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a b s t r a c t

A novel type of particle detector based on scintillation, with precise spatial resolution and high radiation
hardness, is being studied. It consists of a single microfluidic channel filled with a liquid scintillator and is
designed to define an array of scintillating waveguides each independently coupled to a photodetector.
Prototype detectors built using an SU-8 epoxy resin have been tested with electrons from a radioactive
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source. The experimental results show a light yield compatible with the theoretical expectations and
confirm the validity of the approach.

© 2010 Elsevier B.V. All rights reserved.
icrofabrication
U-8 negative photoresist

. Introduction

A novel type of particle detector based on capillaries filled with
iquid scintillators is being studied. It is possible with microfabri-
ation technologies to build microfluidic devices with dimensional
esolutions in the order of �m with a single photolithographic step.
uch devices allow the easy manipulation of fluids inside capil-
aries overcoming the difficulties encountered with previous high
patial resolution liquid scintillation detectors made of capillary
undles [1–4]. Moreover, the possibility to circulate and renew the

iquid scintillator makes the active medium of the detector intrin-
ically radiation hard and by changing the type of scintillator in
he microchannels the same device can be used for different types
f measurements. Microfabricated devices have been developed
nd studied to demonstrate experimentally the feasibility of such a
etector based on microfluidics. Results obtained with a first series
f prototypes are reported elsewhere [5]. This paper describes the
esults of the experimental investigation performed on the sec-
nd generation prototype that demonstrates the validity of the

pproach.
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2. Microfluidic scintillation detector

The main characteristics of the particle detector investigated
are high spatial resolution for precise reconstruction of particle
tracks, high radiation resistance to operate in very high radia-
tion environments and low material budget to interfere as least
as possible with the particles. Microfabrication and microfluidic
technologies are appealing to develop such detectors. With a sim-
ple process it is possible to fabricate a single microfluidic channel
defining a dense array of optically independent scintillating capil-
laries with dedicated photodetectors (Fig. 1a). The design is based
on the assumption that there is no light transmission between the
different capillaries due to the right angles being necessary for flu-
idic circulation at the end of the straight sections. Fluidic operation
of the single microchannel is simple and liquid scintillators can be
circulated and renewed. To demonstrate the concept of microflu-
idic scintillation detection, different prototype detectors have been
fabricated and characterized.

3. Prototype detectors

The design of the prototype devices defines a detection zone,

where impinging particles are detected, with high spatial resolu-
tion. 50 �m wide waveguides are separated by 10 �m wide SU-8
structures on a total length of 1 cm. In this region the microchan-
nels are straight and parallel. They then fan-out from a pitch of
60 �m to a pitch of 2.3 mm over 1 cm to match the inter-pixel dis-

https://core.ac.uk/display/147962529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/09244247
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Fig. 1. 3D schematic representation, not to scale, of (a) the principle of operation of
the microfluidic scintillation detector and of (b) the fabricated prototype detector.
A single microfluidic channel defines an array of optically separated waveguides.
When a particle interacts with the liquid scintillator in one of the branches the scin-
tillation light is guided towards the corresponding photodetector. In the ideal case
(
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a) all the area covered by the microchannel is used for detection (dotted contour).
he layout of the prototype detector (b) has a reduced detection zone (dotted con-
our) to cope with the pitch of the photodetector available in the experimental test
ench.
ance of the multi-anode photomultiplier tube (MAPMT H7546B by
amamatsu) of the experimental test bench (Figs. 1b and 2).

The microchannels are fabricated by photolithography of the
U-8 resin. This photoresist is commonly used for MEMS [6] and

ig. 2. Top view of the open metallized SU-8 channels of the prototype microfluidic
cintillation detector. The upper side of the chip, in contact with the photodetector
ixels, is not metallized to allow light transmission between the microchannels and
he photodetector.
Fig. 3. Schematic representation of the cross-section of the microchannels at the
level of the detection zone (not to scale). 200 �m thick SU-8 structures (10 �m
wide) are separated by 50 �m on a silicon substrate. A layer of Au is deposited by
sputtering.

microfluidic devices [7] but also for the fabrication of micro-pattern
gas detectors [8] and X-ray imagers [9]. The SU-8 resin exhibits
outstanding properties such as good adhesion on different types
of substrates, high mechanical strength and chemical stability. Of
particular interest for this project is the high aspect ratio (1:20) that
can be achieved on thick layers in the order of 200 �m (Figs. 3 and 4)
with low roughness vertical sidewalls [10]. Moreover, its high
level of resistance to radiation damage, comparable to Kapton
film, makes it a good candidate for novel microfabricated radiation
detectors [11].

4. Fabrication of metallized SU-8 microchannels

The fabrication of the microchannels starts with the spin coat-
ing of 200 �m thick homogeneous layers of SU-8 (GM1075 from
Gersteltec) on silicon wafers (100 s at 950 rpm), followed by a soft
bake (10 min at 120 ◦C) and a slow cooling down (4 ◦C/min) to avoid
the formation of cracks. The coated substrates are then exposed to
UV light at a dose of 500 mJ/cm2 through a mask to polymerize
the desired structures. The exposure is followed by a post exposure
bake (1 h at 95 ◦C) for the cross-linking of the exposed regions. The
non-polymerized resin is then dissolved for 20 min in propylene
glycol methyl ether acetate (PGMEA) revealing the microchannels
(Fig. 4).
To prevent optical cross-talk between adjacent microchannels
and to increase their optical properties, guaranteeing an efficient
light transmission from the interaction point to the photodetector,
the walls and the bottom of the channels are metallized. Two coat-

Fig. 4. SEM image of the cross-section of the detection zone of the device. The
microchannels are separated by high aspect ratio structures in SU-8.
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Fig. 5. Photoelectron spectrum obtained by irradiating a 50 �m × 200 �m
microchannel with MIPs. The average number of photoelectrons is 1.65. The blue
74 A. Mapelli et al. / Sensors and

ng methods, evaporation and sputtering, have been considered and
n both cases an adhesion layer was not necessary. Sputtering gives
he best results for our design with high aspect ratio structures.
t is performed in the Balzers BAS50. However, due to the high
spect ratio of the walls and their close spacing, metallization is
ot homogeneous along the wall. It decreases with the depth of the
hannel. To have sufficient metal at the bottom of the channels and
n the lower part of the walls two consecutive metallizations are
erformed guaranteeing at least 200 nm of metal at the bottom.
he reason to deposit metal in two steps is due to the tempera-
ure reached during the sputtering process. A single long deposition
esults in undulation and collapsing of the thin SU-8 walls while
wo shorter cycles are not harmful. Au and Al depositions have been
erformed. The results presented in this paper have been obtained
ith Au-coated SU-8 microchannels.

At this stage, the wafer is diced to separate 16 chips with dimen-
ions of 1.5 cm × 2 cm (Fig. 2). They are then individually placed in
mechanical set-up to close the channels for microfluidic manip-
lation and to optically couple them to the photodetectors. Details
f the set-up are given in the following section. The Au coating is
emoved from the side of the channels coupled to the photode-
ectors to allow transmission of the scintillation light. Removal is
erformed by dipping a small portion of the chip in an Au etching
olution.

. Experimental

The channel is closed by covering the chip with an Al-coated
ylar foil and encapsulating the whole in a black PMMA block.
ptical gel is used to improve the light transmission between the
icrofluidic chip and the quartz window of the MAPMT. Tubes

re connected to the inlet and outlet of the channel through the
MMA block. Filling and circulation of the liquid scintillator in the
icrochannel is performed with a syringe controlled by hand. In
later stage, and in particular for future beam test experiments,
fluidic circulation controlled with a pump will be implemented.
he channels are filled with a liquid scintillator (EJ-305 by Eljen
echnology) selected for its high light output (80% of Anthracene)
nd for its emission spectrum peaking around 425 nm in the most
ensitive region of the MAPMT. The photoelectric yield of the chip-
APMT assembly is measured by exciting the liquid scintillator
ith electrons from a collimated 90Sr source which are considered

s minimum ionizing particles (MIP). The coincidence of two plastic
cintillating fibres (Kuraray SCSF-78 0.5 mm square cross-section)
laced underneath the detector is used as external trigger on the
lectrons. For each trigger the signals from the MAPMT channels
re sent to a charge-to-digital converter (CAEN QDC V792).

Measurements have also been performed on an independent
et-up with a non-pixellated photomultiplier tube (PMT) by mask-
ng all the microchannels except the one under test. Results from
oth test-benches match within the experimental uncertainties
ainly due to the optical coupling of the thin microfluidic device

rthogonal to the flat window of PMTs.

. Results

The charge spectra of individual scintillating microfluidic chan-
els (200 �m deep and 50 �m wide) are fitted with the convolution
(Eq. (1)) of a Poissonian distribution P describing the fluctuations
n the production of photoelectrons with Gaussian terms G describ-
ng the response of the readout electronics to a given number of
hotoelectrons [12]:

(x) ∝ P(N, N̄pe) ⊗ G(x, N, �,
√

N) (1)
curves represent the contributions from 1 to 7 photoelectrons and the black curve
is the global convolution used to fit the signal. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

where N is the number of events, N̄pe is the average number of
photoelectrons per event and � is the standard deviation of the
distribution of single photoelectron counts. From the fit an average
number of photoelectrons N̄pe per incident MIP of 1.65 is derived
(Fig. 5).

This number is well in agreement with the theoretical expec-
tations. Assuming that light is guided in the metal-cladded
microchannels by attenuated total internal reflection (ATIR) [13]
the expected photoelectric yield can be expressed as follows:

N̄pe = Nscint · εcoll · εrefl · εatt · εin · εQeff
(2)

where Nscint is the number of scintillation photons produced
isotropically in the microchannel by an impinging electron, εcoll is
the collection efficiency of a rectangular metal-coated microchan-
nel, εrefl is the gain due to the reflective end of the channel opposite
to the photodetector, εatt is the transport efficiency due to optical
absorption in the liquid scintillator, εin is the transmission effi-
ciency at the interface between the microchannel side where Au
has been removed and the PMT and εQeff

is the quantum efficiency
of the PMT.

A MIP traversing a 200 �m channel filled with the liquid scintil-
lator EJ-305 produces a number Nscint of photoelectrons in the order
of 420 according to the technical data provided by Eljen Technol-
ogy. The efficiencies εcoll , εrefl were estimated to be 0.03 and 1.4,
respectively, by running Monte Carlo simulations. The attenuation
length of the liquid scintillator EJ-305 is reported by Eljen Technol-
ogy to be in the order of 3 m. One can safely assume that there is
virtually no attenuation along the 2 cm long channels and that the
transmission efficiency εatt is about 0.99. Around 425 nm, the wave-
length of maximum emission of the liquid scintillator, the quantum
efficiency of the photomultiplier tube εQeff

is estimated to be about

0.14 [14]. The equation leads to N̄pe � 1.7.
A yield of 1.65 photoelectrons leads to a detection efficiency εdet

up to 80% as derived from:

εdet ≈ 1 − P(0, N̄pe) = 1 − e−1.65 = 80.1% (3)

Previous results obtained with microchannels with sharp angles
(Fig. 1b) in the path of light transmission showed significantly lower
light yield in the order of 0.74 photoelectrons per MIP [5]. This was

interpreted as being due to light losses in the angles leading to the
current prototype design (Fig. 2). The results obtained with this
new prototype are well in agreement with the extrapolation from
the previous results.
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The active area of the prototypes covers 83% of the detection
one. This coverage is dictated by the ratio between the size of the
U-8 structures and the size of the scintillating capillaries. By stag-
ering at least 2 planes a fully active detector can be obtained with
mall inactive edges. Moreover by staggering 3 layers the device
an be self-triggering by requesting a coincidence of 2 planes.
he staggering also increases the spatial resolution. A device with
staggered planes will be implemented to demonstrate experi-
entally the increased spatial resolution and the self-triggering

apabilities of a fully active detector.

. Conclusions

The working principle of a novel type of scintillation detector
ased on microfluidics has been demonstrated experimentally. A
tandard process of UV photopatterning has been optimized to
abricate structures with high aspect ratios (1:20) in thick lay-
rs of SU-8 in the order of 200 �m. They define a dense array of
icrochannels that are filled with liquid scintillator and optically

oupled to the photocathode of an MAPMT. The photoelectric yield
f the device measured with MIPs is in the order of 1.65 photo-
lectrons per MIP for 200 �m deep microchannels and is in full
greement with calculations. The high fill factor of the scintillating
icrochannels, the possibility to measure very close (few �m) to

he edge of the device and the increased radiation hardness makes
his novel type of detector particularly interesting for applications
uch as tracking particles in the field of high energy physics. More-
ver, the compact design of microfabricated scintillation detectors
pens the way to numerous applications where macrodetectors
annot be used like insitu dosimetry for hadron therapy.
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