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Abstract

Mathematical modeling is an indispensable tool for research and 

development in biotechnology and bioengineering. The formulation of kinetic 

models of biochemical networks depends on knowledge of the kinetic properties of 

the enzymes of the individual reactions. However, kinetic data acquired from 

experimental observations bring along uncertainties due to various experimental 

conditions and measurement methods. In this contribution, we propose a novel way 

to model the uncertainty in the enzyme kinetics and to predict quantitatively the 

responses of metabolic reactions to the changes in enzyme activities under 

uncertainty. The proposed methodology accounts explicitly for mechanistic 

properties of enzymes and physico-chemical and thermodynamic constraints, and 

is based on formalism from systems theory and metabolic control analysis. We 

achieve this by observing that kinetic responses of metabolic reactions depend: (i) 

on the distribution of the enzymes among their free form and all reactive states; (ii) 

on the equilibrium displacements of the overall reaction and that of the individual 

enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this 

observation, we develop a novel, efficient Monte Carlo sampling procedure to 

generate all states within a metabolic reaction that satisfy imposed constrains. Thus 

we derive the statistics of the expected responses of the metabolic reactions to 

changes in enzyme levels and activities, in the levels of metabolites, and in the 

values of the kinetic parameters. We present aspects of the proposed framework 

through an example of the fundamental three-step reversible enzymatic reaction 

mechanism. We demonstrate that the equilibrium displacements of the individual 

enzymatic steps have an important influence on kinetic responses of the enzyme. 

Furthermore, we derive the conditions that must be satisfied by a reversible three-

step enzymatic reaction operating far away from the equilibrium in order to 

respond to changes in metabolite levels according to the irreversible Michelis-

Menten kinetics. The efficient sampling procedure allows easy, scalable, 
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implementation of this methodology to modeling of large-scale biochemical 

networks.

Introduction

Advancements in genome sequencing have sparked an intensive development of 

fields that rely on 'omics' data. However, the development in the area of kinetic 

modeling of large metabolic networks does not follow the same pace. Although 

metabolomic and fluxomic data are widely available, large-scale kinetic models are 

very scarce in the literature (Goodacre et al., 2004; Breitling et al., 2008; Jamshidi 

and Palsson, 2008). The efforts in this line of research have been hindered by the 

lack of pertinent information of the kinetic properties of enzymes in a metabolic 

network. Experimentally measured kinetic properties of enzymes come necessarily 

with an extend of uncertainty that originates from differences in experimental 

conditions and measurement techniques (Wang et al., 2004). In addition, it has 

been argued that parameter values estimated from the experimental data and 

directly used into a model are likely to lead to thermodynamical inconsistencies 

(Liebermeister and Klipp, 2006). Another stumbling block stems from the 

difficulty to establish rate laws and parameter values for each reaction in large-

scale metabolic networks that might contain several hundreds or even thousands of 

reactions (Jamshidi and Palsson, 2010). 

In an attempt to characterize the kinetic responses of metabolic networks in the 

presence of uncertainty a number of methods that explore the parameter space 

emerged in the literature (Thomas and Fell, 1994; Petkov and Maranas, 1997; 

Alves and Savageau, 2000; Almaas et al., 2004). More recently, within the context 

of Metabolic Control Analysis (MCA), Hatzimanikatis and co-workers have 

proposed a Monte Carlo sampling procedure for the generation of populations of 

kinetic models that allow the identification of the rate-limiting steps in metabolic 

networks (Wang et al., 2004; Wang and Hatzimanikatis, 2006b,a). Motivated by 
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ideas in this work, Liao and co-workers used a Monte Carlo algorithm to sample 

the parameter space in order to obtain a set of models that all reach the same 

prescribed steady state (Tran et al., 2008; Rizk and Liao, 2009; Contador et al., 

2009). However, this method is computationally intensive and it can be prohibitive 

for the analysis of large-scale metabolic networks. 

Although all aforementioned methods that employ parameter space search 

circumvent the problem of acquiring kinetic data, there are challenges still to be 

addressed. The kinetic parameters in each of the reactions are related through the 

equilibrium constants that are dependent on the standard free energy change of the 

reaction (Cornish-Bowden and Cardenas, 2000; Nelson and Cox, 2005; Beard and 

Qian, 2008; Ross, 2008). These dependencies imply that the kinetic parameters' 

space is constrained in a very intricate way, which might reduce the sampling 

efficiency especially in the case of modeling of large-scale metabolic networks. On 

the other hand, ignoring possible constraints might result in a population of 

computed models containing a subset of thermodynamically and physico-

chemically inconsistent models (Steuer et al., 2006; Grimbs et al., 2007). 

In their approach, Hatzimanikatis and co-workers randomly sampled the degree of 

saturation of the active site of an enzyme and used it subsequently to compute the 

sensitivities of reaction responses to the variations of metabolite concentrations 

and parameters, known within MCA as ``elasticities'' (Wang et al., 2004; Wang 

and Hatzimanikatis, 2006b,a). These works laid a foundation for a computational 

framework for the Optimization and Risk Analysis of Complex Living Entities 

(ORACLE) that integrates biological information from different sources into a 

mathematical formalism enabling to identify the rate-limiting steps in biochemical 

pathways Miškovi  and Hatzimanikatis, 2010). In this contribution, we focus on 

deriving the elasticities as a function of a fractional distribution of the enzyme 

among its states, the free enzyme and its intermediary complexes, and the 

displacement from the thermodynamic equilibrium of the individual enzymatic 
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steps. We then exploit the assumption that the total amount of enzyme is preserved 

in the course of reaction, and we sample randomly the space of enzyme states. 

Consequently, we use so obtained population of enzyme states, along with the 

equilibrium displacements of the individual elementary enzymatic steps of the 

reaction, to compute the elasticities. In our computation, we consider explicitly that 

the individual equilibrium displacements are constrained by the equilibrium 

displacement of the overall reaction which, in turn, depends on the 

thermodynamically feasible metabolite concentrations in the network. So, the 

proposed computational method explicitly integrates the conservation of the total 

amount of the enzymes, and the information about reactions thermodynamics and 

concentration of metabolites.

In contrast to widely used in the literature Markov Chain Monte Carlo methods,

the method we propose here does not suffer from the slow mixing property 

(Schellenberger and Palsson, 2009). This sampling mechanism exploits the specific 

structure of the underlying constraints and is efficient in the sense that it generates 

samples of kinetic data that satisfy the imposed constraints and any prescribed 

distribution of enzyme states at each iteration. The scalability of the sampling 

mechanism provides means to build genome-scale kinetic models.

Results and Discussion

Fundamental enzyme mechanism

We study here the reversible Michaelis-Menten enzymatic mechanism as shown in 

Fig. 1. The reversible Michaelis-Menten kinetics is a three-step mechanism 

containing three separate steps: (i) binding the enzyme E to the substrate S, (ii) the 

reversible catalytic conversion between the enzyme-substrate ES and the enzyme-

product EP complexes, and (iii) binding of the enzyme E to product P (Heinrich 

and Schuster, 1996). The concentration of the total enzyme , the first-order rate 

constants , ,  and , and the second-order rate constants  and ,

TE

1bk 2 fk 2bk 3 fk 1 fk 3bk
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along with the concentrations of the substrate S and the product P, constitute the 

vector of parameters for this mechanism as follows 

(1)1 1 2 2 3 3= , , , , , , , ,
T

T f b f b f bp E k k k k k k S P .

The operator (.)  denotes the transpose. In general, p contains three groups of 

parameters: (i) 

T

tp  - conserved concentrations of total enzymes; for single-enzyme 

reactions it consists of , while in the case of substrate channeling it includes the 

total levels of all involved enzymes; (ii) 

TE

rp  - rate constants of the elementary 

reaction steps; and (iii) np  - other parameters, such as S and P for the reversible 

Michealis-Menten mechanism. Therefore, in the more general case the parameter 

vector, p, can be written as: 

= , ,T T T T

t r n .p p p p (2)

It is assumed that the amount of the total enzyme is conserved in the course 

of reaction 

=TE E ES EP. (3)

For a fixed amount of total enzyme, , only two of three enzyme states, E, ES and 

EP, can be considered as independent. Assuming that the complexes ES and EP are 

the independent variables, we derive analytical expressions according to the 

Metabolic Control Analysis formalism for the reduced stoichiometric matrix

TE

RM ,

the steady-state flux matrix U, the elasticity matrices  and  which represent the 

normalized sensitivities of the individual enzymatic forward and backward reaction 

rates,  and u i  with respect to the concentrations of the intermediate

complexes, ES and EP, and the parameters, p, respectively (see Table 1 for 

definitions and Table 2 for matrix expressions). Subsequently, we assume that the 

net rate of the reaction is positive, i.e. the reaction operates in the direction from

the substrate S to the product P, which in turn implies that 

ifu , = 1,2,3ib

1,§ = 1,2,3i i .
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From a systems theory perspective, if we consider the single enzyme as the system, 

and the substrates and products as external inputs (parameters), the derived MCA 

elements correspond to the concentration and the flux control coefficients with 

respect to the parameters (including S and P), i.e., to the normalized sensitivities of 

the net reaction rate, , with respect to the parameters (cf Table 2 and 

Eqs. 11 and 12 in Methods). However, if we consider the enzymes as components

of a metabolic network, with S and P as two of its dependent metabolites, i.e. 

variables, these control coefficients are in fact the enzyme elasticities with respect 

to the substrate concentration S, the product concentration P and the enzyme 

activity. In what follows, we will refer to this quantities as metabolite and flux 

elasticities in order to denote their role within metabolic networks. The MCA 

elements given in Table 2 can also be used to compute the control coefficients with 

respect to the rate constants (Kholodenko et al., 1994). 

=net if ibu u u

Generating populations of elasticities

By inspecting Table 2, it is observed that if we know the ratios 

,.8 / .8 Tmm E mm E .8 / .8 Tmm ES mm E  and , we can 

compute  and . In general, these ratios are not known. Even when some

experimentally observed data are available, the uncertainty introduced due to 

different experimental conditions makes impossible a precise quantification of 

these ratios. To generate these quantities, while taking into account the above 

mentioned uncertainties, we employ the Monte Carlo sampling technique as 

follows.

.8 / .8 Tmm EP mm E

Equation 3 divided by  defines a simplex in the three-dimensional space of 

enzyme species as illustrated in Fig. 2. If we assume that the enzyme appears with 

the equal probability in its three states E, ES and EP, we can sample uniformly and 

efficiently the enzyme species over this surface, and thus we can explore the 

complete three-dimensional subspace of enzyme states that satisfies the constraint 

in Eq. 3. In the case where the experimental data indicate that the enzyme stays 

TE
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predominantly in one or two of its species, or that any of the enzyme sates follow 

an observed or hypothesized distribution, we construct an non-uniform distribution 

over the simplex from which the triplets of the enzyme species are sampled. The 

resulting random triplets of the ratios .8 / .8 Tmm E mm E ,

and  can then be used to compute the populations of the 

matrices  and . The relationships between the enzyme states and the elasticities 

with respect to the unidirectional rate constants can also be derived as it was done 

previously in (Kholodenko et al., 1994) 

.8 / .8 Tmm ES mm E

i

.8 / .8 Tmm EP mm E

net

i

.

The metabolite and the flux elasticities depend on the equilibrium coefficients 

and the steady-state net flux U , in addition to the ratios of the enzyme states (see 

Eqs. 11 and 12 in Methods). The values of the net steady-state flux U  can be 

estimated using methods from the Flux Balance Analysis (FBA) and Metabolic 

Flux Analysis (MFA) (Varma and Palsson, 1993b,a; Teusink et al., 2000). On the 

other hand, the equilibrium displacement 

net

, that can easily be extracted from the 

experimental data, constrains the equilibrium coefficients i  (see Methods). This 

allows to estimate 's using the knowledge of  and the available genomic and 

kinetic information.

Overall, we show that provided that the equilibrium coefficients and the net 

steady-state flux are known, the randomly generated samples of the enzyme

species triplets allow for computing the populations of flux and metabolite

elasticities that correspond to the thermodynamically and physio-chemically

feasible states of a reaction. The statistical characteristics of the resulting 

elasticities can further be analyzed using various data-mining methods.

Irreversible Michaelis-Menten kinetic mechanism

The irreversible Michaelis-Menten kinetics has been used in almost every 

mathematical model of metabolic networks. In this section, we identify the 
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conditions under which the general three-step kinetic mechanism presented in the 

previous section reduces to the irreverisible Michaelis-Menten kinetics. 

The irreversible Michaelis-Menten kinetic mechanism characterizes a 

reaction that kinetically does not favor the binding of the free enzyme to the 

product. Therefore, for this mechanism the enzyme elasticities with respect to the 

substrate are uniformly distributed between 0 and 1. In addition, the elasticities 

with respect to the product are near zero. We investigate under which conditions it 

is possible to simulate this behavior by using the reaction structure shown in Fig. 1. 

In the literature, the common assumption that leads to the use of the 

irreversible Michaelis-Menten kinetics is that it well describes the kinetic 

mechanism of the uni-uni reactions away from the equilibrium, i.e. having the 

equilibrium displacement . However, we find that for a reaction to follow 

this kinetic mechanism there are additional conditions to be satisfied. In a reaction 

including three enzymatic reaction steps (Fig. 1), the overall equilibrium

displacement is related to the equilibrium coefficients of the individual reaction 

steps according to the following equation: 

<< 1

1 2 3= (4)

which implies that the equilibrium coefficients are bounded as follows: 1i

(Fig. 3). We first assume that: (i) the enzyme operates away from the equilibrium,

that is , with the equilibrium coefficient for the first enzymatic step being = 0.01

1 , and 2 3= 1; and (ii) the formation of the enzyme-product complex EP is 

not favorable, i.e. EP appears with a low probability during the course of the 

reaction.

Based on these two assumptions we generated 2000 random sets of the 

enzyme states and we analyzed the distributions of the computed populations of 

elasticities (Fig. 4, panel A). Although this reaction is away from the equilibrium,

the resulting elasticities do not correspond to the irreversible Michaels-Menten 

kinetics. The influence of the product concentration is not negligible, and the 
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population of the corresponding flux elasticities is distributed between -1 and 0. 

We can better understand the origins of this behavior by deriving the 

analytical expressions for the flux elasticities: 

2 3 3

1 2 3

=
1

u T Tnet
S

E ES

E E T

EP

E
(5)

1 2 3 2 3 3

1 2 3

=
1

u T Tnet
P

E ES E

E E
.T

P

E
(6)

Considering that ,  and  are smaller than 1, for reactions away 

from the equilibrium (

/ TE E / TES E

1 2

/ TEP E

3 << 1

/ <<T

) the denominators in Eqs. 5 and 6 are 

approximatively equal to 1, and the first term in the numerator of Eq. 6 can be 

neglected since 1 2 3 1E E . Hence, these two expressions reduce to 

2 3 3

u
net

S

T T

E ES

E E T

EP

E
(7)

2 3 3 .
u

net
P

T T

ES EP

E E
(8)

These equations lead to two important observations: (i) the elasticities of the 

enzymes are explicit functions of the distribution of the enzymes among theirs 

different states and the individual equilibrium displacements; (ii) for enzymes that 

operate far from their equilibrium, when the displacement from the equilibrium is 

primarily contained in the first step ( 1 ), taking into consideration the 

conservation of the total enzyme it follows that 1
u

net
S  and 

u
net

P

T T

ES EP

E E
, which 

in turn implies that 
u

net
P  is distributed between -1 and 0. These observations 

suggest that large displacement from equilibrium and even high negative Gibbs 

free energy are not sufficient conditions to describe the reactions following the 

irreversible Michaelis-Menten kinetics. 

From the above analytical expressions for the flux elasticities, one can 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t
distinguish several possible scenarios for the validity of irreversible Michaelis-

Menten mechanism: 

• The last elementary step is far away from the equilibrium, 3 << 1 , whereas the 

equilibrium coefficients of the first, 1 , and of the intermediary step, 2 , are close 

to 1 (due to the constraint given in Eq. 4). In addition, the intermediate complex 

EP appears with a low probability, which in turn results in the equal probability 

for the enzyme species E and ES to form and dissolve. The Gibbs free energy 

reaction coordinate profiles corresponding to this case are given in Fig. 5. Since the 

concentration of EP is negligible with respect to the concentrations of E and ES,

and considering that 3 << 1 , we have . Similarly, for the second 

elementary step where the equilibrium coefficient 

3 <<bk k

2

3 f

1 the conversion of EP to ES

is kinetically more favorable than the conversion in the opposite direction, i.e. 

. These cases are illustrated in the right-hand part of the energy diagram

(Fig. 5).We can see that the free activation energies of dissociation of the complex 

EP, which are inversely proportional to the kinetic rate constants  and , are 

small. In turn, this leads to infinitesimal levels of concentration of the enzyme-

product complex. In contrast to the intermediate and the last elementary step where 

the ratio between kinetic rate constants are well defined, the ratio of the kinetic 

constants in the first step can vary leading to several alternative energy profiles for 

ES as shown in Fig. 5. Depending on the concentration levels of E and ES the first 

elementary step can be kinetically more favorable in the forward or in the 

backward direction, or to be in the kinetic equilibrium. This scenario corresponds 

to the structure of irreversible Michaelis-Menten, well-known in the literature 

(Heinrich and Schuster, 1996), where an enzyme appears predominantly in the 

reversibly interconvertible forms of the free enzyme E and the enzyme-substrate 

complex ES, and the product P is irreversibly produced from the enzyme-substrate 

complex.

2 <<fk k2b

2bk 3 fk
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• The last elementary step has large displacement from its equlibrium 

( 3 << 1 ), 1 2= 1 , and the ES intermediate complex appears with a low 

probability. Under these conditions we have k  and , which implies

that the enzyme-substrate complex, ES, dissociates rapidly and that its 

concentration levels are very low. The corresponding energy diagrams are 

represented in the panel A of Fig. 6. In the last elementary step, there are several 

alternative activation energy profiles depending on the relative concentration of the 

free enzyme with respect to the enzyme-product complex, EP.

1 <<f 1bk 2bk2 >>fk

• The intermediary step has large displacement from the equilibrium 

( 2 << 1), 1  and 3  are close to 1, and the probability of the formation of EP is 

low. The Gibbs energy profiles depicting this type of reactions are given in the 

panel B of Fig. 6. These energy profiles are similar to the ones shown in Fig. 5 

with a difference in the ratios between  and , and  and  which are 

slightly less pronounced. Consequently, the free activation energies of the 

dissociation of EP are slightly increased. 

3bk 3 fk 2bk 2 fk

We have generated populations of the enzyme species and computed the 

elasticities according to the conditions of three scenarios (Table 3). In all three 

cases, the distributions of the elasticities match the irreversible Michaelis-Menten 

kinetics (Fig. 4, panel B: distribution for scenario (i); distributions for scenarios (ii) 

and (iii) are similar and not shown). We observe, as expected, that the flux 

elasticities with respect to the substrate are uniformly distributed between 0 and 1, 

and that the ones with respect to the product are close to zero. 

Using partial information

We have shown that when no a priori information about a reaction is 

available it is possible to generate populations of corresponding elasticities by 

sampling efficiently a simplex in the space of enzyme states. Any additional 

experimental information about the reaction will help in reducing the sampling
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space which in turn will allow more accurate computational predictions of the 

responses of the enzymes to changes in metabolites concentrations and parameters.

This exchange of information between computational and experimental studies will 

result in both better computational models and better design of experiments.

Toward this end, we developed a framework to incorporate the additional 

experimental data in the procedure of computing the elasticities. 

As an illustration, we consider again the reaction consisting of three 

enzymatic elementary steps (Fig. 1). We assume that experimentally observed data 

suggest that the enzyme appears in its free form E with the probability of 60%, and 

in the form of enzyme-metabolites complexes ES and EP with the probabilities of 

15% and 25%, respectively. We approximate the observed distribution of the 

experimental data with the Dirichlet distribution whose parameters can be 

estimated based on the mean values and variances of the acquired data. When 

estimating the parameters of Dirichlet distribution we consider the fact that the 

bigger the sum of the parameters is, the smaller the variance becomes. 

Consequently, by multiplying the vector of parameters with a positive constant 

bigger than 1, one can reduce the variance of the distribution. More details of this 

procedure are given in Methods and references therein. The probability density 

function Df  that approximates the experimental distribution is shown in Fig. 7, 

panel A, and the corresponding 2000 generated samples are shown in panel B. It is 

observed that the prescribed marginal distributions for E, ES and EP are well 

approximated. In Fig. 7, panel B, we also show 2000 data points generated through 

uniform sampling of simplex which can be used in the case when experimental 

information is not available. As expected, the density of sampling when partial 

information is included is higher which allows more thorough characterization of 

the kinetic space. 

Computational efficiency and scalability
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In this work, we express the elasticities as a function of a fractional 

distribution of the enzyme among its states and the displacement from the 

thermodynamic equilibrium of the enzymatic steps. This mathematical formulation

abolishes the need for the knowledge of the ranges of allowable values for the 

parameters of reactions and allows for efficient generation of populations of 

elasticities within biochemical networks. We have illustrated that in the process of 

generation of all plausible elasticities for the three-step kinetic mechanism, instead 

of sampling from the whole three-dimensional space of enzyme states ,

and , it is sufficient to sample from the surface of the simplex defined in Eq. 

3. In other words, the sampling space is significantly reduced. Moreover, each 

sample generated by the generator of random numbers is directly mapped to this 

surface so that the computational efforts are marginally increased compared to 

these of a random generator (see Algorithms 1 and 2). For more complex kinetic 

mechanisms involving several metabolites, the reduction of the sampling space is 

even more pronounced, and the computational costs of sampling from simplices

are comparable to the ones of generating populations of random vectors. For 

example, the computational costs of generating the elasticities for a rapid 

equilibrium random Bi Bi kinematic mechanism which has seven-dimensional

enzyme states space approximately equals the costs of generating populations of 

random vectors with 7 elements.

/ TE E / TES E

/ TEP E

In the case of large biochemical networks, the elasticities, which are needed 

for the computation of control coefficients, are generated for each individual 

reaction. So, computational costs of generation of elasticities scale linearly with the 

number of reactions in the model. However, when the samples of elasticities are 

recombined to compute the network control coefficients, additional statistical 

analyses are needed to ensure that the ergodicity hypothesis is verified 

papoulis1991. Considering the efficiency of the generation of elasticities, modern

computers largely provide the required computational resources. 
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Conclusions

In spite of advances in measurement techniques, development of kinetic models is 

a challenging task because kinetic data are still of limited availability and come 

with the inevitable uncertainty. The variability and incompleteness of data call 

upon optimization and risk analysis methods such as ORACLE (Miškovi  and 

Hatzimanikatis, 2010) that are able to quantify the uncertainty and to integrate 

available experimental data into models providing reliable predictions/expectations 

of the behavior of biochemical pathways in the face of perturbations. The 

formalism presented here allows us to generate and study all biochemically and 

thermodynamically plausible kinetic models of biochemical reactions thus paving 

the way for the development of the framework for uncertainty modeling of the 

kinetics in biochemical pathways. Specific mathematical formulation of the 

underlying problem allows for efficient generation of populations of kinetic 

models and enables to scale this methodology even to genome-scale biochemical

pathways.

The computed elasticities along with the concentrations of the metabolites

allow for the computation of distributions of eigenvalues of the steady states of the 

biochemical networks thus providing the foundation for the extension of the 

method for the study of dynamical properties of biochemical networks. 

Methods

Systems-oriented models of enzyme kinetics

Assuming a spatial homogeneity in a biochemical reaction, the dynamic

behavior of the concentrations of enzyme states, such as E, ES and EP, can be 

described by a set of ordinary differential equations of the following form:

= ( ,e
e

dx
),Mu x p

dt
(9)
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where ex  represents the m-dimensional vector of the concentrations of enzyme 

species, M denotes the -dimensional matrix describing the stoichiometry of 

the reaction, u is the n-dimensional vector of metabolic fluxes within this reaction, 

referred in the sequel as the internal metabolic fluxes, and p is the vector of 

parameters defined in Eq. 2. In this mathematical representation, a reversible flux 

is expressed as a difference between the corresponding forward irreversible and 

backward irreversible fluxes (Wang et al., 2004). 

m n

The conservation relation between enzyme states introduces a rank deficiency of 

the stoichiometric matrix M. To overcome this, the vector of concentrations ex  can 

be decomposed in two sub-vectors: an independent enzyme states concentration 

vector eix , and a dependent enzyme states concentration vector edx  (Reder, 1988). 

In addition, the rows in the stoichiometric matrix M corresponding to the mass

balances of the dependent enzyme states can be eliminated so that a new, reduced, 

stoichiometric matrix RM  is formed (Heinrich and Schuster, 1996; Reder, 1988). 

Therefore, the mass balance equations of the metabolic reaction (Eq. 9) are 

reduced to the following form

= ( , ( , ), ).ei
R ei ed ei

dx
M u x x x p p

dt
(10)

Elasticities

We apply the log(linear) kinetic formalism of MCA for the calculation of 

elasticities in a (bio)chemical reaction (Hatzimanikatis et al., 1996; Hatzimanikatis

and Bailey, 1996, 1997). Metabolite elasticities 
x
e

p , and flux elasticities u

p

quantify the variations of enzyme states concentrations and internal metabolic

fluxes, respectively, with respect to the variations in system parameters. As 

discussed earlier, if one considers the single enzyme as the system, with the 

concentrations of the metabolites, S and P, being the parameters, these quantities 

are in fact the control coefficients. From the same perspective, the enzyme states 

can be considered as metabolites. Nevertheless, we consider the enzymes as a part 
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of metabolic networks, hence we refer 

x
e

p  and u

p  as the elasticities. The 

expressions for these elasticities can be derived by linearizing and scaling the 

system (Eq. 10) around the steady-state: 

n

,T

t rp p p

f

f f

u t

1= ( )
x
ei

p R RM U M U

i

(11)

(12)=
xu ei

p p

where U denotes the diagonal matrix of the internal steady-state fluxes, and 

 is the matrix of the local sensitivities with respect to the enzyme state 

concentrations;  and  are the matrices of the elasticities with respect to 

independent and dependent enzyme states, respectively, and Q  represents the 

relative abundance of the dependent enzyme states compared to that of the 

independent ones. The matrix

= d

i dQ

i d

d

i

= , ,t r

= ,T T

 denotes the local sensitivities with 

respect to the system parameters, T

np . The matrix t  can be expressed 

as  where the weight matrix  represents the relative abundance of 

dependent enzyme states with respect to the amounts of their corresponding total 

enzymes.

=t dQt tQ

Equilibrium factors

We define the equilibrium coefficient as the ratio of the backward and the 

forward reaction rates u  and u , respectively: b f

= =
neb

uu

u u
(13)

with  denoting the net flux rate. The equilibrium coefficient, netu [0, ) , reflects 

the reversibility of a reaction with respect to the net flux. Values of  close to zero, 

0 , or close to infinity, , indicate forward irreversible and backward 

irreversible reaction steps, respectively. In contrast, the values of  close to 1, 

1, imply that the net flux is negligible with respect to backward and forward 

fluxes, i.e. the enzyme operates near thermodynamic equilibrium.
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For a reaction with one product and one substrate, the displacement from the 

thermodynamic equilibrium can be defined as follows : 

1
= =

eq

eq eq

S P

P S k S

P
(14)

with  and  being respectively the concentration of the substrate and the 

product at the thermodynamic equilibrium (Heinrich and Schuster, 1996). 

denotes the equilibrium constant defined as a ratio between the products of the 

forward and the backward rate constants, respectively. Without any loss of 

generality, we assume that there is a net production of the product P, i.e. 

eqS eqP

eqk

< 1 or 

, which implies that the Gibbs free energy difference is 

negative, i.e. . The displacement from the thermodynamic equilibrium

.8 / .8 < eqmm S k

< 0

P mm

G

can readily be extracted from the experimentally observed data. 

Monte Carlo Sampling Over the Constrained Kinetic Space

We have shown that by sampling the enzyme states while preserving the 

conservation of the amount of the total enzyme, the uncertainty in the elasticities 

can be modeled and analyzed statistically in order to characterize the rate-limiting

steps. We further extend the proposed idea to address the more general case, to a 

more complex group of kinetic mechanisms where the enzyme in its free form and 

enzyme complexes appear linearly in the rate equations. For this kind of kinetic 

mechanisms, the matrices  and , as in the case of the irreversible Michaelis-

Menten kinetics, can be expressed as functions of ratios of the enzymes states and 

the amount of the total enzyme . Hence, following the reasoning from the 

previous section, we can establish a general Monte Carlo methodology allowing us 

to quantify the elasticities. We assume that details about the kinetic mechanism are 

available, or, an appropriate kinetics is assumed. The procedure is as follows: 

TE

1. Construct the stoichiometry matrix using available biochemical and 
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genomics information, and separate the enzyme states into an independent and a 

dependent group. 

2. Estimate steady-state fluxes using FBA methods.

3. Generate the random enzyme states samples satisfying the conservation 

constraints on the amount of total enzyme. If no a priori information about the 

distribution of the enzyme states is available, the random samples are uniformly

generated. Information from acquired experimental data can be included to 

introduce either a bias in the uniform distribution or even to define other types of 

distribution.

4. Determine the equilibrium coefficients on the basis of the nature of kinetic 

mechanism and the knowledge of the equilibrium displacement . If only  is 

known, the bounds on the equilibrium coefficients are precisely defined, thus the 

space of the equilibrium coefficients can be sampled to generate the populations of 

the thermodynamically feasible realizations of the underlying reaction. 

5. Construct the sensitivity matrices i , d  and  followed by the 

computation of the metabolite and flux elasticities according to Eqs. 11 and 12. 

In the sequel, we give more details about the generation of the random

enzyme states samples mentioned in the third step of the procedure. 

Uniform sampling of enzyme states

There exists an abundant literature on random variate generation over different 

regions (Feller, 1968; Rubinstein, 1981; Devroye, 1986; Garvey, 2000; Gentle, 

2003). The most common methods used for uniform sampling are acceptance-

rejection methods (Von Neumann, 1963), and Monte Carlo Markov Chain methods

(Gilks et al., 1998; Brémaud, 1999). However, the former methods tend to be very 

inefficient in high dimension space, while the latter require a large number of 

samples to obtain asymptotically uniform coverage of the space. 

In this paper we make use of ideas presented in (Wilks, 1962; Rubinstein, 1982) 

that exploit the particular structure of the enzyme space we want to sample 
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uniformly. For a general kinetic mechanism, where an enzyme appears in the free 

form E and in the form of n 1 different enzyme-metabolite complexes

, we can write , = 1, , 1iEX i n

1 1

=1 =1

=
n n

i
i T

i iT T

EXE
E EX E

E E
= 1. (15)

In the n-dimensional space of ratios ( .8 / .8 Tmm E mm E , ,

, ,

1.8 / .8 Tmm EX mm E

2.8 / .8 Tmm EX mm E 1 / .8n Tmm E.8mm EX ), the constraint given in Eq. 

15 represents a simplex. Observe also that  and / TE E / = 1, , 1i TEX E i n  are 

constrained between 0 and 1. An example of a simplex in the three-dimensional

space is shown in Fig. 2. 

We next use the fact that a random vector uniformly distributed over n-

dimensional simplex can be obtained by generating samples from a n-variate

Dirichlet distribution with all parameters equal to 1, which will be referred 

subsequently as . Generation of random variables from  can then 

be performed as follows (Rubinstein, 1982). 

(1, ,1)D (1, ,1)D

Algorithm 1 (Generating uniform enzyme states) 

1. Generate a random vector 1, , nX X  exponentially distributed with the 

rate parameter equal to 1. 

2. Compute the random vector 

1
1

=1 =1

, , = , , n
n n n

i i

i i

XX
Y Y

X X

. (16)

The random vector  is distributed with , i.e. it is uniformly

distributed on the surface of n-dimensional simplex. So, Algorithm 1 provides a 

very efficient and simple way to generate sets of enzyme states 

1, , nY Y (1, ,1)D
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( ,.8 / .8 Tmm E mm E 1.8 / .8 Tmm EX mm E , , ,

) even in the case of high-dimensional spaces. 

2.8 / .8 Tmm EX mm E

1.8 / .8nmm EX mm

1 2 1, , , ,n n

TE

1
1

=1

1
nn

i

i

1
=1

1

=1

=1

( , , ) =

( )

n

i n
i

D n n
i

i

i

f

1 1, , >n(.)

1 1 < 1n 1, , > 0n

, )n

nY Y

1(D ,

Non-uniform sampling of enzyme states

Detailed knowledge of ranges of probability with which an enzyme appears 

in each of its states can be used to generate more refined sets of enzyme states. 

Once again, we benefit from the fact that Dirichlet distribution samples naturally 

from simplex. In contrast to the case of uniform sampling where all parameters of 

Dirichlet distribution were equal to 1, in this case we change these parameters so 

that the shape of Dirichlet distribution approximatively corresponds to the 

experimentally observed data. 

The probability density function of the Dirichlet distribution with parameters

 is given as 

1
i

i

where  denotes the gamma function, the random variables 0  satisfy 

, and the parameters . Outside the simplex the probability 

density function is zero. The Dirichlet distribution has a nice property that can be 

used in approximating the experimental data. For a random vector 

distributed with 

1, ,

 we have that the mean values of each component of 

the random vector are given as 

=1

= i
i n

k

k

E Y (17)

and the corresponding variances read as 
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=1,

2

=1 =1

Var = .

1

n

i k

k k i

i
n n

k k

k k

Y (18)

In addition, the marginal distributions of iX 's are Beta distributions, i.e. 

0Beta( , )i iY i

1, , n

. Hence, we can use information extracted from the experimental 

data, such as the ranges of the probability in which each of enzyme states appear, 

to define a mean value and a variance for each of the marginal distributions of 

enzyme states. So defined mean values and variances are subsequently used to 

compute the parameters of Dirichlet distribution. In other words, we design the 

Dirichlet distribution through shaping its marginal distributions. In the case of 

high-dimensional enzyme states space, the problem of finding the parameters 

 can be cast as an optimization problem. 

Once having determined the parameters of the Dirichlet distribution that 

approximates well the experimental data, we turn to the problem of generating the 

samples of that distribution. In (Arnason, 1972), an efficient method for generating 

the Dirichlet variates with given parameters 1 2 1, , , ,n n  is proposed. This 

method is described by the following algorithm.

Algorithm 2 (Generating non-uniformly sampled enzyme states) 

1. Generate a random vector 1, , nX X  distributed with the gamma

distributions ( ), = 1, ,iG i n .

2. Compute the Dirichlet variates as follows: 

1
1

=1 =1

, , = , , n
n n n

i i

i i

XX
Y Y

X X

. (19)
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The Dirichlet variates 1, , nY Y  have the probability density function 

1( , , nD ) . Algorithm 2 is a general version of Algorithm 1 and can be used to 

generate uniform variates as well. 

Acknowledgments

The authors would like to thank Ivano Tavernelli and Keng Cher Soh. LM 

was supported by the NEMO for bioethanol project funded by the European 

Seventh Framework Programme for research and technological development

(FP7). VH was supported by funding from Ecole Polytechnique Fédérale de 

Lausanne (EPFL), SystemsX.ch and DuPont. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t
Tables

Table 1: Definitions.

Name Symbol Definition

Metabolite ln

elasticities ln

Flux ln

elasticities ln

Independent
ln

enzymestates
ln

elasticities

Dependent
ln

enzymestates
ln

elasticities

Totalenzyme

parameter

elas

x eiei
p

u

p

i

ei

d

ed

d x

d p

d u

d p

u

x

u

x

ln

ln
ticities

Reaction rates ln

elasticities ln

Other
ln

parameters
ln

elasticities

Relative ln

abundance ln

Totalenzyme ln

weights ln

t

t

r

r

n

n

d ei
i

ed

ed
t

t

u

p

u

p

u

p

x
Q

x

x
Q

p
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Table 2: Elasticities' constitutive elements for the fundamental three-

step reversible kinetic mechanism (Fig. 1). In the expression for the steady-state 

flux matrix U,  denotes the steady-state net flux, while netU , = 1,2,3i i  are the 

equilibrium coefficients that represent the ratio between the backward reaction 

rates, , and the forward ones, u , in each of the elementary reaction steps (see 

Methods):

ibu if

1 1 1= /b fu u , 2 2 2= /bu u f  and 3 3 3= /b fu u .

1 1 1 1 0 0
=

0 0 1 1 1 1
RM

/ 1 1 0 0 /
=

/ 0 0 1 1 /

T
ES E ES E

EP E EP E

1

1

1

2

2

2

3

3

3

1
0 0 0 0 0

1

0 0 0 0 0
1

1
0 0 0 0 0

1
=

0 0 0 0 0
1

1
0 0 0 0 0

1

0 0 0 0 0
1

netU U

6 6

/ 1

0 0

0 0
=

0 0

0 0

/ 0

T

T

E E

I

E E

0

0

0

0

0

1
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Table 3: Conditions under which the three-step kinetic mechanism 

reduces to the irreversible Michaelis-Menten kinetics.

1 2 3Scenario

uniformly uniformly
(i) 1 1 << 1 0

distributed distributed

uniformly uniformly
(ii) 1 1 << 1 0

distributed distributed

uniformly uniformly
(iii) 1 << 1 1 0

distributed distributed

E ES EP
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Figure Captions

Figure 1: Reversible Michaelis-Menten kinetics consisting of three 

enzymatic reaction steps.

Figure 2: Example of a three-dimensional enzyme states space. The 

enzyme appears in the free form E, as the enzyme-substrate complex ES and as the 

enzyme-product complex EP. The enzyme species are randomly generated over the 

simplex.

Figure 3: The surface 1 2 3=  in the space of elementary displacements 

1 , 2  and 3 . As one approaches to the thermodynamic equilibrium the surface of 

 shrinks, and as a consequence the allowable ranges of 1 , 2  and 3  shrink as 

well.

Figure 4: Histograms of the flux elasticities for the three-step reaction 

away from the equilibrium ( ). Panel A: the flux elasticities with respect to 

the substrate S ( upper part) and the product P ( lower part) concentrations; the 

equilibrium coefficients are 

= 0.01

1 = 0.0104 , 2 = 0.98 , and 3 = 0.98 ; Panel B:

histograms of elasticities for the irreversible Michaelis-Menten kinetics - the 

equilibrium coefficients are 1 2= = 0.98 , and 3 = 0.0104 .

Figure 5: Gibbs free energy profiles for the reaction following the 

irreversible Michaelis-Menten kinetics. The last elementary step is largely 

displaced from the equilibrium ( 3 << 1), while the other two steps are close to the 

equilibrium. High values of the rate constants  and  result in a very low 3 fk 2k b
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concentration levels of EP. The Gibbs energy levels of substrate, intermediates and 

product are given in dark blue, whereas the transition states are traced in red. For 

different pairs of concentration levels for E and ES several alternative energy 

configurations can be distinguished as shown with light gray curves. The 

corresponding energy levels are traced in light blue. 

Figure 6: Reaction energy profiles for the reactions characterized in 

scenarios (ii) and (iii). Panel A: High values for k  and  constants drive the 

concentration levels of ES very low. The equilibrium displacements 

1b 2k f

3 << 1 ,

1 2= 1 . Panel B: The equilibrium displacement predominantly expressed in the 

intermediary reaction step. The concentration levels of EP substantially smaller

than the ones of E and ES. The alternative energy levels for ES shown in light 

blue.

Figure 7: Non-uniform sampling of enzyme space. Panel A: probability 

density function Df  as a function of the simplex = 1
T T T

E ES EP

E E E
 lying in the 

horizontal plane. This distribution allows for generating random sets of enzyme

states for a reaction where the enzyme is in its forms E, ES and EP with probability 

of 60%, 15% and 25%, respectively; Panel B: uniform sampling (dots) and biased 

sampling (diamonds) with the probability density function Df  presented in Panel 

A. Samples presented in the space ( , , )./ TE E / TES E /EP ET
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Figure 2. 
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Figure 3. 
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Figure 4. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

Figure 5. 
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Figure 6. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

Figure 7. 


