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Abstract The AMP-activated protein kinase (AMPK) is a

key regulator of catabolic versus anabolic processes. Its

properties as an energy sensor allow it to couple the energy

status of the cell to the metabolic environment. These

adaptations not only take place through the acute modula-

tion of key metabolic enzymes via direct phosphorylation,

but also through a slower transcriptional adaptative

response. The question of how AMPK regulates the

expression of a number of gene sets, such as those related to

mitochondrial biogenesis, energy production and oxidative

protection, is only beginning to be elucidated, and still

many questions remain to be answered. In this review we

will try to integrate our current knowledge on how AMPK

regulates transcription in muscle and liver, which will serve

as examples to illustrate the major advances in the field and

the key challenges ahead.
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Introduction

One and a half centuries ago, Darwin shocked the world

with one of the brightest concepts to ever impact biological

sciences, i.e., that the ability of organisms to respond and

adapt to environmental challenges has been vital for evo-

lution. To the amazement of the scientific community, this

remarkable feat to adapt to environmental changes is

consistently found not only in organisms as a whole, but

also at the tissue and cellular levels. Given that most bio-

logical processes (cell growth, division, movement, etc.)

depend on energy consumption, it is not surprising that one

outcome of evolution is that cells and organisms can sense

energy levels and adapt their energy production to their

energy demands.

In order to sustain proper biological functions, ATP

levels, the energy currency in cells, are maintained in the

low millimolar range, hinting at the existence of molecular

mechanisms that keep an appropriate balance between

energy-consuming and -producing processes. AMP-acti-

vated protein kinase (AMPK), an enzyme that senses AMP

levels and that is conserved along the eukaryote kingdom,

could be a key molecular player in this adaptation process.

This review will focus on mammalian AMPK, but we refer

the reader to some recent reviews in order to gain some

insight on AMPK homologs in different eukaryotes [1–4].

Deconstructing AMPK: enzyme bricks and regulation

of its activity

AMPK is a heterotrimeric enzyme

AMPK is a heterotrimeric Ser/Thr kinase composed of an

a, b and c subunit [3]. There are two different forms of

a (a1 and a2) and b (b1 and b2) subunits, while three dif-

ferent c isoforms (c1, c2 and c3) exist [3]. The a subunits are

the catalytic subunits of the functional heterotrimer and

contain the Thr172 residue, whose phosphorylation is

required for full enzymatic activity [5]. The a subunit

partners with the b and c subunits through its C-terminal

region [6]. The b subunit also interacts with both the a and c
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subunits, and its mid-region contains an evolutionarily

conserved carbohydrate-binding domain, which allows

AMPK to interact with glycogen particles [7]. The c sub-

units contain one of the critical features of the enzyme, the

four tandem repeats known as cystathionine b-synthase

(CBS) motifs, which form an interface for interaction with

two AMP or ATP molecules in a mutually exclusive way

and a third AMP molecule in a non-exchangeable fashion

[8]. While the binding of ATP keeps the activity of the

enzyme low, the exchange of ATP for AMP is enough to

promote a mild, less than fivefold, activation of the kinase

through an allosteric mechanism [5]. More importantly,

AMP binding renders AMPK a poorer substrate for the

a subunit Thr172 phosphatase, which results in increased

Thr172 phosphorylation [9]. The combination of the allo-

steric and phosphorylation effects promoted by AMP leads

to a[1,000-fold activation of the enzyme [10]. Due to the

reaction catalyzed by adenylate kinase, transforming two

ADP molecules into one ATP and one AMP, the AMP/ATP

ratio is a very sensitive reflection of metabolic disturbances

of the cell [11], and, therefore, transforms AMPK into an

exquisite sensor of energy balance.

Regulation of AMPK phosphorylation

As described above, AMPK is maximally active when

phosphorylated. Consequently, there has been great interest

in identifying the regulators of the phosphorylation state of

this enzyme. During the last decade, a number of upstream

kinase activities have been identified, and, even though the

exact identity of the phosphatase activity remains elusive,

it seems to belong to the PP2C family [9, 12]. Among the

different kinases proposed to act as AMPKKs, LKB1 and

CAMKK are now widely accepted to be key. Others, like

transforming growth factor-b-activated kinase 1 (TAK1),

can certainly phosphorylate AMPK in vitro [13], but the

‘‘in vivo’’ evidence of their capacity to activate AMPK is

still not conclusive. The reasons and scenarios justifying

the need for different AMPK upstream kinases are yet to be

fully understood.

LKB1/STRAD/MO25

LKB1 is a Ser/Thr kinase that was originally identified as a

tumor suppressor mutated in an inherited form of suscep-

tibility to cancer, the Peutz-Jeghers syndrome [14]. LKB1

requires the formation of a heterotrimeric complex with

two additional proteins in order to function, Sterile-20-

related adaptor (STRAD) and Mouse protein 25 (MO25)

[15]. In their absence, LKB1 is weakly active [15]. A

number of post-translational modifications can impact

LKB1 and potentially modulate its activity [14, 16].

However, most evidence points towards the hypothesis

that, in normal physiological settings, the LKB1/STRAD/

MO25 complex is a constitutively active kinase [17] and

that the regulation of AMPK happens through different

accessibility for the phosphatase activity [9]. This partic-

ularity might be explained by the fact that the LKB1

complex acts as a master kinase for the 13 members of the

entire family of AMPK-related kinases [18], making it

necessary to create substrate specificity through additional

methods. In this sense, increased AMP only leads to acti-

vation of AMPK, and not of the other 12 family members

[17]. Studies in the LKB1-deficient mouse have shown that

LKB1 is the main AMPK kinase in muscle and liver

[19–21]. Muscle-specific LKB-1 KO mice display severely

impaired AMPKa2 phosphorylation after stimulation of

AMPK with the phamacological AMP-mimetic AICAR

(aminoimidazole-4-carboxumide-1-b-D-ribofuranoside) or

ex-vivo contraction, demonstrating that LKB1 is the major

AMPK kinase in skeletal muscle [19, 21]. In liver, deletion

of LKB1 prevented the effects of metformin on AMPK

activation and glucose production [20].

CaMKK

Simultaneous work by David Carling and Grahame

Hardie’s groups found a second alternative AMPK kinase

in brain and LKB1-deficient cells: the Ca2?/calmodulin-

dependent kinase kinases (CaMKKs) [22, 23]. Other

tissues, like muscle, also express CAMKKa and, not so

clearly, CAMKKb, although at lower levels than brain

[24, 25]. The activity of CAMKKs depend on increases in

intracellular Ca2? levels and act on AMPK independently

of changes in AMP [10]. It has been hypothesized that

CAMKKs could be the main AMPKK during the initial

phase of mild-tetanic muscle contraction [26]. Overex-

pression of CAMKKa or CAMKKb in muscle is enough to

increase AMPK phosphorylation [27], and muscle overload

is known to increase AMPK activity in LKB1 knock-out

mice, in correlation with an increase in CAMKK expres-

sion [25]. However, it must be said that a number of

experiments studying the role of CAMKK in muscle have

relied on the use of STO-609 as a CAMKK inhibitor,

whose specificity is not fully clear [19, 26].

AMPK actions

As mentioned before, AMPK acts as an energy sensor by

sensing the AMP/ATP ratio. AMPK activation is gener-

ally linked to the stimulation of metabolic responses in

order to prevent metabolic and energetic crisis in situa-

tions where ATP synthesis is compromised (hypoxia,

ischemia, low nutrient availability) or ATP consumption

is accelerated. Consequent to this principle, AMPK acti-

vation stimulates catabolic processes to generate ATP and
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inhibits ATP-consuming anabolic processes that are not

required for the immediate survival of the cell. Even

though this review aims to focus on the transcriptional

events regulated by AMPK, it is necessary to understand

the acute effects of AMPK activation in order to under-

stand the global physiological actions of AMPK and the

implications of its pharmacological activation. Therefore,

we will briefly mention the most notable acute effects of

AMPK and refer the reader to some recent reviews for

more details [3, 28, 29].

One of the immediate whole-body consequences of

AMPK activation is an increase in glucose uptake by

skeletal muscle through the induction of GLUT4 translo-

cation to the plasma membrane [30]. In fact, AMPK has for

a long time been hypothesized as a crucial mediator of the

effects of muscle contraction on glucose transport [19, 28,

31]. Muscle contraction activates AMPK as a consequence

of ATP depletion [19], and, probably, also through the

activation of CAMKK in response to the fluctuations in

cytosolic Ca2? during contraction [26]. The downstream

events bridging AMPK activation to GLUT4 translocation

are still nebulous. A number of studies have focused their

attention on the attractive link provided by TBC1D1 and

TBC1D4, two highly related proteins of the same family,

that are predominant in glycolytic and oxidative muscle,

respectively [32]. TBC1D1 and D4 are Rab GTPase-acti-

vating proteins (GAPs), which are believed to slow down

or prevent GLUT4 exocytosis by keeping GLUT4-vesicle

associated Rab proteins in their GDP-bound form [33].

AMPK phosphorylates TBC1D1 and D4, and this disso-

ciates them from GLUT4 vesicles, allowing GLUT4

translocation [33]. While this conforms an interesting

mechanism of action, a number of concerns [28] indicate

that there are still many questions open regarding the

molecular mechanisms by which AMPK regulates glucose

uptake.

Acute activation of AMPK is also associated with

decreases in glycogen synthesis rates. This can be achieved

through the direct phosphorylation of glycogen synthase on

Ser7, which inhibits its activity [34]. The decreased

glycogen synthesis rates upon acute AMPK activation are

generally coupled to an increase in the glycolytic flux,

thanks to the activation of 6-phosphofructo-2-kinase

(PFK-2) through direct phosphorylation on Ser466 [35].

PFK-2 catalyzes the synthesis of fructose 2,6-bisphosphate,

a potent stimulator of glycolysis. Therefore, activation of

AMPK rapidly mobilizes glucose into ATP-generating

processes.

AMPK also stimulates fatty acid oxidation as a way to

increase energy levels. To achieve this goal, AMPK

directly phosphorylates acetyl-coA carboxylase (ACC) 1

and 2 isoforms on Ser79 and Ser212 [36], respectively. ACC

is the enzyme that catalyzes the reaction forming malonyl

coA from acetyl coA and that constitutes the initial step in

lipid synthesis [36]. In addition, malonyl coA is an allo-

steric inhibitor of CPT1b [37], the protein responsible for

fatty acid intake into the mitochondria for b-oxidation. The

phosphorylation of ACC by AMPK renders ACC inactive

[36], which translates into a decrease in lipid synthesis

rates and the relieve of CPT-1b inhibition, leading to

increased fatty acid flux into the mitochondria for b-oxi-

dation. This induction of b-oxidation contributes, together

with the increased glycolytic rate, to stimulate ATP syn-

thesis in order to meet the energy requirements of the cell.

Also protein metabolism is affected by AMPK activa-

tion. Through phosphorylation of TSC2 [38] and raptor

[39], AMPK blocks the mTOR pathway, a major controller

of protein synthesis and biomass generation. This not only

translates into the attenuation of protein biosynthetic pro-

cesses [40], but also into the induction of protein

degradation through autophagy and the ubiquitin-protea-

some system [40]. While AMPK activation is generally

linked to both degrading processes, this action seems to be

largely indirect via mTOR inhibition and, probably, relying

on transcriptional events [28].

The importance of different AMPK trimers

The existence of different isoforms for each AMPK subunit

highlights the possibility that 12 different combinations of

AMPK trimers can exist. To date, however, we know that

all combinations are not found in different tissues and,

furthermore, that every trimer combination displays a

distinct spectrum of biochemical properties.

At the tissue level, AMPK trimer composition is extre-

mely varied. For example, the a1 is the predominant isoform

in white adipose tissue, blood cells, smooth muscle, endo-

thelial cells and nerve. In contrast, a2 is the predominant one

in tissues such as muscle or heart. Other tissues, like liver,

contain both catalytic subunits at similar levels [41]. This

tissue-specific pattern is especially clear for the c3 subunit

of AMPK, whose expression is almost restricted to glyco-

lytic skeletal muscle, where it is the predominant c isoform

[42]. A second degree of specificity, yet to be understood, is

how a similar subunit repertoire in different tissues does not

necessarily lead to equal trimer composition. A clear

example of this can be found in the fact that the b1 subunit is

the predominant subunit associated to a2 in oxidative

muscle, while both b1 and b2 equally bind a2 in glycolytic

muscle [43]. An additional layer of complexity is composed

by the observation that different trimer compositions can

also influence the intracellular localization. Several AMPK

subunits (i.e., a2, b2, c1, c3) have been found to partly reside

in the nuclear compartment [44–46] (see below for dis-

cussion), suggesting that they might be involved in the

regulation of gene expression.
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Most of the studies on AMPK trimer composition have

been performed in mouse skeletal muscle, where it has

been postulated that distinct trimers might have different

biochemical properties. For example, while AMPK activity

has long been known to increase in response to muscle

contraction [47, 48], recent studies indicate that ex-vivo

contraction at different intensities and time periods can

promote trimer-specific activation (see [28] for review).

The use of transgenic mice has contributed to the

understanding of isoform-specific contributions to general

AMPK functions and global metabolism. For example, the

AMPKa2 knock-out mice, but not the a1, are insulin

resistant, glucose intolerant and resistant to the hypogly-

cemic action of AICAR [49, 50]. This is a clear indication

that the lack of one subunit cannot be compensated by the

other by specificity in the localization, the activation

mechanism or the functional output.

As of now, it is clear that we are only at the tip of the

iceberg on our knowledge of the significance of the dif-

ferent AMPK trimers. However, the fact that the AMPK

trimer composition is regulated in a tissue/compartment-

specific fashion, that different AMPK trimers can be

selectively activated and that different isoforms can affect

specific processes clearly indicates that AMPK trimer

composition is non-random and aimed to the regulation of

specific functions and/or respond to different kinds/inten-

sities of stresses.

Transcriptional actions of AMPK

Nuclear localization of AMPK

The consequences of AMPK activation expand far beyond

acute responses. This is due to the ability of AMPK to

directly and indirectly regulate transcriptional programs

through phosphorylation events. AMPK modulates the

transcription of a number of genes that increase ATP

production through glycolysis and the use of lipid as a

mitochondrial energy source. Studies in yeast described

how snf1, the AMPKa subunit yeast homolog, is present in

the nucleus and regulates transcription even through the

direct phosphorylation of histones [51]. Pioneering studies

by Grahame Hardie’s laboratory showed how mammalian

AMPK complexes containing the a2 subunit were, at least

partly, distributed in the nuclear compartment [44]. This

work was further extended by the demonstration that

complexes containing the a2 subunit translocate to the

nucleus in response to muscle contraction [45] or leptin

treatment [52]. This specificity by which AMPKa2 trans-

locates to the nucleus is still largely unknown, but seems

to depend on the presence of a nuclear localization signal

that is not found in the a1 subunit [52]. A recent report,

however, also suggests that a1-trimers might translocate to

the nucleus, too [53]. Elucidating how AMPK shuttles in

and out of the nucleus warrants future investigation.

By merging the observations that activation of AMPK

promotes its nuclear translocation and that AMPK leads to

specific changes in gene-expression patterns, it is easy to

postulate that AMPK might be targeting nuclear proteins

involved in transcriptional regulation. In the chapters

below, we will discuss AMPK-regulated gene expression in

different tissues, the key transcriptional regulators involved

in this process, and how AMPK modulates their activity.

AMPK transcriptional regulation in muscle

Skeletal muscle is the predominant site of post-prandrial

glucose uptake and the major affected tissue in insulin-

resistant subjects [54]. Upon nutrient scarcity, as occurs

during fasting or calorie restriction, the muscle decreases

glucose consumption and switches to fatty acid utilization

as main energy source [55]. Similarly, with endurance

training, skeletal muscle suffers a number of changes, such

as fiber-type switch from type IIx to IIa and an increase in

mitochondrial biogenesis [56–58], aimed to optimize and

enhance energy production. As we will see below, AMPK

might act as a key mediator of these adaptations.

Chronic treatment of rodents with AMPK-activating

compounds, such as AICAR, b-guanadinopropionic acid

(a phosphocreatine depleting agent) or resveratrol, all

increase mitochondrial biogenesis in skeletal muscle

[59–62]. The actions of these agents on mitochondrial

content and gene expression is robustly impaired in models

with defective AMPK activity [61, 63–65], implying that

AMPK is a master regulator of the transcriptional mecha-

nisms controlling mitochondrial biogenesis. This notion

was further confirmed by a number of different gain-of

function and loss-of function transgenic approaches. For

example, mice overexpressing a kinase dead (KD)

AMPKa2 subunit in muscle displayed less voluntary run-

ning activity and reduced endurance perfomance than wild-

type littermates [31], indicating impaired mitochondrial

function. Similarly, muscle-specific expression of an

inactive form of AMPKa2, in which Asp157 is mutated to

Ala, promoted a marked decrease in mitochondrial gene

expression and rendered the mice exercise intolerant [66,

67]. These defects in mitochondrial gene expression were

also prominent in resting muscles from global AMPKa2

knock-out mice [63, 68]. Conversely, different genetic

manipulations aimed to promote AMPK activation clearly

illustrate the positive effects of AMPK activation on

mitochondrial activity. Genetic AMPK activation in mice

is achieved through different mutations in the c subunits.

Muscle-specific overexpression of a mutated form of

AMPK, in which Arg70 from the c1 subunit is mutated to to

3410 C. Cantó, J. Auwerx



Gln, promoted a three-fold higher basal AMPK activity

[69], which translated into an increase in mitochondrial

markers’ gene expression [67]. A different gain of function

model, in which a mutated form of the c3 subunit

(Arg225Gln) is overexpressed, also displayed a prominent

increase in mitochondrial gene expression and muscle

oxidative profile [70]. Altogether, both pharmacological

and transgenic manipulations clearly indicate that AMPK

acts as a master transcriptional regulator of mitochondrial

genes.

The effects of AMPK activation on mitochondrial genes

can be achieved through the regulation of a number of

transcriptional factors and cofactors (Fig. 1). For example,

AMPK is a master controller of PGC-1a [60, 65, 71, 72], a

transcriptional coactivator that orchestrates a constellation

of transcription factors, such as ERRa, NRF1, NRF2 or

PPARs, to induce mitochondrial gene expression [73–75].

The link between AMPK and PGC-1a is further reinforced

by the phenotypic similarities of mice with muscle-specific

deletions of PGC-1a or AMPK, both of which have a gen-

eral reduction in mitochondrial gene expression and

exercise intolerance [31, 66–68, 76]. Conversely, a number

of pharmacological or transgenic strategies that increase

AMPK or PGC-1a activity in muscle have all consistently

potentiated the endurance capabilities of mice and led to a

higher oxidative profile of muscle fibers [60, 62, 70, 77, 78].

Firm proof for this link was provided by the fact that AICAR

was unable to increase mitochondrial gene expression in

muscles of mice lacking PGC-1a [71]. As such, PGC-1a
seems the key downstream mediator of the effects of AMPK

on mitochondrial biogenesis. Several mechanisms explain

how AMPK impacts PGC-1a. AMPK can directly phos-

phorylate PGC-1a at Thr177 and Ser538 in in vitro assays

[71]. PGC-1a phosphorylation might not directly affect its

intrinsic coactivation activity, but, rather, release it from its

repressor protein p160myb [79] and/or allow deacetylation

and subsequent activation by SIRT1 [65, 72]. Additionally,

AMPK activation increases PGC-1a expression in muscle

[60, 80], an effect that is likely to be achieved though

PGC-1a autoregulation on its own promoter [72, 81–83].

Trimers containing the c3 subunit are responsible for the

majority of the effect of AMPK on PGC-1a deacetylation

and activation upon exercise or fasting [65]. This is an

interesting finding with long-reaching consequences, as the

c3 subunit is enriched in fast glycolytic muscle, while it is

almost absent in oxidative muscle [42]. This helps explain

why PGC-1a is not deacetylated in the oxidative soleus

muscle or in the heart upon AMPK activation, but only

in glycolytic skeletal muscle [62, 72]. Similarly, trimers

containing the c3 subunit are the ones more sensitive to

exercise-induced energy stress in mouse muscle [28],

making them the more apt to fine-tune exercise intensity/

duration to transcriptional outputs.

However, PGC-1a is a coactivator, and its transcrip-

tional effects depend on the transcription factors it

coactivates. Therefore, it is also likely that AMPK can

somehow target PGC-1a towards the transcription factors

of interest. This is important, as discussed below for liver

metabolism, and helps to understand how AMPK activa-

tion does not activate all possible PGC-1a-regulated gene

programs. A key transcriptional factor coactivated by

PGC-1a in muscle to promote oxidative metabolism is

MEF2 [78], which in turn also regulates PGC-1a expres-

sion through directly binding the PGC-1a promoter [84].

Interestingly, MEF2 activity is also crucially regulated by

AMPK [85, 86], as demonstrated by studies on the GLUT4

promoter [86]. Activation of AMPK leads to the translo-

cation of MEF2 to the nucleus and its binding to its target

promoters in vivo in a time frame concordant with the

increased expression of GLUT4 and PGC-1a in exercised

or AICAR-treated mice [84, 86, 87]. The mechanism by

which AMPK impacts on MEF2 is likely to be indirect, as

AMPK does not phosphorylate MEF2 [86] and no inter-

action has been reported to date. One suggested hypothesis

was that MEF translocation could be aided by its inter-

acting partner GEF (GLUT4 Enhancer Factor) [86, 88].

Interestingly, AMPK phosphorylates GEF and promotes its

import into the nucleus and DNA binding [86], strength-

ening the possibility that both transcription factors are

regulated in coordination by AMPK as a unit.

The CREB family of transcription factors has also been

implicated in muscle metabolism through the regulation of

hexokinase II or PGC-1a, among others [84, 89]. Recent

data indicate that AMPK can phosphorylate the CREB

family of transcription factors, including CREB1, ATF1

and CREM [90]. AMPK phosphorylates CREB at the same

residue as PKA, Ser133, and enhances CREB-dependent

transcription [90]. As discussed in the next chapter this

coordination between AMPK and CREB might be condi-

tioned by a number of circumstances and display some

tissue/time specificity, as AMPK is also known to block the

action of some CREB coactivators [91]. While phosphor-

ylation of CREB is not essential for the binding of CREB

to CRE sites, it promotes the recruitment of essential

coactivators like CBP/p300 [92]. Interestingly, AMPK has

also been shown to directly phosphorylate CBP/p300 at

Ser89 [93]. This phosphorylation presumably alters the

structure of the N-terminal region of the protein, impeding

its interaction with nuclear receptors, such as PPARs, but

not with other families of transcription factors, such as

CREB [93]. While this constitutes a beautiful model to

explain a ‘‘channelled’’ activation of gene expression, it

potentially contradicts the notion that AMPK exerts a

number of its biological effects on lipid oxidative genes

through the activation of PPARa [52, 94]. Indeed, PPARa
and PPARb/d constitute attractive mediators for the

Transcriptional regulation by AMPK 3411



transcriptional actions of AMPK, as the metabolic profile

achieved by AMPK activation shares many common fea-

tures with that obtained through PPARa and PPARb/d
activation, i.e., stimulation of mitochondrial biogenesis, of

endurance performance and of lipid oxidation metabolism

[95–99]. Some results already support that PPARa medi-

ates the transcriptional actions of AMPK on oxidative

metabolism [94], and recent data suggest that simultaneous

AMPK and PPARa or PPARb/d activation may act syn-

ergistically in the induction of such genes [77, 100]. It has

also been proposed that the AMPK can interact with

PPARa or PPARb/d through the a subunit, leading to a

synergistic effect with the ligand-dependent activation of

the nuclear receptor [77, 100, 101]. Interesting in this

context, despite many efforts, no consistent evidence exists

for the requirement of a direct phosphorylation event to

link AMPK with PPARa or PPARb/d activity [77, 101].

Another plausible explanation for the synergism between

AMPK and PPAR activation could be the fact that the

activation of PGC-1a by AMPK would further increase

transcriptional co-activation of the ligand-bound PPARa or

PPARb/d. The ability of AMPK to acutely promote lipid

oxidation could provide endogenous ligands for PPARs,

hence contributing as such to the synergism between the

kinase and the PPARs. Unravelling these links between

AMPK and PPARs will constitute a promising ground for

investigation in the years to come. Expanding on this field,

it will be interesting to test the possible relationship and

synergistic effects that AMPK could have with other

nuclear receptors that strongly influence mitochondrial

biogenesis, such as the estrogen-related receptors (ERRs)

[102].

The FOXO family of transcription factors is another

seducing target for AMPK. The actions of FOXO have been

linked to lifespan extension [103], and in muscle they are

commonly associated with protection against oxidative

stress, enhancement of lipid metabolism and induction of

autophagy [104]. The relation of AMPK with FOXOs was

brought to light when FOXOs were reported as possible

mediators of the effects of AMPK on autophagy [105].

Furthermore, AMPK can directly phosphorylate different

members of the FOXO family of transcription factors [106].

Among them, FOXO3 is phosphorylated by AMPK in up to

six residues [106]. Mutation of these residues impaired the

ability of AMPK to promote key transcriptional responses

during glucose deprivation, including the transcriptional

activation of oxidative protection genes [106]. FOXO

phosphorylation by AMPK does not influence FOXO sub-

cellular localization, but rather its activity [106]. However,

it must be noted that, as with PGC-1a, FOXO activity is also

critically controlled through acetylation/deacetylation,

which is altered by SIRT1 [107–109]. It is tempting to

AMPK
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Fig. 1 AMPK regulates muscle transcriptional events through dis-

tinct mechanisms. Activation of AMPK upon energy stress increases

mitochondrial and oxidative metabolism gene expression through

direct and indirect events. SIRT1 is an example of a transcriptional

regulator whose activity is increased by AMPK through an indirect

mechanism (i.e., by promoting an increase in NAD?). Direct

phosphorylation of AMPK occurs, for example, on the coactivator

PGC-1a and the FOXO family of transcription factors, whose

subsequent deacetylation by SIRT1 increases their activity. The

activation of PGC-1a leads to the coactivation of a myriad of

transcription factors, such as PPARa, PPARb/d and CREB, which is

also phosphorylated and activated by AMPK. Phosphorylation of

GEF promotes co-translocation with MEF2 to the nucleus. Further-

more, phosphorylation of HDAC5 by AMPK relieves the inhibition

on the MEF2/GEF complex and allows transcriptional activation.

These examples illustrate the mechanisms involved when AMPK

directly and indirectly regulates transcriptional events

3412 C. Cantó, J. Auwerx



speculate that AMPK phosphorylation of FOXO could also

serve as a signal for the deacetylation by SIRT1, which, in

turn, seems to provide FOXO with specificity towards the

regulation of oxidative stress genes [107], suggesting that

the modifications of FOXO by AMPK and SIRT1 might be

interconnected.

The transcriptional actions of AMPK in muscle not only

take place through the activation of transcriptional factors,

but also through the modulation of corepressors and histone

deacetylase activities. For example, SIRT1 has already

been mentioned as an enzyme whose activity is highly

linked to AMPK [72, 110]. SIRT1 is an evolutionarily

conserved NAD?-dependent deacetylase, whose action

impacts on a number of transcriptional regulators [111].

Activation of SIRT1 has generally been linked to the

induction of lipid oxidation and mitochondrial metabolism

in muscle [112]. The similar phenotypic outputs from

AMPK and SIRT1 activation suggest that there might be a

functional link between both activities. Direct interaction

or phosphorylation events, however, do not seem to take

place between these enzymes [72, 106]. Rather, AMPK

seems to influence SIRT1 activity through an AMPK-

induced modulation of NAD? metabolites [72, 110], which

are critical determinants of SIRT1 activity [113, 114]. For

example, pharmacological or physiological activation of

AMPK is followed by a robust increase in NAD? within

hours, which derives from the metabolic rearrangements

promoted by an increase in fatty acid oxidation rates [72].

This metabolic and fast increase in NAD? levels induced

by AMPK is sustained by the induction of Nampt expres-

sion, a gene that resynthesizes NAD? from its metabolic

breakdown product, nicotinamide [110]. This constitutes a

two-way impact of AMPK on SIRT1 activity as it gener-

ates the SIRT1 activator NAD1, while reducing the levels

of nicotinamide, a physiological inhibitor of SIRT1 activity

[114]. The intimate link between SIRT1 and AMPK is

further reinforced by studies using resveratrol, a polyphe-

nol compound that has long been used as a SIRT1 agonist.

Resveratrol increases lifespan in a number of lower

eukaryotes [115]. In higher eukaryotes, resveratrol increa-

ses muscle mitochondrial content and enhances endurance

perfomance [62]. This increased ability to oxidize lipids

confers the mice with protection against metabolic disease

upon high-fat feeding [62, 116]. While it is true that an

important number of biological actions of resveratrol

depend on SIRT1 [115], the initial belief that resveratrol

could act as a direct SIRT1 agonist [117] is long gone now,

as in vivo evidence suggests that resveratrol rather acts

primordially through AMPK, and any effect on SIRT1

activity is a downstream consequence of AMPK activation

[64, 65]. These observations stress the relevance of AMPK/

SIRT1 as a conserved signaling axis that is activated upon

energy stress. Resveratrol effects on AMPK probably

derive from the overlooked fact that resveratrol can act as a

mild mitochondrial ‘‘poison’’ by inhibiting complex III and

V of the mitochondrial respiratory chain [118, 119].

Therefore, resveratrol’s actions, like those of metformin

[20, 120], likely derive from a mild impairment in ATP

synthesis.

Another enzyme, HDAC5, is the predominant type II

histone deacetylase in adult skeletal muscle. In general,

HDAC5 acts as a transcriptional repressor by direcly

deacetylating histone lysine residues within the nucleo-

some, forming a compact structure that limits the

accessibility of transcriptional regulators to DNA [121].

The specificity of genes repressed by HDAC5 is provided

by the ability of this deacetylase to bind only certain

transcription factors, such as MEF2 [122, 123]. This way,

HDAC5 controls a myriad of processes in skeletal muscle,

from glucose and oxidative metabolism [124, 125] to

myocyte differentiation [126]. GLUT4 expression is con-

trolled by interactions among AMPK, HDAC5 and MEF2.

This involves an interesting cascade of events in which

translocation of certain AMPK trimers to the nucleus upon

activation allows the direct phosphorylation of HDAC5

in two residues, Ser259 and Ser498 [124]. This AMPK-

dependent phosphorylation of HDAC5 triggers its disso-

ciation from MEF2 and provides binding sites for 14-3-3

proteins, which export HDAC5 out from the nucleus [124].

The release of HDAC5 will increase histone acetylation

and enable the recruitment of MEF2 coactivators, such as

PGC-1a [127], and the basic transcriptional machinery to

the GLUT4 promoter. The mutation of these HDAC5

phosphorylable residues is enough to prevent AMPK-

dependent induction of the GLUT4 gene [124], clearly

illustrating the relevance of this mechanism of action.

Transcriptional regulation by AMPK in liver

The liver is key to maintain the whole body’s nutrient

homeostasis, as it adapts its ability to store and release

carbohydrates to the metabolic needs of the organism.

Deficiencies in this regulatory mechanism are manifested in

type 2 diabetic patients, where elevated hepatic glucose

production leads to hyperglycemia. Consequent to the fact

that energy stress triggers its activity, AMPK activation in

liver shuts down glucose, cholesterol and triglyceride bio-

synthetic pathways in liver while promoting fatty acid

oxidation [41]. Most manipulations of AMPK activity in

liver confirm this paradigm. Deletion of the a2 subunit of

AMPK in the liver promotes hyperglycemia and glucose

intolerance because of increased hepatic glucose production

[128]. Similarly, defective AMPK activity compromises

fatty acid metabolism as a consequence of decreased

mitochondrial gene expression [129], leading to increased

plasma free fatty acids and decreased production of ketone

Transcriptional regulation by AMPK 3413



bodies. Conversely, overexpression of an active form of

AMPKa in liver is enough to improve glucose profiles in

diabetic mice [130]. Similarly, overexpression of the a2

subunit in the liver decreases plasma triglycerides and

increases production of ketone bodies, reflecting an increase

in lipid oxidation versus synthesis [130].

Some of the above-mentioned actions of AMPK happen

through direct phosphorylation of key enzymes. This is the

case with, for example, the regulation of cholesterol bio-

synthesis, which is rapidly decreased by AMPK through

direct phosphorylation and inhibition of the rate-limiting

enzyme hydroxy-3-methylgltaryl-coenzyme A (HMG-

CoA) reductase [131]. Another example is ACC, whose

phosphorylation by AMPK prevents lipid synthesis and

favors fatty acid import into the mitochondria for oxidation

[36]. However, processes like gluconeogenesis and lipid

biosynthesis are also highly regulated by transcriptional

changes. Most of them are crucially affected by AMPK, as

described below.

Gluconeogenesis, the de novo synthesis of glucose,

takes place in liver through the fast induction of genes

encoding rate-limiting enzymes of this process, such as

phospho-enol pyruvate carboxykinase (PEPCK) or glu-

cose-6-phosphatase (G6P). Gluconeogenesis is triggered by

an increase in intracellular cAMP, as a consequence of low

insulin and increasing glucagon blood levels. Through a

cascade of events, increased cAMP levels will activate the

transcription factor CREB, which binds to and activates the

promoters of the above-mentioned genes [132]. Further-

more, binding of the CREB coactivator CRTC2 to CREB

allows the recruitment of the transcriptional machinery

[133]. AMPK regulates CRTC2 in a similar fashion to that

described above for HDAC5 [91]. AMPK can directly

phosphorylate CRTC2 on Ser171 [91]. Interestingly, the

ability to phosphorylate this residue is shared by other

members of the AMPK-related kinases subfamily, such as

SIK2 [133]. This phosphorylation event promotes the

binding of 14-3-3 to CRTC2 and induces its export to the

cytosol [133]. The immediate consequence of this is

that CREB loses the interaction with its coactivator

and, consequently, CREB-dependent gluconeogenic gene

expression is reduced. It is important to note that activation

of AMPK led to increased CRTC2 cytoplasmic localization

even in the presence of cAMP agonists [91], indicating that

cellular energy stress overrides the systemic needs for

glucose synthesis. Importantly, this characteristic is unique

to AMPK, as phorphorylation of CRTC2 by SIK2 is

prenvented by cAMP agonists [133]. This model also raises

a number of questions. For example, there are situations

in which agents that increase cAMP, such as forskolin,

isoproterenol or glucagon, lead to AMPK activation [134,

135] which, in liver, would be antagonistic with the

induction of gluconeogenic genes. Recent results indicate

that PKA can phosphorylate and negatively regulate certain

AMPK trimers containing the a1 subunit [136], which

could keep AMPK activity low during gluconeogenic

periods. Another complexity relies in the fact that, at least

in muscle, AMPK can phosphorylate and activate CREB

[90]. If this happened in liver, then there should be addi-

tional mechanisms targeting CREB to non-gluconeogenic

gene sets.

An additional critical transcription factor regulating

glucose metabolism in liver is HNF4a, which controls the

expression of GLUT2, pyruvate kinase (L-PK) and aldol-

ase B, among others [137]. Initial findings showed how

pharmacological activation of AMPK by AICAR led to a

downregulation of HNF4a target genes [138]. This phe-

nomenon was linked to a robust reduction in HNF4a
protein levels, apparently caused by a decrease in HNF4a
protein stability [139]. Furthermore, HNF4a was identified

as a direct target for AMPK. Specifically, AMPK phos-

phorylated Ser303 (Ser313 in humans) [139], a residue

located in the ligand-binding domain that directly partici-

pates in homodimerization, the functional form of these

transcription factors. Consequently, it was reported that

mutation of Ser303 to Asp, mimicking constant phosphor-

ylation, impeded HNF4a homodimerization and DNA

binding [139]. Of note, the implications of these findings

might not be limited to the liver, as HNF4a is a critical

regulator of glucose metabolism through actions in the

pancreas, kidney and intestine [137].

AMPK might also participate in the modulation of a

third transcription factor involved in the sensing and reg-

ulation of liver glucose metabolism. The carbohydrate

response element binding protein (ChREBP) is a liver-

specific transcription factor that promotes the expression of

glycolytic and fatty acid synthesis genes in situations of

high glucose availability [140]. Like HNF4a, ChREBP

induces L-PK expression by binding to its promoter [141].

It has been reported that AMPK phosphorylates ChREBP

on Ser568, thereby compromising its DNA binding and

transcriptional activities [142]. By inhibiting ChREBP,

AMPK promotes the use of fatty acids as the main energy

source. These findings, however, have been challenged by

a report showing that ChREBP nuclear translocation is

normal in AMPK-deficient animal models [143]. It must be

remembered, however, that as with CREB and CRTC2,

AMPK may not be the only kinase acting on ChREBP, and

compensatory mechanisms could explain the unaltered

phenotype in AMPK-deficient models.

Some conflicting points arise from the extrapolation of

AMPK’s effects on certain transcriptional regulators in

muscle, such as FOXO, SIRT1 and PGC-1a. AMPK acti-

vation in liver promotes an increase in the ratio between

b-oxidation and lipogenesis, in part through the induction

of mitochondrial content and function ([116], Cantó C and
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Auwerx J, unpublished observations). Conversely, ablation

of AMPK in liver reduces mitochondrial content and

activity [129, 144], probably as a consequence of decreased

PGC-1a expression and activity [129]. However, in con-

trast to the role of AMPK, most reports to date indicate that

PGC-1a induces gluconeogenesis [145, 146]. Activation of

PGC-1a through SIRT1-mediated deacetylation seems to

be a key step in the induction of the gluconeogenic pro-

gram [147, 148]. Intriguingly, AMPK-induced PGC-1a
expression and deacetylation can also be observed in liver,

indicating that AMPK increases SIRT1 and PGC-1a
activity (Cantó C., Auwerx J., unpulished observation).

This being so, why does AMPK activation not promote

gluconeogenesis? A very likely explanation lies in the fact

that PGC-1a is a coactivator, and consequently, its action

depends on the transcription factors it binds to. As AMPK

inactivates CRTC2 and HNF4 actions, it is possible that

PGC-1a cannot properly bind CRTC2/CREB and HNF4

transcriptional complexes, therefore redirecting its coacti-

vating activities to other transcription factors linked to

mitochondrial biogenesis. While such an explanation might

be valid in the case of PGC-1a, it is more difficult to apply

to the case of the FOXO family of transcription factors,

which are activated by AMPK and mediate a significant

part of AMPK’s effects in a number of tissues [106, 149,

150]. Most results to date make it unlikely that this also

should be the case in liver, as the FOXO transcription

factors are critical positive gluconeogenic regulators [104].

Furthermore, deacetylation by SIRT1 seems to promote

nuclear trapping of FOXOs and transcription of glucone-

ogenic genes [109], which is diametrically opposite to what

would be expected for AMPK activation. Strikingly, a

great deal of evidence show that resveratrol, which acti-

vates AMPK in liver and cultured hepatocytes [116, 151],

leads to FOXO deacetylation [109]. Therefore, the para-

digm that SIRT1 is pro-gluconeogenic through its actions

on FOXO and PGC-1a need to be revised in light of the

number of conflicting observations, for example:

(1) While SIRT1 downregulation in liver through aden-

oviral delivery of SIRT1 shRNAs leads to fasting

hypoglycemia and decreased expression of glucone-

ogenic genes [148], liver-specific SIRT1 knock-out

mice show normal blood parameters upon fasting and

nicely adapt to calorie restriction [152].

(2) SIRT1 activation in liver does not seem to happen in

the initial phase of gluconeogenesis, which is con-

trolled by CRTC2, but rather occurs during a later

phase, leading to the deacetylation and degradation of

CRTC2, which attenuates gluconeogenic rate [153].

(3) Mice mildly overexpressing SIRT1 are largely normal

when fed a standard chow [154–156], with a tendency

towards lower fasting blood glucose levels [155].

SIRT1 overexpression, however, effectively protected

against hyperglycemia in a number models of meta-

bolic disease because of reduced hepatic glucose

output [154, 156] and lower FOXO and PGC-1a
acetylation levels [154], indicating that SIRT1 activity

can actually be linked to a decrease in gluconeogenic

rates.

(4) In all murine models of metabolic disease and

diabetes tested to date, resveratrol or similar com-

pounds consistently protect against hyperglycemia,

triglyceride accumulation and excessive cholesterol

production [62, 116, 157, 158], very much in line

with the results obtained in mice overexpressing

SIRT1 [154, 156]. AMPK is robustly activated in the

livers of mice fed with resveratrol [116], and the

phenotypic outputs are perfectly in line with those

expected for AMPK activation. Since these mice

displayed higher SIRT1 and PGC-1a activity [116],

physiological activation of SIRT1 or PGC-1a in liver

is not per se linked to gluconeogenesis. Similar

observations were made with the SIRT1 agonist

described by Sirtris, SRT1720 [159, 160], even

though the direct and specific effects of this com-

pound on SIRT1 activation are controversial [161].

(5) The observations that resveratrol deacetylates

FOXO1 [109] and protects against hyperglycemia

[62, 116] indicate that FOXO activation of the

gluconeogenic program might be avoided or be very

moderate in situations of AMPK activation, while the

induction of other FOXO target genes is prioritized.

This might be explained by the fact that FOXO

actions sometimes require interplay with other tran-

scription factors, such as HNF4a [162, 163], to

modulate glucose metabolism genes. Therefore,

AMPK might also channel FOXO activity to specific

gene sets through post-translational modifications,

such as phosphorylation [106] and deacetylation

[107], and by preventing its interplay with certain

transcription factors.

(6) Recent evidence indicates that SIRT1 enhances

AMPK action in the liver by deacetylating LKB1,

altering its cellular localization and its association

with STRAD, ultimately stimulating its activation of

AMPK [16]. This suggests that SIRT1 and AMPK

might reciprocally activate each other in liver and

HepG2 cells [16, 164, 165], creating a positive

feedback loop. Such observations imply that AMPK

and SIRT1 activities would also go hand in hand

in liver, which contradicts the notion of SIRT1 as pro-

gluconeogenic factor.

Given these observations, it is clear that we are only

at the beginning of our understanding about how the
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transcriptional effectors of AMPK are regulated, but it

seems clear that different mechanisms of action might be

coexisting (Fig. 2). The lack of a linear extrapolation of the

way in which SIRT1, PGC-1 and FOXOs act downstream

of AMPK complicates the picture. Furthermore, we are still

far from grasping how AMPK quickly downregulates some

key players in liver lipid metabolism, such as SREBP1c

[120, 130]. Given the proven efficacy of AMPK-activating

drugs, such as metformin, in type 2 diabetes, the clarifi-

cation of these enigmas should be a priority for the field.

Additional transcriptional regulators controlled

by AMPK

Most of the attention on AMPK has been focused on

transcriptional regulation in metabolic tissues, as those

described above, or in the immediate phosphorylation of

metabolic enzymes and signaling pathways. Still, AMPK

may regulate additional transcriptional events, which are

worthy of attention.

Cell cycle and differentiation regulators

A riveting field for future study is the regulation of p53 by

AMPK, which potentially will shed light on the link among

metabolism and cell cycle and division. Evidence is accu-

mulating that AMPK could control the cell cycle by

promoting G1 arrest and reduce the number of S phase cells

[166, 167]. Studies showing that AMPK can directly phos-

phorylate p53 on Ser15 (Ser18 in mice) were key to

understanding the effects of AMPK on proliferation [166].

In normal circumstances, p53 is rapidly ubiquitinated and

degraded. A number of post-translational modifications,

such as phosphorylation and acetylation, can stabilize the

protein and promote cell cycle arrest and anti-tumorigenic

effects [168]. In line with this, phosphorylation of p53 by
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Fig. 2 AMPK anti-gluconeogenic effects are achieved through a

combination of different transcriptional mechanisms. A constellation

of transcriptional regulators modulates gluconeogenesis, such as

CRTC2, FOXO, ChREBP, HNF4a and PGC-1a. AMPK impacts on

them all through different strategies. For example, AMPK phosphor-

ylates CRTC2 and promotes its nuclear exclusion, disassembling the

coactivator from CREB on gluconeogenic genes (GG). AMPK can

also directly phosphorylate transcription factors (TFs), as happens

with HNF4a and ChREBP, promoting their nuclear exclusion and/or

degradation. In the case of PGC-1a, phosphorylation by AMPK might

direct its coactivating actions towards non-gluconeogenic gene

(NGG) regulation. Similarly, phosphorylation of FOXOs by AMPK

may drive its action from gluconeogenic genes towards other gene

sets, such as oxidative protection
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AMPK stabilizes p53 and induces the expression of its target

gene p21 [166, 167], an inhibitor of cyclin-dependent

kinases, which promotes a cell cycle arrest at the level of G1

and G2 [169]. Therefore, situations of low nutrient avail-

ability and/or energy stress could translate into a natural

inhibition of cell division in order to ensure cellular sus-

tainability. These findings have serious implications for the

possibility of using AMPK-activating compounds as anti-

cancer drugs. Additionally, p53 has also been linked to the

transcriptional regulation of mitochondrial metabolism

[170], providing a new mechanism by which AMPK could

impact on mitochondrial gene expression. An intriguing

paradox in the link between AMPK and SIRT1 is the fact

that SIRT1 is known to deacetylate and inactivate p53

[171, 172], while the role of AMPK seems to be the oppo-

site. Elucidation of this apparent contradiction deserves

investigation. To date, most of the studies on the AMPK/

SIRT1 link have been done in adult normal tissue, making it

possible that this signaling pathway is altered in tumors.

Similarly, a recent report indicates that SIRT1 activity can

somehow be oriented towards certain targets, as phosphor-

ylation of SIRT1 by JNK leads to specific deacetylation of

p53, but not of other substrates [173]. This concept is in line

with our observations showing that PGC-1a needs to be

primed by prior AMPK-mediated phosphorylation in order

to be deacetylated [72] and makes it possible that in a similar

fashion AMPK phosphorylation of p53 could be preventing

or not affecting SIRT1 interaction with this substrate.

Another transcriptional regulator controlled by AMPK

is the retinoblastoma protein (Rb). Rb regulates the pro-

gression, fate and differentiation of a number of cell types

by binding and modulating the activity of members of the

E2F family of transcription factors [174]. In neuronal

precursor and stem cells, AMPK can directly phosphory-

late Rb on Ser804, which then leads to its dissociation from

E2F [175]. This is in line with the fact that low glucose

promotes Rb/E2F dissociation [175]. The regulation of the

Rb/E2F axis by AMPK has long-reaching consequences.

For example, Rb phosphorylaton status determines a

number of fate choices [176] and interactions with other

transcriptional regulators, such as PPARc [177]. However,

as several kinases can impact on the phosphorylation of the

same residue in Rb, it is difficult to extrapolate from these

data the relevance of AMPK signaling on the Rb/E2F axis.

In fact, a number of scenarios are potentially opposed to

the hypothesis that AMPK inhibits Rb and favors E2F

transcription, such as those implying that Rb is a tumor

suppressor [174] or that E2F can negatively regulate

mitochondrial biogenesis [178]. It is also interesting to note

that, again, AMPK and SIRT1 find a convergent substrate

in Rb [179], even though any possible interplay between

AMPK-mediated phosphorylation and SIRT1-dependent

deacetylation of Rb is yet to be explored.

Direct regulation of the epigenetic and transcriptional

machinery

Other possible substrates of interest that need confirmation

are those intimately related to epigenetic phenomena. The

finding that AMPK trimer containing the c3 subunit could

be detected in the nucleoli [46] led to the hypothesis that it

could participate in the regulation of rRNA synthesis,

which is necessary for the whole ribosomal structure and

mRNA translation. As AMPK is known to decrease protein

translation by inhibiting the mTOR pathway [180], it

would make sense that it could also shut down this process

directly through an alternative mechanism. In line with

this, AMPK activation decreased RNApol I activity

[46, 181]. This raised the hypothesis of a possible direct

regulation through phosphorylation events in the nucleoli,

as recently shown by the fact that AMPK phosphorylates

the RNA polymerase I (Pol I)-associated transcription

factor TIF-IA at Ser635 [181]. Phosphorylation by AMPK

impairs the interaction of TIF-IA with SL1, precluding the

assembly of functional transcription initiation complexes

[181]. Further supporting this hypothesis, mutation of

Ser635 prevents down-regulation of Pol I transcription in

response to low energy supply [181]. All these results

provide evidence that activation of AMPK adapts rRNA

synthesis to nutrient availability [181]. Another intriguing

link is that between AMPK and histone phosphorylation,

which derives from pioneer findings in yeast indicating that

the yeast AMPK homolog, snf1, could phosphorylate his-

tone 3 on Ser10, enabling the subsequent recruitment of the

GCN5 acetyltransferase to acetylate Lys14, unfold DNA

strands and initiate transcription [51]. While the possibility

of AMPK directly phosphorylating histones on target genes

would open doors for innumerable hypothesis, this finding

has not yet been confirmed in mammalian cells. Addi-

tionally, it would also imply the requirement of a currently

unknown additional specificity mechanism in order to

select target genes.

Conclusions and future perspectives

The fact that AMPK activation tightly controls the tran-

scriptional regulation of a number of gene sets has been

known for years. A number of transcriptional regulators

have arisen as immediate AMPK phosphorylation targets,

but the implications of such findings at the gene promoter

level are far from understood. We are now beginning to

elucidate the way phosphorylation by AMPK influences the

activity and interaction of transcriptional regulators

in different tissues, which will provide clues on how

AMPK determines gene set specification. Furthermore,

AMPK regulates transcription not only through direct
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events (i.e., phosphorylation of transcriptional regulators),

but also indirectly (for example, by increasing NAD? and

inducing SIRT1 activity). Further possibilities yet to be

explored would involve the direct binding of AMPK to

target promoters. Another challenging point for future

research will be the complete understanding of how AMPK

actually shuttles in and out of the nucleus and of how the

nuclear functions of AMPK depend on the trimer compo-

sition. All these questions will need answers in order to

fully understand AMPK action.
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