover satisfies condition (3):

〈M〉t =
∫ t

0

f(s,Xs)2 ds ≤
∫ t

0

K2
1 ds = K2

1 t.

Let then Y be the exponential martingale associated to M and P̃T be the probability measure defined as
P̃(A) = E(1AYT ).

Proposition 4.5. i) (Xt, t ∈ [0, T ]) is a continuous square-integrable martingale under P̃T .
ii) (Xt, t ∈ [0, T ]) is even a standard Brownian motion under P̃T !

Proof. Part (i) follows from what has been said above. For part (ii), we need the following fact, given
here without proof.

Fact. The quadratic variation of a semi-martingale is invariant under a change of probability measure.
Notice however that (X2

t − 〈X〉t) is a martingale only under the probability measure under which X is
a martingale.

Here, we have 〈X〉t = 〈B〉t = t under P. So by the above fact, it also holds that 〈X〉t = t under P̃T .
Since we just proved that X is a continuous square-integrable martingale under P̃T , we obtain by Lévy’s
theorem that X is a standard Brownian motion under P̃T .
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4.6 Second application to SDE’s

Let (Bt, t ∈ R+) be a standard Brownian motion, x0 ∈ R and f, g : R+ × R → R be jointly continuous
in (t, x), Lipschitz in x, and such that |f(t, x)| ≤ K1 <∞ and |g(t, x)| ≥ K2 > 0, ∀(t, x) ∈ R+ × R. Let
also (Xt, t ∈ R+) be the strong solution of the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dBt, X0 = x0,

i.e.,

Xt − x0 =
∫ t

0

f(s,Xs) ds+
∫ t

0

g(s,Xs) dBs a.s., ∀t ∈ R+.

Under which probability measure P̃T is the process (Xt, t ∈ [0, T ]) a martingale?

As above, we are looking for martingales Z and M under P such that

Xt − x0 = Zt − 〈M,Z〉t.

In the above equation, there are two martingales under P:

Zt = Bt and Zt =
∫ t

0

g(s,Xs) dBs.

We will see that both choices lead to interesting conclusions, but let us start with the second one for now.
Let us again assume that the martingale M is of the form

Mt =
∫ t

0

Hs dBs

for some continuous adapted process H. This gives

Xt − x0 = Zt − 〈M,Z〉t =
∫ t

0

g(s,Xs) dBs −
∫ t

0

Hs g(s,Xs) ds.

As X satisfies the SDE

Xt − x0 =
∫ t

0

f(s,Xs) ds+
∫ t

0

g(s,Xs) dBs,

we obtain that Hs = −f(s,Xs)
g(s,Xs)

. Indeed, the martingale M defined as

Mt = −
∫ t

0

f(s,Xs)
g(s,Xs)

dBs

is a continuous square-integrable martingale satisfying condition (3):

〈M〉t =
∫ t

0

(
f(s,Xs)
g(s,Xs)

)2

ds ≤
∫ t

0

K2
1

K2
2

ds =
K2

1

K2
2

t.

Let then Y be the exponential martingale associated to M and P̃T be the probability measure defined as
P̃(A) = E(1AYT ). From what has been said above, we deduce the following proposition.

Proposition 4.6. (Xt, t ∈ [0, T ]) is a continuous square-integrable martingale under P̃T .

Remarks. - 〈X〉t =
∫ t
0
g(s,Xs)2 ds 6= t in general, so the process X cannot be transformed into a

standard Brownian motion under any probability measure equivalent to P.
- The condition that |g(t, x)| ≥ K2 > 0 is a non-degeneracy condition: it implies that the process X always
has Brownian fluctuations. If this were not the case, then X would be the solution of a classical ODE in
some interval, i.e., a deterministic function. And deterministic functions are not martingales, except if
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they are constant. Moreover, changes of probability measure are obviously inoperative on deterministic
functions!

Choosing now the first option Zt = Bt above, let us see what martingale under P̃T do we obtain (keeping
the same choice for M , that is, the same change of probability measure). In this case,

Zt − 〈M,Z〉t = Bt +
∫ t

0

f(s,Xs)
g(s,Xs)

ds

is a continuous square-integrable martingale under P̃T , whose quadratic variation is equal to 〈B〉t = t.
By Lévy’s theorem, we therefore obtain that

B̃t = Bt +
∫ t

0

f(s,Xs)
g(s,Xs)

ds

is a standard Brownian motion under P̃T . In addition, notice that dB̃t = dBt +
f(s,Xs)
g(s,Xs)

dt, so that

dXt = g(t,Xt) dB̃t, X0 = x0,

i.e., we have obtained here an alternate proof that the process X is a martingale under P̃T (since B̃ is a
standard Brownian motion under P̃T ).

Remark. There is no process X̃!

4.7 A particular case: the Black-Scholes model

Let (Bt, t ∈ R+) be a standard Brownian motion with respect to its natural filtration (Ft, t ∈ R+). Let
x0 > 0, µ ∈ R, σ > 0, and let us consider the SDE

dXt = µXt dt+ σXt dBt, X0 = x0. (4)

The strong solution of this SDE represents the evolution in time of a stock price with drift µ and volatility
σ, starting at x0. As seen in the exercises, the solution is given by

Xt = x0 exp
((

µ− σ2

2

)
t+ σBt

)
, t ∈ R+.

Under what probability measure P̃T is X a martingale? Does such a probability measure even exist?
Here, f(x) = µx is unbounded and g(x) = σx equals zero when x = 0, so there might be a problem.
Nevertheless, let us try defining

Mt = −
∫ t

0

f(s,Xs)
g(s,Xs)

dBs = −
∫ t

0

µXs

σXs
dBs = −µ

σ
Bt.

We see that 〈M〉t =
µ2

σ2
t ≤ K t; it is therefore possible to define a probability measure P̃T starting from

this martingale M . The reason why there is no problem here is that f and g compensate each other
exactly in this model. In addition, the degeneracy of g at x = 0 does not create a problem, as the process
X remains always strictly positive.

Let now Zt =
∫ t

0

σXs dBs; Z is a martingale under P and

Zt − 〈M,Z〉t =
∫ t

0

σXs dBs +
∫ t

0

µ

σ
σXs ds = Xt − x0,
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so X is a continuous square-integrable martingale under P̃T , according to Girsanov’s theorem.

Let also Zt = Bt be the standard Brownian motion under P. Then

Zt − 〈M,Z〉t = Bt +
∫ t

0

µ

σ
ds = Bt +

µ

σ
t = B̃t,

is a standard Brownian motion under P̃T .

Finally, observe that dXt = σXt dB̃t, so

Xt = x0 exp
(
σB̃t −

σ2 t

2

)
.

4.8 Application : pricing of a European call option (Black-Scholes formula)

Remark. In the sequel, we assume for simplicity that the risk-free interest rate r = 0.

Definition 4.7. A European call option is the right to buy a stock X at a future time T (called the
maturity), at a given price K (called the strike). The payoff of such an option at time T is therefore given
by CT = max(XT −K, 0).

Let us assume that the time evolution of the stock X is given by the Black-Scholes equation of the
previous section, with initial price x0, drift µ and volatility σ. X being the strong solution of the SDE
(4), it is adapted to the natural filtration of the standard Brownian motion B.

Question 1. What premium c0 should the seller of such an option ask at time t = 0 in order to be
ensured to recover the wealth CT at time t = T?

From what has been done above, we know that there exists a probability measure P̃T under which the
process (Xt, t ∈ [0, T ]) is a martingale with respect to the Brownian filtration (Ft, t ∈ [0, T ]) and we also
know that

dXt = σXt dB̃t, ∀t ∈ [0, T ],

where B̃t = Bt +
µ

σ
t is the standard Brownian motion under P̃T . Notice moreover that B and B̃ are

adapted to the same Brownian filtration.

In order to answer the above question, we need now the following martingale representation theorem,
given here without proof.

Theorem 4.8. i) Let (Mt, t ∈ [0, T ]) be a continuous square-integrable martingale with respect to the
Brownian filtration (Ft, t ∈ [0, T ]). There exists then a (unique) continuous process (ψt, t ∈ [0, T ])
adapted to (Ft, t ∈ [0, T ]) such that

Mt = M0 +
∫ t

0

ψs dB̃s a.s., ∀t ∈ [0, T ].

ii) In particular, every square-integrable FT -measurable random variable MT admits the (unique) follow-
ing representation:

MT = M0 +
∫ T

0

ψt dB̃t a.s.,

where M0 is an F0-measurable random variable and (ψt, t ∈ [0, T ]) is continuous and adapted to (Ft, t ∈
[0, T ]).

In the sequel, we will assume for simplicity that F0 = {∅,Ω}, the trivial σ-field, so that every F0-
measurable random variable is a constant. From part (ii) of the above theorem, we know therefore that
there exist a constant c0 > 0 and a continuous and adapted process (ψt, t ∈ [0, T ]) such that

CT = max(XT −K, 0) = c0 +
∫ T

0

ψt dB̃t a.s.
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As dXt = σXt dB̃t, this can be rewritten as

CT = c0 +
∫ T

0

φt dXt, where φt =
ψt
σXt

.

The above theorem does not tell us what the value of c0 is. Nevertheless, it tells us that the c0 defined
above is the right value for the premium, as starting from an initial wealth c0 and investing on the stock
X with the strategy φ allows the seller to reach the wealth CT at time T .

Question 2. How to compute c0?

As (Xt, t ∈ [0, T ]) is a martingale under P̃T , the same is true for the process of gains Gt =
∫ t
0
φs dXs. So

ẼT (CT ) = ẼT (c0)︸ ︷︷ ︸
=c0 (constant)

+ ẼT

(∫ T

0

φt dXt

)
︸ ︷︷ ︸

=0

, i.e., c0 = ẼT (CT ) = ẼT (max(XT −K, 0)).

Now, remember that

XT = x0 exp
(
σB̃T −

σ2T

2

)
,

and that B̃ is a standard Brownian motion under P̃T , i.e., B̃T ∼ N (0, T ) under P̃T . Therefore,

c0 = ẼT
(

max
(
x0 exp

(
σB̃T −

σ2T

2

)
−K, 0

))
=

∫
R
dy pT (y) max

(
x0 exp

(
σy − σ2T

2

)
−K, 0

)
,

where

pT (y) =
1√
2πT

exp
(
− y

2

2T

)
, y ∈ R.

This is the Black-Scholes formula. Notice that µ has disappeared from the formula, i.e., the drift of the
stock price does not enter into the computation of the premium!

Remark. This does not solve yet the problem of deciding which strategy φ to apply in order to hedge
the option CT with the initial wealth c0.

Let us now push the computation further: let y0 be such that x0 exp
(
σy0 − σ2T

2

)
−K = 0, i.e.,

y0 = 1
σ

(
log
(
K
x0

)
+ σ2 T

2

)
. Then

c0 =
∫ ∞
y0

dy
1√
2πT

e−
y2

2T

(
x0 e

σy−σ2T
2 −K

)
= x0

∫ ∞
y0

dy
1√
2πT

e−
(y−σT )2

2T −K
∫ ∞
y0

dy
1√
2πT

e−
y2

2T

= x0

∫ ∞
y0−σT

dz
1√
2πT

e−
z2
2T −K

∫ ∞
y0

dy
1√
2πT

e−
y2

2T

= x0

(
1−N

(
y0 − σT√

T

))
−K

(
1−N

(
y0√
T

))
= x0N(d1)−KN(d2),

where N(x) =
∫ x

−∞
dz

1√
2π

e−
z2
2 and

d1 =
σT − y0√

T
=

1
σ
√
T

(
log
(x0

K

)
+
σ2T

2

)
,

d2 = − y0√
T

=
1

σ
√
T

(
log
(x0

K

)
− σ2T

2

)
.
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5 Relation between SDE’s and PDE’s

The goal of this section is to show that solutions of classical (parabolic) partial differential equations
(PDE’s) can be represented by means of stochastic processes which are solutions of SDE’s.

5.1 Forward PDE

Let f, g : R+ × R → R be jointly continuous in (t, x) and Lipschitz in x. Let us also assume that
|g(t, x)| ≥ K > 0, ∀(t, x) ∈ R+ × R (NB: we have already encountered this non-degeneracy condition
before), and let u0 : R→ R be continuous. We consider the following second order parabolic PDE:

u′t(t, x) = f(t, x)u′x(t, x) +
1
2
g(t, x)2 u′′xx(t, x), (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R,
(5)

where the second line is called the initial condition for the above equation.

Fact. It can be shown that under the above assumptions, there exists a solution u(t, x) to the above
equation, which is moreover unique if we impose an additional (weak) technical condition on the growth
of u in x.

Our aim in the following is to find a probabilistic representation of this solution. Let T > 0 and x ∈ R
be fixed, and let (Bt, t ∈ R+) be a standard Brownian motion. Let also (Xx

t , t ∈ [0, T ]) be the (unique)
strong solution of the following SDE: dXx

t = f(T − t,Xx
t ) dt+ g(T − t,Xx

t ) dBt, t ∈ [0, T ],

Xx
0 = x.

(6)

Lemma 5.1. Let u be the solution of (5) and Xx be the solution of (6).
Then the process (u(T − t,Xx

t ), t ∈ [0, T ]) is a martingale.

Proof. Applying Ito-Doeblin’s formula to u(T − t,Xx
t ), we obtain

u(T − t,Xx
t ) = u(T − 0, Xx

0 )−
∫ t

0

u′t(T − s,Xx
s ) ds+

∫ t

0

u′x(T − s,Xx
s ) dXx

s

+
1
2

∫ t

0

u′′xx(T − s,Xx
s ) d〈Xx〉s

= u(T, x) +
∫ t

0

(
− u′t(T − s,Xx

s ) + f(T − s,Xx
s )u′x(T − s,Xx

s )

+
1
2
g(T − s,Xx

s )2 u′′xx(T − s,Xx
s )
)
ds+

∫ t

0

g(T − s,Xx
s )u′x(T − s,Xx

s ) dBs,

since
dXx

s = f(T − s,Xx
s ) ds+ g(T − t,Xx

s ) dBs

and
d〈Xx〉s = g(T − s,Xx

s )2 ds.

As u satisfies (5), the integrand in the above Riemann integral is equal to zero, so we obtain that

u(T − t,Xx
t ) = u(T, x) +

∫ t

0

g(T − s,Xx
s )u′x(T − s,Xx

s ) dBs

is a martingale (remember that T > 0 is fixed).
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Corollary 5.2. Let u be the solution of (5) and Xx be the solution of (6).
Then for all (T, x) ∈ R+ × R, we have u(T, x) = E(u0(Xx

T )).

Proof. Indeed, by the above lemma,

E(u(T − t,Xx
t )) = E(u(T, x)) = u(T, x), ∀t ∈ [0, T ].

So choosing t = T gives
u(T, x) = E(u(0, Xx

T )) = E(u0(Xx
T )),

where the last equality is obtained using the initial condition of (5).

The above formula is one of the many instances of the celebrated Feynman-Kac formula.

Particular case. If f(t, x) ≡ 0 and g(t, x) ≡ 1, then the PDE (5) becomes
u′t(t, x) =

1
2
u′′xx(t, x), (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R.

and is called the heat equation. The SDE (6) becomes dXx
t = dBt, t ∈ [0, T ],

Xx
0 = x.

whose solution Xx
t = Bxt is a Brownian motion starting at point x ∈ R at time t = 0. Notice that

Bxt = Bt + x, where B is a standard Brownian motion. The above corollary then says that

u(T, x) = E(u0(BxT )).

Since BxT ∼ N (x, T ), we further obtain that

u(T, x) =
∫

R
dy pT (x− y)u0(y),

where

pT (x− y) =
1√
2πT

exp
(
− (x− y)2

2T

)
.

This is indeed the solution of the heat equation known from analysis. The term pT (x − y) is called the
Green Kernel of equation (5); it is actually the solution of (5) if one replaces the initial condition u0 with
the Dirac measure δy.

5.2 Backward PDE

Let T > 0 be fixed and let f, g : [0, T ]× R→ R be jointly continuous in (t, x) and Lipschitz in x. Let us
also assume that |g(t, x)| ≥ K > 0, ∀(t, x) ∈ [0, T ] × R, and let h : R → R be continuous. We consider
the following second order parabolic PDE:

u′t(t, x) + f(t, x)u′x(t, x) +
1
2
g(t, x)2 u′′xx(t, x) = 0, (t, x) ∈ [0, T ]× R,

u(T, x) = h(x), x ∈ R,
(7)

where the second line is called the terminal condition for the above equation. This type of condition is
of course more relevant to option pricing, where the option payoff is known at maturity. Notice also the
sign difference in front of the term u′t(t, x) in the two types of equations.
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Fact. Under the above assumptions, there exists a solution to the above equation, which is again unique
under a technical condition on the growth of u is x.

Let now t0 ∈ [0, T [ and x0 ∈ R be fixed. Let (Bt, t ∈ R+) be a standard Brownian motion and let
(Xt0,x0

t , t ∈ [t0, T ]) be the (unique) strong solution of the following SDE: dXt = f(t,Xt) dt+ g(t,Xt) dBt, t ∈ [t0, T ],

Xt0 = x0,
(8)

where we have not kept the superscripts t0, x0 in order to lighten the notation.

Lemma 5.3. Let u be the solution of (7) and Xt0,x0 be the solution of (8).
Then the process (u(t,Xt0,x0

t ), t ∈ [t0, T ]) is a martingale.

Proof. Applying Ito-Doeblin’s formula, we obtain (dropping again the superscripts t0, x0):

u(t,Xt) = u(t0, Xt0) +
∫ t

t0

u′t(s,Xs) ds+
∫ t

t0

u′x(s,Xs) dXs

+
1
2

∫ t

t0

u′′xx(s,Xs) d〈X〉s

= u(t0, x0) +
∫ t

t0

(
u′t(s,Xs) + f(s,Xs)u′x(s,Xs) +

1
2
g(s,Xs)2 u′′xx(s,Xs)

)
ds

+
∫ t

t0

g(s,Xs)u′x(s,Xs) dBs,

since
dXs = f(s,Xs) ds+ g(s,Xs) dBs

and
d〈X〉s = g(s,Xs)2 ds.

As u satisfies (7), the integrand in the above Riemann integral is equal to zero and therefore,

u(t,Xt) = u(t0, x0) +
∫ t

t0

g(s,Xs)u′x(s,Xs) dBs

is a martingale.

Corollary 5.4. Let u be the solution of (7) and Xt0,x0 be the solution of (8).
Then for all (t0, x0) ∈ [0, T ]× R, we have u(t0, x0) = E(h(Xt0,x0

T )).

Proof. Indeed,
E(u(t,Xt0,x0

t )) = E(u(t0, x0)) = u(t0, x0), ∀t ∈ [t0, T ].

So choosing t = T and using the terminal condition of (7) gives

u(t0, x0) = E(u(T,Xt0,x0
T )) = E(h(Xt0,x0

T )).

Particular case. If f(t, x) ≡ 0 and g(t, x) ≡ 1, then the PDE (7) becomes
u′t(t, x) +

1
2
u′′xx(t, x) = 0, (t, x) ∈ [0, T ]× R,

u(T, x) = h(x), x ∈ R,
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and the SDE (8) becomes {
dXt = dBt, t ∈ [t0, T ],
Xt0 = x0.

That is, Xt = Bt0,x0
t is a Brownian motion starting at point x0 ∈ R at time t0 ∈ [0, T ]. Notice that

Bt0,x0
t = Bt−Bt0 +x0, where B is a standard Brownian motion. Since Bt0,x0

T ∼ N (x0, T − t0), we obtain
from the above corollary that

u(t0, x0) = E(h(Bt0,x0
T )) =

∫
R
dy pT−t0(x0 − y)h(y),

where

pT−t0(x0 − y) =
1√

2π(T − t0)
exp

(
− (x0 − y)2

2(T − t0)

)
is the Green Kernel of the PDE (7).

Remarks. - The non-degeneracy condition |g(t, x)| ≥ K > 0 is crucial to all this. Otherwise, the process
X solution of the SDE may stop having fluctuations on some interval; for the corresponding PDE, this
means that the term in u′′xx drops, which changes drastically the nature of the PDE (from second order
to first order).

- It is possible to show directly that the function u(t, x) defined as E(h(Xt,x
T )) is solution of (7), but the

proof is much more cumbersome!

5.3 Generator of a diffusion

Let x0 ∈ R, (Bt, t ∈ R+) be a standard Brownian motion and f, g : R+ × R → R be jointly continuous
in (t, x), Lipschitz in x and such that |g(t, x)| ≥ K > 0, ∀(t, x) ∈ R+ × R. Let also (Xt, t ∈ R+) be the
strong solution of the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dBt, X0 = x0.

X is sometimes called a diffusion process, or more simply a diffusion. In the previous section, we have
seen that if u(t, x) is a solution of the following PDE :

u′t(t, x) + f(t, x)u′x(t, x) +
1
2
g(t, x)2 u′′xx(t, x) = 0,

then the process (u(t,Xt), t ∈ R+) is a martingale (notice that this holds without specifying a terminal
condition for the PDE; it follows from a direct application of Ito-Doeblin’s formula). Let us then define
the linear differential operator At : C1,2(R+ × R)→ C(R+ × R) as

Atu(t, x) = f(t, x)u′x(t, x) +
1
2
g(t, x)2 u′′xx(t, x),

At is called the (infinitesimal) generator of the diffusion X. A reformulation of the above statement
gives: if u′t(t, x) +Atu(t, x) = 0, then the process (u(t,Xt), t ∈ R+) is a martingale.

More generally, the following statement holds: for any u ∈ C1,2(R+ × R), the process(
u(t,Xt)−

∫ t

0

(u′s(s,Xs) +Asu(s,Xs)) ds, t ∈ R+

)
is a martingale. Again, this is a direct consequence of Ito-Doeblin’s formula. Likewise, if v ∈ C2(R), then
the process (

v(Xt)−
∫ t

0

Asv(Xs) ds, t ∈ R+

)
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is a martingale, where At : C2(R)→ C(R) is now defined as

Atv(x) = f(t, x) v′(x) +
1
2
g(t, x)2 v′′(x).

In the particular case where the diffusion X is time-homogeneous, i.e., where

dXt = f(Xt) dt+ g(Xt) dBt, X0 = x0,

with f, g : R→ R Lipschitz and such that |g(x)| ≥ K > 0, ∀x ∈ R, we obtain that for any v ∈ C2(R), the
process (

v(Xt)−
∫ t

0

Av(Xs) ds, t ∈ R+

)
is a martingale, where A : C2(R)→ C(R) is defined as

Av(x) = f(x) v′(x) +
1
2
g(x)2 v′′(x).

Moreover, the following properties hold (the proof is left as an exercise):

lim
t↓0

E
(
v(Xt)− v(x0)

t

)
= Av(x0), lim

t↓0
E
(
Xt − x0

t

)
= f(x0), lim

t↓0
E
(

(Xt − x0)2

t

)
= g(x0)2.

5.4 Markov property

Let T > t > 0 and h : R→ R be continuous and bounded.

- Let (Bt, t ∈ R+) be a standard Brownian motion and (Ft, t ∈ R+) be its natural filtration. We have
already seen that

E(h(BT )|Ft) = E(h(BT −Bt +Bt)|Ft) = ϕ(Bt),

where ϕ(x) = E(h(BT − Bt + x)), as Bt is Ft-measurable and BT − Bt is independent of Ft. A similar
reasoning gives that E(h(BT )|Bt) = ϕ(Bt) also, so the Markov property holds for the standard Brownian
motion B.

- Let µ ∈ R, σ > 0, x0 > 0 and let us consider the SDE

dXt = µXt dt+ σXt dBt, X0 = x0.

We have already seen that the strong solution of this SDE is given by

Xt = x0 exp
((

µ− σ2

2

)
t+ σBt

)
and is adapted to (Ft, t ∈ R+). We therefore also have

XT = x0 exp
((

µ− σ2

2

)
T + σBT

)
= Xt exp

((
µ− σ2

2

)
(T − t) + σ(BT −Bt)

)
.

This implies that

E(h(XT )|Ft) = E
(
h

(
Xt exp

((
µ− σ2

2

)
(T − t) + σ(BT −Bt)

)) ∣∣∣∣Ft) = ϕ(Xt)

where

ϕ(x) = E
(
h

(
x exp

((
µ− σ2

2

)
(T − t) + σ(BT −Bt)

)))
,

as Xt is Ft-measurable and BT −Bt is independent of Ft. Likewise, E(h(XT )|Ft) = ϕ(Xt), so the Markov
property also holds for the process X.
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- More generally, let f, g : R+ × R → R be jointly continuous in (t, x) and Lipschitz in x, and let X be
the strong solution of the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dBt, X0 = x0.

It can then be shown in this more general case that

E(h(XT )|Ft) = ϕ(Xt) = E(h(XT )|Xt),

where ϕ(x) = E(h(Xt,x
T )), with Xt,x the strong solution of dXs = f(s,Xs) ds+ g(s,Xs) dBs, s ∈ [t, T ],

Xt = x.

5.5 Application: option pricing and hedging

Let (Bt, t ∈ R+) be a standard Brownian motion and (Ft, t ∈ R+) be its natural filtration. Let x0 ∈ R,
f, g : R+ × R → R be jointly continuous in (t, x), Lipschitz in x and such that |f(t, x)| ≤ K1 < ∞ and
|g(t, x)| ≥ K2 > 0,∀(t, x) ∈ R+ × R. Let X be the strong solution of the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dBt, X0 = 0,

and assume that this SDE describes the time evolution of a stock price X, in a market where the risk-free
interest rate r = 0.

Definition 5.5. A European option on the stock X with maturity T is an option whose payoff ZT at
time T only depends on the final value of the stock XT , i.e., ZT = h(XT ), for some function h ∈ C(R).

Question 1. What premium Zt should the seller of such an option ask at time t < T?

Question 2. What strategy (φs, s ∈ [t, T ]) should the seller use during the time interval [t, T ] in order
to hedge the option?

As already seen, there exists a (unique) probability measure P̃T under which the process (Xt, t ∈ [0, T ])
is a martingale. Moreover,

dXt = g(t,Xt) dB̃t,

where B̃ is a standard Brownian motion under P̃T .

Using again part (ii) of Theorem 4.8, we know that there exist a constant z0 ∈ R and a continuous and
adapted process (ψs, s ∈ [0, T ]) such that the payoff ZT = h(XT ) of the above option may be written as

ZT = z0 +
∫ T

0

ψt dB̃t.

As dB̃t = dXt
g(t,Xt)

, this says that

ZT = z0 +
∫ T

0

φt dXt, (9)

where φt = ψt
g(t,Xt)

is also a continuous and adapted process (remember that by assumption, |g(t, x)| ≥
K > 0). Let us now define Zt as

Zt = z0 +
∫ t

0

φs dXs.

It is then clear that

ZT = Zt +
∫ T

t

φs dXs.
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At time t < T , Zt is therefore the right price for the premium, as it allows to reach a wealth ZT at time
T with the strategy φ on [t, T ].

Defining now Gt =
∫ t
0
φs dXs, we obtain

ẼT (ZT |Ft) = ẼT (Zt|Ft) + ẼT

(∫ T

t

φs dXs

∣∣∣∣Ft
)

= Zt + ẼT (GT −Gt|Ft) = Zt,

as Zt is Ft-measurable and G is a martingale under P̃T . So

Zt = ẼT (ZT |Ft) = ẼT (h(XT )|Ft) = ẼT (h(XT )|Xt) = z(t,Xt),

as X satisfies the Markov property. Moreover, we have seen above that

z(t, x) = ẼT (h(Xt,x
T )),

where Xt,x is the strong solution of dXs = g(s,Xs) dB̃s, s ∈ [t, T ],

Xt = x.

Remembering now the link established previously between SDE’s and PDE’s, we see that z(t, x) is the
solution of the following PDE:

z′t(t, x) +
1
2
g(t, x)2 z′′xx(t, x) = 0, (t, x) ∈ [0, T ]× R,

z(T, x) = h(x), x ∈ R.

So the premium at time t is given by Zt = z(t,Xt), where z(t, x) is the solution of the above PDE. This
solves Question 1.

Now, what about Question 2, i.e, the hedging strategy φ? Using Ito-Doeblin’s formula, we see that

ZT − z0 = z(T,XT )− z(0, x0)

=
∫ T

0

z′t(t,Xt) dt+
∫ T

0

z′x(t,Xt) dXt +
1
2

∫ T

0

z′′xx(t,Xt) d〈X〉t.

As d〈X〉t = g(t,Xt)2 dt, we obtain

ZT − z0 =
∫ T

0

(
z′t(t,Xt) +

1
2
g(t,Xt)2 z′′xx(t,Xt)

)
dt+

∫ T

0

z′x(t,Xt) dXt

=
∫ T

0

z′x(t,Xt) dXt,

since z(t, x) satisfies the above PDE. Comparing now this formula with (9), we deduce that φt = z′x(t,Xt),
for t ∈ [0, T ]. This strategy is called the delta-hedging strategy (where delta actually stands for derivative).
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6 Multidimensional processes

In this chapter, we quickly review all the notions of the class in the multidimensional context. The aim
here is to point towards concepts whose generalization to the multidimensional case is not immediate.
Let us start with some basic definitions.

- A standard n-dimensional Brownian motion is a vector B = (B(1), . . . , B(n)) of n standard (one-
dimensional) Brownian motions with respect to a given filtration (Ft, t ∈ R+), which are moreover
assumed to be independent.

- An n-dimensional martingale is a vector M = (M (1), . . . ,M (n)) of n martingales with respect to a given
filtration (Ft, t ∈ R+) (these need not be independent).

- An n-dimensional continuous semi-martingale is a vector X = (X(1), . . . , X(n)) of n continuous semi-
martingales with respect to a given filtration (Ft, t ∈ R+) (again, these need not be independent).

Multidimensional stochastic integral.
- Let B = (B(1), . . . , B(m)) be a standard m-dimensional Brownian motion with respect to a filtration
(Ft, t ∈ R+).

- Let H = (H(i,j))n,mi,j=1 be an n ×m matrix of continuous processes adapted to (Ft, t ∈ R+) and such
that

E
(∫ t

0

(H(i,j)
s )2 ds

)
<∞, ∀t ∈ R+, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

- Let us then define the processes

M
(i)
t =

m∑
j=1

∫ t

0

H(i,j)
s dB(j)

s =
m∑
j=1

(H(i,j) ·B(j))t, 1 ≤ i ≤ n.

The process M = (M (1), . . . ,M (n)) is an n-dimensional continuous square-integrable martingale. We

may use the following vector notation: M t =
∫ t

0

Hs dBs.

Interpretation. M describes the fluctuations of n processes generated by m independent sources of
noise B(1), . . . , B(m). The quadratic covariations of these processes can be computed as follows :

〈M (i),M (k)〉t =
m∑

j,l=1

〈(H(i,j) ·B(j)), (H(k,l) ·B(l))〉t

=
m∑

j,l=1

∫ t

0

H(i,j)
s H(k,l)

s d〈B(j), B(l)〉s =
m∑
j=1

∫ t

0

H(i,j)
s H(k,j)

s ds,

since

〈B(j), B(l)〉t =
{
t, if j = l,
0, otherwise, since B(j) ⊥⊥ B(l) for j 6= l.

6.1 Multidimensional Ito-Doeblin’s formula

Let X = (X(1), . . . , X(n)) be an n-dimensional continuous semi-martingale and let f ∈ C2(Rn) (with
values in R) be such that

E
(∫ t

0

(f ′xi(Xs))
2 d〈X(i)〉s

)
<∞, ∀t ∈ R+, 1 ≤ i ≤ n.

Then

f(Xt)− f(X0) =
n∑
i=1

∫ t

0

f ′xi(Xs) dX
(i)
s +

1
2

n∑
i,k=1

∫ t

0

f ′′xi,xk(Xs) d〈X(i), X(k)〉s a.s., ∀t ∈ R+.
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Remark. This formula contains all the previous versions that we have seen.

Important example. If X = B is a standard n-dimensional Brownian motion, then as seen above,

〈B(i), B(k)〉t =
{
t, if i = k,
0, otherwise.

Therefore, if

E
(∫ t

0

(f ′xi(Bs))
2 ds

)
<∞, ∀t ∈ R+, 1 ≤ i ≤ n, (10)

then

f(Bt)− f(B0) =
n∑
i=1

∫ t

0

f ′xi(Bs) dB
(i)
s +

1
2

∫ t

0

∆f(Bs) ds a.s., ∀t ∈ R+.

where

∆f(x) =
n∑
i=1

f ′′xi,xi(x)

is the Laplacian of the function f . Therefore, if condition (10) is satisfied, then the process(
f(Bt)− f(B0)− 1

2

∫ t

0

∆f(Bs) ds, t ∈ R+

)
is a martingale (NB: this says that A = 1

2 ∆ is the generator of the n-dimensional Brownian motion B).
In particular:

- If f is harmonic (i.e., ∆f(x) = 0, ∀x ∈ Rn), then the process (f(Bt), t ∈ R+) is a martingale.

- If f is superharmonic (i.e., ∆f(x) ≤ 0, ∀x ∈ Rn), then the process (f(Bt), t ∈ R+) is a supermartingale.

- If f is subharmonic (i.e., ∆f(x) ≥ 0, ∀x ∈ Rn), then the process (f(Bt), t ∈ R+) is a submartingale.

This is the explanation for the counter-intuitive terminology adopted for sub- and supermartingales.

6.2 Multidimensional SDE’s

Let x0 ∈ Rn and B be a standard m-dimensional Brownian motion. We need now an extension of the
notion of Lipschitz function to the multidimensional case.

Definition 6.1. A function f : R+×Rn → Rn, (t, x) 7→ f(t, x) is Lipschitz in x if there exists a constant
L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, ∀t ∈ R+, x, y ∈ Rn,

where ‖x‖2 =
∑n
i=1 x

2
i is the Euclidean norm in Rn.

Let then f, g(1), . . . , g(m) : R+ × Rn → Rn be jointly continuous in (t, x) and Lipschitz in x. Let us
consider the multidimensional SDE

dXt = f(t,Xt) dt+
m∑
j=1

g(j)(t,Xt) dB
(j)
t , X0 = x0,

which reads, component by component, as

dX
(i)
t = f (i)(t,Xt) dt+

m∑
j=1

g(i,j)(t,Xt) dB
(j)
t , X

(i)
0 = x

(i)
0 , 1 ≤ i ≤ n,

where g(i,j) stands for the ith-component of the function g(j).

Remark. In general, these n equations are coupled, which makes their resolution much harder than in
the one-dimensional case.
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Theorem 6.2. Under the above assumptions, there exists a unique strong solution X to the above SDE.

Example 1.  dXt = − 1
2Xt dt− Yt dBt, X0 = 1,

dYt = − 1
2Yt dt+Xt dBt, Y0 = 0.

Here, n = 2 and m = 1, f(t, x, y) = (− 1
2x,−

1
2y) and g(1)(t, x, y) = (−y, x) are jointly continuous in

(t, x, y) and Lipschitz in (x, y) (since linear). There exists therefore a unique strong solution (Xt, Yt). We
have seen in the exercices that Xt = cos(Bt) and Yt = sin(Bt). That is, the solution “lives” on the circle
of radius 1, i.e., a submanifold of dimension 1 in R2. This is related to the fact the two-dimensional SDE
is “driven” by a single one-dimensional Brownian motion.

Example 2.  dXt = Yt dt, X0 = 1,

dYt = −Xt dt+Xt dBt, Y0 = 0.

Here again, there exists a unique strong solution. Nevertheless, as simple as this equation may look, its
solution does not have a simple analytical form!

Notice also that if we allow ourselves to write dBt
dt (the white noise), we can rewrite the above equation

as a second order SDE:
d2Xt

dt2
= −Xt +Xt

dBt
dt

.

Example 3. Multidimensional Black-Scholes equation.

dX
(i)
t = µiX

(i)
t dt+

m∑
j=1

σijX
(i)
t dB

(j)
t , X

(i)
0 = x

(i)
0 , 1 ≤ i ≤ n.

Notice that these equations are decoupled and therefore much easier to solve than the previous ones. The
solution reads

X
(i)
t = x

(i)
0 exp

µi − 1
2

m∑
j=1

σ2
ij

 t+
m∑
j=1

σijB
(j)
t

 , 1 ≤ i ≤ n.

Whether the n-dimensional process X = (X(1), . . . , X(n)) fills the whole space Rn or not depends on the
number of Brownian motions (or sources of noise) generating it, as well as the volatilities σij . We will
come back to this when talking about the existence of a martingale measure.

Linear multidimensional SDE’s (or multidimensional Ornstein-Uhlenbeck process).
Let x0 ∈ Rn, B be a standard m-dimensional Brownian motion, A = (aik) be an n × n matrix and
Σ = (σij) be an n×m matrix. We consider the SDE

dXt = AXt dt+ Σ dBt, X0 = x0.

Here, f (i)(t, x) =
∑n
k=1 aikxk and g(i,j)(t, x) = σij . There exists therefore a unique strong solution X to

the above equation.

Solving method.
- Let Φ be the n× n matrix-valued (and deterministic) process solution of

dΦt = AΦt dt, Φ0 = I.

The solution of this equation reads Φt = exp(tA) =
∑
k≥0

(tA)k

k! , t ∈ R. It can moreover be shown that

(Φt)−1 = Φ−t and ΦtΦs = ΦsΦt = Φt+s. (11)
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- Let us then write Xt = Φt Yt. Since Φ has bounded variation, we obtain, using the multidimensional
integration by parts formula, that

dXt = (dΦt)Y t + Φt dY t + 0 = AΦtY t dt+ Φt dY t.

Since dXt = AXt dt+ Σ dBt also, we obtain that Φt dY t = Σ dBt, i.e.,

dY t = Φ−1
t Σ dBt, Y 0 = x0,

leading to

Y t = x0 +
∫ t

0

Φ−1
s Σ dBs.

Finally,

Xt = Φt x0 +
∫ t

0

Φt Φ−1
s Σ dBs = Φt x0 +

∫ t

0

Φt−s Σ dBs.

using the above properties (11) of the process Φ.

6.3 Drift vector, diffusion matrix and weak solution

Let X =
(
X(1), . . . , X(n)

)
be the strong solution of the multidimensional SDE

dX
(i)
t = f (i)(t,Xt) dt+

m∑
j=1

g(i,j)(t,Xt) dB
(j)
t , X

(i)
0 = x

(i)
0 , 1 ≤ i ≤ n, (12)

where B =
(
B(1), . . . , B(m)

)
is a standard m-dimensional Brownian motion and f and g(1), . . . , g(m) are

jointly continuous in (t, x) and Lipschitz in x. In order to define what is a weak solution of equation (12),
we first observe that

(i) The process M (i)
t = X

(i)
t −

∫ t

0

f (i)(s,Xs) ds is a martingale ∀1 ≤ i ≤ n.

The vector f(t, x) is called the drift vector of the process X.

Next, let us compute the quadratic covariation of the martingales M (i) and M (k):

〈M (i),M (k)〉t =
m∑

j,l=1

∫ t

0

g(i,j)(s,Xs) g
(k,l)(s,Xs) d〈B(j), B(k)〉s

=
m∑
j=1

∫ t

0

g(i,j)(s,Xs)g
(k,j)(s,Xs) ds.

We therefore obtain that

(ii) The process N (i,k)
t = M

(i)
t M

(k)
t −

m∑
j=1

∫ t

0

g(i,j)(s,Xs) g
(k,j)(s,Xs) ds is a martingale ∀1 ≤ i, k ≤ n.

The matrix G(t, x) whose entries are defined as

G(i,k)(t, x) =
m∑
j=1

g(i,j)(t, x)g(k,j)(t, x)

is called the diffusion matrix of the process X. In matrix notation, this gives G(t, x) = g(t, x)g(t, x)T .
This leads finally to the following definition.

Definition 6.3. An n-dimensional process X such that the processes M (i) and N (i,k) defined in (i) and
(ii) respectively are martingales ∀1 ≤ i, k ≤ n is called a weak solution of the SDE (12).

The process X is called a diffusion; its statistical properties are entirely characterized by the drift vector
f(t, x) and the diffusion matrix G(t, x). Notice that there are different matrices g(t, x) leading to the
same diffusion matrix G(t, x) (like in the one-dimensional case, where g(t, x) and −g(t, x) give rise to the
same diffusion coefficient g(t, x)2). Finally, notice that the process X satisfies the Markov property.

33



6.4 Existence of a martingale measure

Question. Under which conditions on f and G does there exist a probability measure P̃T under which
the process X solution of (12) is an n-dimensional martingale up to time T (i.e., X(1), . . . , X(n) are
simultaneously martingales under P̃T )?

Remark. The question of whether the measure P̃T is unique is not addressed here (and was not addressed
before either).

Let us make the following additional assumptions on f and G:

(i) ∃K1 <∞ such that ‖f(t, x)‖ ≤ K1, ∀(t, x) ∈ R+ × Rn.

(ii) ∃K2 > 0 such that
∑n
i,j=1G

(i,j)(t, x) ξi ξk ≥ K2 ‖ξ‖2, ∀(t, x) ∈ R+ × Rn, ∀ξ ∈ Rn.

If assumption (ii) is satisfied, the diffusion X is said to be non-degenerate. Let us make here some remarks
about this non-degeneracy condition, starting with a slightly more general one: we say that the diffusion
X is non-degenerate in the domain D ⊂ Rn if

n∑
i,k=1

G(i,k)(t, x) ξi ξk > 0 ∀(t, x) ∈ R+ ×D,∀ξ ∈ Rn such that ξ 6= 0. (13)

Notice that since G(t, x) = g(t, x) g(t, x)T , it always holds that ∀(t, x) ∈ R+ × Rn, ξ ∈ Rn,

n∑
i,j=1

G(i,k)(t, x) ξi ξk = ξT G(t, x) ξ = ‖g(t, x)T ξ‖2 ≥ 0,

i.e., that the matrix G(t, x) is positive semi-definite. Condition (13) with the strict inequality imposes
moreover that G(tx) is positive definite on the domain D. Conditions equivalent to (13) are :

- all eigenvalues of G(t, x) are strictly positive, ∀(t, x) ∈ R+ ×D.

- detG(t, x) > 0, ∀(t, x) ∈ R+ ×D.

- G(t, x) is invertible, ∀(t, x) ∈ R+ ×D.

- rank(G(t, x)) = n, ∀(t, x) ∈ R+ ×D.

Notice that as G(t, x) = g(t, x) g(t, x)T and g(t, x) is an n ×m matrix, rank(G(t, x) ≤ min(n,m). So if
m < n (i.e., if the number of Brownian motions is less than the number of processes X in (12)), then the
above condition cannot be satisfied, so the diffusion X is degenerate.

Proposition 6.4. Under the above assumptions (i) and (ii), there exists a probability measure P̃T under
which the process X solution of (12) is a multidimensional martingale.

Proof. For the proof, we follow the strategy used in the one-dimensional case, i.e., we search for a
martingale M under P such that 〈M〉t ≤ Kt and n martingales Z(1), . . . , Z(n) under P such that

Z
(i)
t − 〈M,Z(i)〉t = X

(i)
t −X

(i)
0 , ∀1 ≤ i ≤ n, (14)

as we know from Girsanov’s theorem that if this is the case, then the processes X(i) are all martingales
under the probability measure P̃T defined from the martingale M (remember that P̃T is defined as
P̃T (A) = E(1A YT ), where YT = exp(MT − 〈M〉T /2)).

Natural candidates for the processes Z(i) are the martingale parts of the processes X(i), i.e.,

Z
(i)
t =

m∑
j=1

∫ t

0

g(i,j)(s,Xs) dB
(j)
s , 1 ≤ i ≤ n.
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Let us then define

h(l)(t, x) =
n∑
k=1

f (k)(t, x) (G−1)(k,l)(t, x), 1 ≤ l ≤ n,

and

Mt = −
n∑
l=1

∫ t

0

h(l)(s,Xs) dZ
(l)
s .

Notice first that the functions h(l)(t, x) are well defined, as G(t, x) is invertible by assumption (ii), and
that the process M is a martingale (under P), being a multiple sum of stochastic integrals (leaving aside
the usual technical condition). Let us then check that 〈M〉t ≤ Kt for some K > 0: M can be rewritten
as

Mt = −
n∑

k,l=1

m∑
j=1

∫ t

0

f (k)(s,Xs) (G−1)(k,l)(s,Xs) g
(l,j)(s,Xs) dB

(j)
s

= −
m∑
j=1

∫ t

0

f(s,Xs)
T G−1(s,Xs) g

(j)(s,Xs) dB
(j)
s ,

in matrix form. So

〈M〉t =
m∑
j=1

∫ t

0

(
f(s,Xs)

T G−1(s,Xs) g
(j)(s,Xs)

)2

ds

=
m∑
j=1

∫ t

0

f(s,Xs)
T G−1(s,Xs) g

(j)(s,Xs) g
(j)(s,Xs)

T G−1(s,Xs) f(s,Xs) ds

=
∫ t

0

f(s,Xs)
T G−1(s,Xs)G(s,Xs)G

−1(s,Xs) f(s,Xs) ds

=
∫ t

0

f(s,Xs)
T G−1(s,Xs) f(s,Xs) ds.

We now use assumptions (i) and (ii). Assumption (ii) actually says that ∃K2 > 0 such that

ξT G−1(t, x) ξ ≤ 1
K2
‖ξ‖2, ∀(t, x) ∈ R+ × Rn, ∀ξ ∈ Rn.

This implies that

〈M〉t ≤
1
K2

∫ t

0

‖f(s,Xs)‖2 ds ≤
K2

1

K2
t,

where we have used assumption (i) for the second inequality. So by what was said in the one-dimensional
case, we know that P̃T defined above is a valid probability measure. Let us then check equation (14),
computing first 〈M,Z(i)〉t for 1 ≤ i ≤ n:

〈M,Z(i)〉t = −
n∑

k,l=1

m∑
j=1

∫ t

0

f (k)(s,Xs) (G−1)(k,l)(s,Xs) g
(l,j)(s,Xs) g

(i,j)(s,Xs) ds

= −
n∑

l,k=1

∫ t

0

f (k)(s,Xs) (G−1)(k,l)(s,Xs)G
(l,i)(s,Xs) ds

= −
n∑
k=1

∫ t

0

f (k)(s,Xs) δki ds = −
∫ t

0

f (i)(s,Xs) ds.

Therefore, using the definition of Z(i) and the fact that X(i) is solution of (12), we obtain that

Z
(i)
t − 〈M,Z(i)〉t = X

(i)
t −X

(i)
0 , ∀1 ≤ i ≤ n,

and these process are all martingales under P̃T by Girsanov’s theorem, so the proposition is proved.
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6.5 Relation between SDE’s and PDE’s in the multidimensional case

The stochastic representation of solutions of second order parabolic PDE’s can be generalized to the
multidimensional case in a relatively straightforward manner. Namely, if Xt0,x0 is the solution of the
SDE (12) with the initial condition replaced by Xt0

= x0, if the above assumptions (i) and (ii) are
satisfied and if u(t, x) is the solution of the PDE

u′t(t, x) +
n∑
i=1

f (i)(t, x)u′xi(t, x) +
1
2

n∑
i,k=1

G(i,k)(t, x)u′′xi,xk(t, x) = 0, (t, x) ∈ [0, T ]× Rn,

u(T, x) = h(x), x ∈ Rn,

(15)

then the process (u(t,Xt0,x0
s ), s ∈ [t0, T ]) is a martingale and hence,

u(t0, x0) = E(h(Xt0,x0
T )).

Below, we study the stochastic representation of the solution of a multidimensional elliptic PDE.

Fact. Let D be an open and bounded domain in Rn and ∂D be its (smooth) boundary. Let h ∈ C(∂D).
Then there exists a unique function u ∈ C2(D) such that ∆u(x) = 0, ∀x ∈ D,

u(x) = h(x), ∀x ∈ ∂D.
(16)

Remark. The function u takes values in R (not in Rn).

Stochastic representation of the solution.
Let Bx be an n-dimensional Brownian motion starting at point x ∈ D at time t = 0 (i.e., Bxt = x+ Bt,
where B is a standard n-dimensional Brownian motion). Let also

τ = inf{t > 0 : Bxt /∈ D}

be the first exit time of Bx from the domain D; τ is a stopping time. Notice also that Bxτ ∈ ∂D.

Proposition 6.5. The solution of (16) reads

u(x) = E(h(Bxτ )), ∀x ∈ D.

Proof. - Let us first show that the process
(
u(Bxt ), 0 ≤ t ≤ τ

)
is a martingale. By the multidimensional

Ito-Doeblin formula, we have

u(Bxt )− u(Bx0) =
n∑
i=1

∫ t

0

u′xi(B
x
s ) dB(i)

s +
1
2

∫ t

0

∆u(Bxs ) ds

=
n∑
i=1

∫ t

0

u′xi(B
x
s ) dB(i)

s ,

since ∆u(x) = 0, ∀x ∈ D and Bxs ∈ D, ∀s ≤ τ .

- Applying therefore the optional stopping theorem, we obtain

u(x) = E(u(Bx0)) = E(u(Bxτ )) = E(h(Bxτ )),

where the third equality holds since u(x) = h(x) on ∂D and Bxτ ∈ ∂D.

36



7 Local martingales

7.1 Preliminary: unbounded stopping times

Let us first recall a result mentioned previously.

Optional stopping theorem (version 1). Let M be a continuous martingale with respect to a
filtration (Ft, t ∈ R+), and let τ1, τ2 be two stopping times with respect to this filtration such that

0 ≤ τ1 ≤ τ2 ≤ K <∞ a.s.

(i.e. τ1, τ2 are bounded stopping times). Then

E(Mτ2 |Fτ1) = Mτ1 a.s., so E(Mτ2) = E(Mτ1).

The following proposition is a variation of the above theorem, and is given here without proof.

Proposition 7.1. Let M be a continuous martingale with respect to a filtration (Ft, t ∈ R+) and let
τ be a stopping time with respect to this filtration. Then the stopped process Mτ = (Mt∧τ , t ∈ R+) is
also a martingale, i.e.

- (i) E(|Mt∧τ |) <∞, ∀t ∈ R+.

- (ii) E(Mt∧τ |Fs) = Ms∧τ a.s., ∀t > s ≥ 0.

In order to deal with unbounded stopping times, we first need to make sure that the processes evaluated at
these stopping times converge to some limit as time goes to infinity. We give below a sufficient condition
ensuring that a martingale converges to some limit M∞ as t→∞.

Proposition 7.2. Let M be a continuous square integrable martingale such that

E
(

sup
t≥0
|Mt|2

)
<∞. (17)

Then there exists a square-integrable random variable M∞ such that

lim
t→∞

Mt = M∞ a.s. and Mt = E(M∞|Ft) a.s. ∀t ∈ R+.

Terminology. In this case, the martingale M is said to be closed at infinity.

Optional stopping theorem (version 2). Let M be a continuous square-integrable martingale satis-
fying condition (17) and let τ1, τ2 be two stopping times such that

0 ≤ τ1 ≤ τ2 ≤ ∞ a.s.

Then
E(Mτ2 |Fτ1) = Mτ1 a.s., so E(Mτ2) = E(Mτ1).

Application. Let M be a continuous square-integrable martingale such that M0 = 0; let then a > 0 and
τa = inf{t > 0 | |Mt| ≥ a}; τa is a stopping time. So by Proposition 7.1, Mτa is a martingale; it moreover
satisfies condition (17), since

E(sup
t≥0
|Mt∧τa |2) ≤ a2 <∞.

Choose then τ1 = 0, τ2 =∞ and apply the above theorem:

E(M∞∧τa) = E(M0∧τa) i.e., E(Mτa) = E(M0) = 0,

even though τa is an unbounded stopping time and M does not satisfy condition (17).

Remark. The same reasoning cannot be made with τ ′a = inf{t > 0 : Mt ≥ a}. This would indeed lead
to the following contradiction:

0 < a = E(Mτ ′a
) = E(M0) = 0.
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7.2 Local martingales

Definition 7.3. A local martingale with respect to a filtration (Ft, t ∈ R+) is a process M such that
there exists an increasing sequence (τn, n ≥ 1) of stopping times with respect to (Ft, t ∈ R+) such that
τn →

n→∞
∞ a.s. and Mτn is a martingale, ∀n ≥ 1. That is, if M is a local martingale, then

(i) E(|Mt∧τn |) <∞, ∀t ≥ 0, ∀n ≥ 1.

(ii) E(Mt∧τn |Fs) = Ms∧τn , ∀t > s ≥ 0, ∀n ≥ 1.

Facts.

- From Proposition 7.1, we see that if M is a martingale, then it is also a local martingale.

- If M is a local martingale such that E(sup0≤s≤t |Ms|) < ∞, ∀t ≥ 0, then M is a martingale (proof to
come in the next section).

- If M is a local martingale such that E(|Mt|) <∞, ∀t ≥ 0, then this does not necessarily imply that M
is a martingale.

- If M is a continuous local martingale, then it is always possible to replace the sequence (τn, n ≥ 1) in
the definition by

τ ′n = inf{t > 0 : |Mt| ≥ n}, n ≥ 1.

Why should one be interested in local martingales?

- Local martingales allow to get rid of the integrability condition E(|Mt|) <∞ and many other technical
conditions, as we will see below.

- The above definition also allows to deal easily with processes defined only up to a stopping time τ
(replacing the condition τn →

n→∞
∞ by τn →

n→∞
τ).

Quadratic variation.

Theorem 7.4. Let M be a continuous local martingale. Then there exists a unique process A which
is increasing, continuous, adapted and such that A0 = 0 and (M2

t − At, t ≥ 0) is a continuous local
martingale.

Terminology. A is called the quadratic variation of M and is denoted as At = 〈M〉t.

Continuous semi-martingale.

Definition 7.5. A continuous semi-martingale is a process X that can be expressed as the sum of a
continuous local martingale M and a continuous process V with bounded variation adapted to the same
filtration as M such that V0 = 0, i.e., Xt = Mt + Vt, t ∈ R+. The quadratic variation of X is defined as
〈X〉t = 〈M〉t, t ∈ R+.

Remark. The above definition is the standard one found in textbooks. The previous definition of semi-
martingale given in this class is a non-standard one.

Stochastic integral.

Let M be a continuous local martingale and let H be a continuous and adapted process. Let also n ≥ 1
and

τn = inf
{
t > 0 : |Mt| ≥ n or

∫ t

0

H2
s d〈M〉s ≥ n

}
.

Up to time τn, Mτn is a continuous square-integrable martingale and the technical condition

E
(∫ t∧τn

0

H2
s d〈M〉s

)
<∞
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is satisfied. It is therefore possible to define a process (Nt =
∫ t
0
Hs dMs, t ∈ R+) such that Nτn matches

with the previous definition of stochastic integral, ∀n ≥ 1. In particular, Nτn is a continuous martingale
∀n ≥ 1, so N is a continuous local martingale.

Ito-Doeblin’s formula.

Let us consider three particular instances of the formula.

- Let M be a continuous local martingale and f ∈ C2(R). Then

f(Mt)− f(M0) =
∫ t

0

f ′(Ms) dMs︸ ︷︷ ︸
continuous local martingale

+
1
2

∫ t

0

f ′′(Ms) d〈M〉s︸ ︷︷ ︸
process with bounded variation

a.s., ∀t ∈ R+.

The formula holds now without additional technical condition, and says that the process (f(Mt), t ∈ R+)
is a continuous semi-martingale (in the sense defined above).

- Let X be a continuous semi-martingale and f ∈ C2(R). Then

f(Xt)− f(X0) =
∫ t

0

f ′(Xs) dXs +
1
2

∫ t

0

f ′′(Xs) d〈X〉s a.s., ∀t ∈ R+.

Again, the process (f(Xt), t ∈ R+) is a continuous semi-martingale.

- Let B be a standard n-dimensional Brownian motion and f ∈ C2(Rn). Then

f(Bt)− f(B0) =
n∑
i=1

∫ t

0

f ′xi(Bs) dB
(i)
s +

1
2

∫ t

0

∆f(Bs) ds a.s., ∀t ∈ R+.

Again, the process (f(Bt), t ∈ R+) is a continuous semi-martingale.

In particular:

- if ∆f(x) = 0, ∀x ∈ Rn, then f(B) is a continuous local martingale.

- if ∆f(x) ≥ 0, ∀x ∈ Rn, then f(B) is a continuous local submartingale.

- if ∆f(x) ≤ 0, ∀x ∈ Rn, then f(B) is a continuous local supermartingale.

Whether the word “local” can be removed or not in the above sentences depends now on technical
conditions. From what we have already seen, we know that if ∆f(x) = 0, ∀x ∈ Rn and

E
(∫ t

0

(f ′xi(Bs))
2 ds

)
<∞, ∀t ∈ R+, ∀1 ≤ i ≤ n, (18)

then f(B) is a continuous square-integrable martingale. Since

〈f(B)〉t =
n∑
i=1

∫ t

0

(f ′xi(Bs))
2 ds

(notice that this process is always well defined, even in the case where f(B) is not a martingale), we see
that condition (18) is equivalent to

E(〈f(B)〉t) <∞, ∀t ∈ R+.

More generally, if M is a continuous local martingale such that E(〈M〉t) < ∞, ∀t ∈ R+, then M is a
continuous square-integrable martingale. Such a condition therefore guarantees that M is a continuous
square-integrable martingale, but it is not a necessary condition for M being a martingale. The following
section addresses this issue more closely.
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7.3 When is a local martingale also a martingale?

Let us first recall three important theorems from measure theory.

Reminder. Let (an, n ≥ 1) be a sequence of real numbers:

lim inf
n→∞

an = lim
n→∞

inf
k≥n

ak = sup
n≥1

inf
k≥n

ak

lim sup
n→∞

an = lim
n→∞

sup
k≥n

ak = inf
n≥1

sup
k≥n

ak

lim
n→∞

an exists if and only if lim inf
n→∞

an = lim sup
n→∞

an

Monotone convergence theorem.

Let (Xn, n ≥ 1) be a sequence of non-negative random variables such that

Xn ≤ Xn+1 ∀n ≥ 1 and lim
n→∞

Xn = X a.s., with E(X) <∞.

Then E(X) = limn→∞ E(Xn).

Fatou’s lemma.

Let (Xn, n ≥ 1) be a sequence of non-negative random variables. Then

E
(

lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn).

Dominated convergence theorem.

Let (Xn, n ≥ 1) be a sequence of random variables such that

lim
n→∞

Xn = X a.s. and |Xn| ≤ Y ∀n ≥ 1, with E(Y ) <∞.

Then E(X) = limn→∞ E(Xn).

In addition, the above three theorems continue to hold if we replace expectations with conditional expec-
tations (with respect to an arbitrary σ-field G).

With these theorems in hand, we are now ready to prove the following propositions.

Proposition 7.6. Let M be a local martingale such that E(sups∈[0,t] |Ms|) < ∞, ∀t ∈ R+. Then M is
a martingale.

Proof. (i) By assumption, E(|Mt|) <∞, ∀t ∈ R+.

(ii) Since M is a local martingale, there exists an increasing sequence of stopping times τn such that
E(Mt∧τn |Fs) = Ms∧τn for all n ≥ 1. Since τn →

n→∞
∞ a.s.,

Ms∧τn →
n→∞

Ms a.s.

Likewise, Mt∧τn →
n→∞

Mt a.s. and for all n ≥ 1, |Mt∧τn | ≤ sups∈[0,t] |Ms| = Y , with E(Y ) < ∞ by
assumption. So by the dominated convergence theorem,

E(Mt∧τn |Fs) →
n→∞

E(Mt|Fs) a.s.

i.e., E(Mt|Fs) = Ms a.s. ∀t ≥ s ≥ 0.
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Proposition 7.7. Let M be a non-negative local martingale such that E(M0) < ∞. Then M is a
supermartingale.

Proof. (i) Notice that
lim inf
n→∞

Mt∧τn = lim
n→∞

Mt∧τn = Mt a.s.,

so by Fatou’s lemma,
E(Mt) = E

(
lim inf
n→∞

Mt∧τn

)
≤ lim inf

n→∞
E(Mt∧τn)

and E(Mt∧τn) = E(M0∧τn) = E(M0) <∞ by assumption, so E(Mt) ≤ E(M0) <∞, ∀t ∈ R+.

(ii) By Fatou’s lemma again, we have

E(Mt|Fs) = E
(

lim inf
n→∞

Mt∧τn

∣∣∣Fs) ≤ lim inf
n→∞

E(Mt∧τn |Fs) = lim inf
n→∞

Ms∧τn = Ms a.s.

Proposition 7.8. Let M = (Mt, t ∈ [0, T ]) be a supermartingale. Then M is a martingale if and only
if E(MT ) = E(M0).

Proof. Only the “⇐” requires a proof. By assumption, we know that E(Mt|Fs) ≤ Ms a.s. We need to
prove that actually, E(Mt|Fs) = Ms a.s. Assume by contradiction that P(E(Mt|Fs) < Ms) > 0. This
would imply that E(Mt) = E(E(Mt|Fs)) < E(Ms), i.e, E(MT ) ≤ E(Mt) < E(Ms) ≤ E(M0), which is in
contradiction with the assumption.

Corollary 7.9. Let M be a non-negative local martingale such that E(M0) <∞. Then M is a martingale
if and only if E(MT ) = E(M0).

Exponential martingale.

Let M be a continuous local martingale such that M0 = 0. Then the process Y defined as

Yt = exp
(
Mt −

〈M〉t
2

)
, t ∈ R+,

is also a continuous local martingale. Indeed, by Ito-Doeblin’s formula, Yt = 1 +
∫ t
0
Ys dMs, as already

seen (but now, we know that the stochastic integral does not require an additional technical condition in
order to be well defined).

We are now in position to prove the following statement, which was already used in the section on
Girsanov’s theorem.

Theorem 7.10. Let M be a continuous local martingale such that M0 = 0 a.s. and ∃K > 0 with
〈M〉t ≤ Kt, ∀t ∈ R+. Then the process Y defined as

Yt = exp
(
Mt −

〈M〉t
2

)
, t ∈ R+,

is a martingale.

Terminology. In this case, the process Y is called the exponential martingale associated to M .

Remark. The condition 〈M〉t ≤ Kt, ∀t ∈ R+, can be replaced by the weaker condition:

E
(

exp
(
〈M〉t

2

))
<∞.

This condition is called Novikov’s condition.
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Proof. As already mentioned, Yt = exp(Mt − 〈M〉t2 ) is a local martingale. Likewise, the process Zt =
exp(2Mt − 〈2M〉t2 ) is a local martingale. Notice that

Y 2
t = exp(2Mt − 〈M〉t) = Zt exp(〈M〉t).

Let now τn = inf{t > 0 : |Yt| ≥ n or |Zt| ≥ n}. By Doob’s inequality applied to the martingale Y τn
(notice that Y τn is continuous and square-integrable) and the assumption, we have

E

(
sup
s∈[0,t]

Y 2
s∧τn

)
≤ 4E(Y 2

t∧τn) = 4E(Zt∧τn exp(〈M〉t∧τn))

≤ 4eKt E(Zt∧τn) = 4eKt E(Z0) = 4eKt.

So applying successively Cauchy-Schwarz’ inequality and Fatou’s lemma, we obtain(
E

(
sup
s∈[0,t]

Ys

))2

≤ E

(
sup
s∈[0,t]

Y 2
s

)
= E

(
lim inf
n→∞

sup
s∈[0,t]

Y 2
s∧τn

)

≤ lim inf
n→∞

E

(
sup
s∈[0,t]

Y 2
s∧τn

)
≤ 4eKt <∞, ∀t ∈ R+.

Proposition 7.6 then implies that Y is a martingale.

Therefore, under the condition that 〈M〉t ≤ Kt, ∀t ∈ R+, it is possible to define a new probability
measure P̃T as P̃T (A) = E(1AYT ).

Remark. Notice that Y is a non-negative local martingale, but Corollary 7.9 giving the simple condition
E(YT ) = E(Y0) for testing whether Y is a martingale or not is useless in the present context. Indeed, this
simple condition is exactly the thing we want in order to be able to define the new probability measure
P̃T (it ensures that P̃T (Ω) = 1). Whether Y is a martingale or not is actually not our concern here.

We are now in position to restate Girsanov’s theorem in its full version.

Girsanov’s theorem. Let M be a continuous local martingale (under P) such that 〈M〉t ≤ Kt, ∀t ∈ R+,
and P̃T be the above defined probability measure. If Z is a continuous local martingale under P, then
(Zt − 〈M,Z〉t, t ∈ [0, T ]) is a continuous local martingale under P̃T .

Likewise, the full version of Lévy’s theorem is given below, along with its proof.

Lévy’s theorem. Let X be a continuous local martingale such that X0 = 0 a.s. and 〈X〉t = t a.s.,
∀t ∈ R+. Then X is a standard Brownian motion.

Proof. ∀c ∈ R, cX is a continuous local martingale such that 〈cX〉t = c2t. Therefore, by Theorem 7.10,
the process (Yt = exp(cXt − c2t

2 ), t ∈ R+) is a martingale, i.e.,

E
(

exp
(
cXt −

c2t

2

) ∣∣∣∣Fs) = exp
(
cXs −

c2s

2

)
, ∀c ∈ R,

or

E(exp(c(Xt −Xs))|Fs) = exp
(
c2(t− s)

2

)
, ∀c ∈ R.

Fact 1: since the right-hand side is deterministic, Xt −Xs ⊥⊥ Fs. Moreover, by taking expectations, we
obtain

E(exp(c(Xt −Xs))) = exp
(
c2(t− s)

2

)
, ∀c ∈ R.

Fact 2: this implies that Xt −Xs ∼ N (0, t− s). Therefore, X is a standard Brownian motion.
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Remark. The “innocent” condition that the (local) martingale X should be continuous is actually
crucial. Here is an important counter-example. Let N be the classical Poisson process with intensity 1,
that is,

Nt = sup

k ≥ 0 :
k∑
j=1

τj ≤ t

 ,

where (τj , j ≥ 1) is a sequence of i.i.d. exponential random variables with parameter 1. Then it can be
shown that the discounted Poisson process X defined as

Xt = Nt − t, t ∈ R+,

is a martingale. Moreover, the process Y defined as

Yt = X2
t − t = (Nt − t)2 − t, t ∈ R+,

is also a martingale, which is saying that 〈X〉t = t (even though we have not formally defined the quadratic
variation of a process with jumps). Nevertheless, X is far from being a standard Brownian motion!

Finally, we obtain the following corollary (which was already known to us before, by the way).

Corollary 7.11. Let Z be a continuous local martingale under P such that Z0 = 0 and 〈Z〉t = t
a.s., ∀t ∈ R+ (i.e., Z is a standard Brownian motion under P by Lévy’s theorem). Then the process
(Zt − 〈M,Z〉t, t ∈ [0, T ]) is a standard Brownian motion under the probability measure P̃T defined
above.

7.4 Change of time

A nice consequence of Lévy’s theorem is the following proposition, saying that basically every local
martingale is a time change of a Brownian motion (see corollary below).

Proposition 7.12. Let M be a continuous local martingale with respect to a filtration (Ft, t ∈ R+)
such that

M0 = 0 a.s and lim
t→∞
〈M〉t =∞ a.s. (19)

Let us also define
τ(s) = inf{t > 0 : 〈M〉t ≥ s}

and Bs = Mτ(s), Gs = Fτ(s). Then B is a standard Brownian motion with respect to (Gs, s ∈ R+).

Proof. As already mentioned, the idea is to use Lévy’s theorem, i.e., to show that

(i) B has continuous trajectories.

(ii) B is a local martingale with respect to (Gs, s ∈ R+).

(iii) 〈B〉s = s, i.e., (B2
s − s, s ∈ R+) is a local martingale with respect to (Gs, s ∈ R+).

Let us verify these three statements.

(i) As M is continuous, t→ 〈M〉t is also continuous. Moreover, if 〈M〉 is constant on some interval, then
M also is, so the function s 7→ Bs = Mτ(s) is continuous.

(ii) Let τn = inf{t > 0 : |Mt| ≥ n}, n ≥ 1. For each n, Mτn is a martingale such that

E

(
sup
t∈[0,T ]

|Mt∧τn |2
)
<∞, ∀T > 0,
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so by the optional stopping theorem (version 2), we have

E(Mτ(s2)∧τn |Fτ(s1)) = Mτ(s1)∧τn a.s., ∀s2 > s1 ≥ 0.

By the dominated convergence theorem (and some details), this implies that

E(Mτ(s2)|Fτ(s1)) = Mτ(s1) a.s.

i.e.,
E(Bs2 |Gs1) = Bs1 a.s.

i.e., B is a martingale with respect to (Gs, s ∈ R+).

(iii) Let Xt = M2
t − 〈M〉t. By assumption, Xτn is a martingale ∀n, so

E(Xτ(s2)∧τn |Fτ(s1)) = Xτ(s1)∧τn a.s., ∀s2 > s1 ≥ 0.

Then again by the dominated convergence theorem (and some details), we obtain that

E(Xτ(s2)|Fτ(s1)) = Xτ(s1) a.s.

i.e.,
E(M2

τ(s2)
− 〈M〉τ(s2)|Fτ(s1)) = M2

τ(s1)
− 〈M〉τ(s1) a.s.

As 〈M〉τ(s) = s by definition, we obtain:

E(B2
s2 − s2|Gs1) = B2

s1 − s1 a.s., ∀s2 > s1 ≥ 0.

i.e., (B2
s − s, s ∈ R+) is a martingale with respect to (Gs, s ∈ R+).

Remark. Even though it is somehow hidden in the proof given above, condition (19) is needed to
ensure two facts: first, that the process B is defined for all times s up to infinity; second, that the pro-
cess M actually takes all possible values in R, as the Brownian motion does. One can for example show
that if the process M is bounded above or below by some constant, then condition (19) cannot be satisfied.

Corollary 7.13. Any continuous local martingale M satisfying (19) may be written as Mt = B(〈M〉t),
where B is a standard Brownian motion.

Remark. This does not say in general that any continuous local martingale satisfying (19) is Gaussian!
If 〈M〉t is random, this is not the case (but whenever 〈M〉t is deterministic, then M is Gaussian; this
holds in particular for Wiener integrals).

7.5 Local time

Although there is the word “local” in the above title, local times are not directly related to local martin-
gales.

Let B be a standard (one-dimensional) Brownian motion and f(x) = |x|, x ∈ R. Applying naively
Ito-Doeblin’s formula to f(Bt) gives

|Bt| − |B0|︸︷︷︸
=0 a.s.

=
∫ t

0

sgn(Bs) dBs + 0 ?

as

f ′(x) = sgn(x) =
{

+1 if x > 0
−1 if x < 0
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and f ′′(x) = 0, ∀x 6= 0. Neglecting the fact that f is twice continuously differentiable in x = 0 works
in higher dimensions, but not here. The explanation is simple: the one-dimensional Brownian motion
comes back much more often to zero! So “something” happens in x = 0 that cannot be neglected.

Another direct explanation as to why the above formula cannot possibly hold is that the process Wt =∫ t
0

sgn(Bs) dBs is a continuous local martingale with quadratic variation 〈W 〉t = t, so W is a standard
Brownian motion by Lévy’s theorem. Therefore, Wt cannot be equal to |Bt|, which is a non-negative
random variable (certainly not Gaussian).

It actually turns out that the following formula holds:

|Bt| =
∫ t

0

sgn(Bs) dBs + Lt a.s., ∀t ∈ R+,

where

Lt = lim
ε→0

1
2ε

∫ t

0

1{|Bs|≤ε} ds

Remark. Lt is surprisingly non-zero. The surprise comes from the fact that the trajectories of the
Brownian motion may be seen as having infinite derivative (either +∞ or −∞), so it seems that the time
spent by this process close to zero should be negligible.

Notice that if we allow ourselves to write

“δ(x) = lim
ε→0

1
2ε

1{|x|≤ε}, ”

the Dirac mass at x = 0, then writing further that “Lt =
∫ t
0
δ(Bs) ds” and “sgn′(x) = 2δ(x)” (in a

distributional sense), we recover a generalized Ito-Doeblin formula :

“ |Bt|︸︷︷︸
=f(Bt)

=
∫ t

0

sgn(Bs)︸ ︷︷ ︸
=f ′(Bs)

dBs +
1
2

∫ t

0

2δ(Bs)︸ ︷︷ ︸
=f ′′(Bs)

ds a.s.”

More generally, it holds for any a ∈ R and t ∈ R+ that

|Bt − a| − |B0 − a| =
∫ t

0

sgn(Bs − a) dBs + Lt(a) a.s.,

where

Lt(a) = lim
ε→0

1
2ε

∫ t

0

1{|Bs−a|≤ε} ds.

Formally, let us again write “Lt(a) =
∫ t
0
δ(Bs − a) ds”. This leads to the formula, valid ∀g ∈ C(R) and

t ∈ R+ (provided one does not pay attention to the invalid interchange of integrals in the middle):∫ t

0

g(Bs) ds =
∫ t

0

∫
R
g(a) δ(Bs − a) da ds =

∫
R
g(a)

∫ t

0

δ(Bs − a) ds da =
∫

R
g(a)Lt(a) da.

Equivalently, this means that for all a < b,∫ t

0

1{a≤Bs≤b} ds =
∫ b

a

Lt(x) dx.

So Lt(a) is the density of the occupation measure of the process B over the period [0, t]. More naively,
Lt(a) can be thought of as the time spent by the process B in x = a over the period [0, t].
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