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Abstract— With ever-increasing power densities, Dynamic
Thermal Management (DTM) techniques have become main-
stream in today’s systems. An important component of such tech-
niques is the thermal trigger. It has been shown that predictive
thermal triggers can outperform reactive ones [4]. In this paper,
we present a novel trade-off space of predictive thermal triggers,
and compare different approaches proposed in the literature. We
argue that run-time adaptability is a crucial parameter of interest.
We present a run-time adaptable thermal simulator compatible
with arbitrary sensor configuration based on the Neural Network
(NN) simulator presented in [14]. We present experimental results
on Niagara UltraSPARC T1 chip with real-life benchmark appli-
cations. Our results quantitatively establish the effectiveness of
the proposed simulator for reducing (by up to 90%), the otherwise
unacceptably high errors, that can arise due to expected leakage
current variation and design-time thermal modeling errors.

I. INTRODUCTION

Power densities in today’s highly integrated systems like

Multi-Processor Systems-on-Chip (MPSoCs) continue to in-

crease primarily due to three fundamental factors: a) continu-

ing, albeit slower, decrease in feature sizes, b) increasing func-

tional complexity of such systems, and c) slower rate of im-

provement in hardware cooling solutions [24]. Higher power

densities directly lead to higher operating temperatures, which

can result in not only long-term reliability issues but can affect

performance and/or correctness.

Architectural level control techniques, broadly referred to as

Dynamic Thermal Management (DTM) [2, 8], have emerged

as a necessary requirement in today’s MPSoCs. In essence,

DTM techniques aim to smartly manage the computation load

on on-chip resources so as to avoid thermal hazards. Accord-

ing to the classification suggested in [2], a DTM technique

comprises of three components: a thermal trigger, a response,

and a controlling policy. The thermal trigger indicates the

breach of a certain pre-defined thermal threshold. Different

choices of thermal triggers include temperature readings from

sensors, architectural-level performance counters and compile-

time analysis. The response is the actuator by which the sys-

tem attempts to reduce the temperatures on-chip. Examples

of such responses include dynamic voltage/frequency scaling

(DVFS) [16], clock-gating [27], task migration [19], liquid

coolant control [5] and architecture-specific throttling such as

speculation control [10] and I-cache toggling [2]. The con-

trol policies decide when to turn on and off the different re-

sponses. This modular view of a DTM technique allows differ-

ent trigger mechanisms to be combined with different choices

of responses. For instance, DVFS can be used independent of

whether the thermal trigger is based on on-chip thermal sen-

sor measurements or computed from architectural-level perfor-

mance counters. The focus of this work is to study the space

of different trigger mechanisms, independent of the response

component.

As analyzed in [2], reactive DTM techniques have a finite

initiation and response delay, which is incurred between a ther-

mal trigger and the invocation of the corresponding response.

To avoid thermal hazards in the face of such delays, the thermal

thresholds have to conservatively reduced, thereby impacting

the guaranteed performance of the system. In [25], it has been

shown that predictive triggering mechanisms can greatly out-

perform naive reactive triggering mechanisms. In [4], it has

been shown that with proactive speed control, the real-time

guarantees of a system can be improved.

Directly reading thermal sensor values are naturally reactive.

We categorize the other thermal triggers proposed in the litera-

ture into five classes as detailed in Section II. Accuracy of such

predictive triggers is important, since any errors would trans-

late to conservatively approximated performance guarantees of

the system. Further, since the prediction is performed on-chip,

it is essential to be computationally efficient and use minimal

resources. A natural trade-off, thus, exists between accuracy

and computational efficiency. However, another crucial param-

eter of interest in run-time adaptability. As we shall discuss

in Section II, including run-time adaptability greatly skews

the trade-off space of different trigger mechanisms. Run-time

adaptation in on-chip thermal triggers is required for the fol-

lowing two important reasons.

• Due to process variations, the leakage current can signif-

icantly differ from design-time expected values [1]. A

higher leakage current translates to higher leakage power

and thus larger temperatures. As we illustrate in the exper-

imental results of Section IV, the corresponding errors in

the computed temperatures for a real MPSoC can be un-

acceptably high.

• The model of heat dissipation on the chip depends on the

thermal contact between the chip and the ambient: a pa-

rameter that is difficult to estimate. This can lead to errors

in the thermal model of the chip. We quantify the devi-

ation in computed temperatures in the presence of such

errors in Section IV.
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In this paper, we propose a Neural-Network (NN) based on-

chip thermal simulator as an adaptable predictive thermal trig-

ger. This is an extension of the simulator we proposed in [14].

In this paper, we make two crucial extensions, to the proposed

simulator of [14]. Firstly, it is assumed in [14], that a fine and

regular grid of sensors is available on-chip. In reality however,

only a few thermal sensors, in a possibly irregular arrangement,

are available on-chip. We adapt the simulator to work with any

given thermal sensor layout. Secondly, an on-chip refinement

method to adapt the NN simulator has not been detailed in [14].

We propose a low-complexity back-propagation-based method

to refine the NN with minimal additional hardware. With such

a refinement the NN can potentially correct any design-time

model errors.

The contributions of the paper are on three fronts:

• formalizing the trade-off space of predictive thermal trig-

gers and placing on it different state-of-the-art techniques

proposed in the literature,

• extending the NN-based simulator proposed in [14] to be

applicable as an adaptable predictive thermal trigger for a

real system, and

• quantitatively establishing the need for run-time adapt-

ability in on-chip thermal triggers. We demonstrate that

errors in temperature can be reduced by up to 90%.

The rest of the paper is organized as follows. In Section

II, we present the aforementioned trade-off space of predictive

thermal triggers and discuss the range of related work in the

field. In Section III, we propose the said two extensions to

the NN simulator presented in [14]. In Section IV, we provide

quantitative results on a real MPSoC platform.

II. TRADE-OFF SPACE OF PREDICTIVE THERMAL TRIGGERS

We first classify the different predictive thermal triggers pro-

posed in literature into five categories: (a) design-time analyti-

cal models, (b) software-based thermal simulators, (c) triggers

based on model-predictive control, (d) workload-predictive

triggers, and (e) hardware-based thermal simulators. We dis-

cuss each of these categories with respect to the three crite-

ria: computational efficiency, accuracy guarantees and run-

time adaptability.

Design-time analytical models are used in triggers where

future events are predicted based on design-time models of

the thermal system and/or application. Such triggers are used

in convex-optimization-based frequency assignment [21] and

control-theoretic DTM [23]. These methods compute and op-

timize in design-time and export only the required parameters

for on-chip computation. Thus, they are computationally effi-

cient. They are also accurate as the design-models are based

on the exact equations of heat transfer. However, these meth-

ods are severely limited by having no run-time adaptability at

all.

Model predictive control techniques have been applied to

DTM techniques in [9]. The predictive nature of the trigger

comes from the derived analytical model of the thermal sys-

tem. However, unlike in [23], the model is refined based on the
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Fig. 1. Qualitative representation of the trade-off space of predictive thermal

triggers. In each dimension, higher values are better.

readings of on-chip thermal sensors. Thus, the method allows

for accurate simulation with run-time adaptability. However,

the on-chip deployment of such a technique is not discussed

in [9]. The complicated data structures and computation in-

volved in the method would potentially require a software only

deployment on-chip with large resource usage.

Software-based simulators have been the focus of several

studies where algorithms and data-structures are studied to op-

timize the thermal simulation of a chip. Examples of these in-

clude, amongst several others, HotSpot [11], 3D-ADI [26] and

ISAC [28]. These methods allow for very accurate simulation

of the system. However, all of these methods are designed for

use in design-time thermal-aware optimizations. Implement-

ing them on-chip would incur either large resource overhead

or large computational delays. Furthermore, no obvious ap-

proaches exist to adapt these algorithms during run-time.

Workload-predictive triggers aim to predict the quantum of

the workload on the system in the future and thereby compute

the temperatures on-chip. In [6, 13], stochastic methods are

used to approximate the temperatures of the system assuming a

stationary workload model. In [25], temperatures in the future

are computed for frame-based multimedia applications, where

the workload model is well-defined. Such methods are compu-

tationally efficient and allow for run-time adaptability. How-

ever, since these methods are not based on the exact equations

of heat flow, their key limitation is the lack of generic accu-

racy guarantees. Each application has to be tested to confirm

acceptable accuracy.

To the best of our knowledge, the only hardware-based ther-

mal simulator studied is the Neural Network (NN) based ther-

mal simulator presented in [14]. The key advantages of this

method are small computational delays (in the order of a few

gate delays), low resource usage (of about 0.1% of the total

chip transistor count), and low error margins (of 1-2K). In the

later sections of this work, we extend this simulator to adapt

during run-time and work for arbitrary sensor layout configu-

rations.

In summary, design-time analytical models and software-

simulators-based thermal triggers do not provide any adaptabil-

ity on-chip. Adaptability can be obtained using sophisticated

techniques like model predictive control at the cost of compu-

tational efficiency and resource overhead, or using stochastic
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workload-based techniques at the cost of reduced robustness in

accuracy guarantees. NN-based simulator competitively out-

performs all other methods at least in one key parameter. We

qualitatively plot the different classes of predictive thermal trig-

gers in Fig. 1.

III. RUNTIME ADAPTABLE THERMAL SIMULATOR

A. Neural-network-based thermal simulator

The NN simulator presented in [14] is based on two prin-

ciples: a) the thermal system is Linear Time Invariant (LTI),

and b) this linear dependence can be learnt using a NN. The

thermal system as represented by the compact model is charac-

terized by the following equation

GT (t) + CṪ (t) = P (t) (1)

where G and C are the compact model parameters and T and P
are vectors that denote, respectively, the temperature and power

at a given time in a grid of points, as used in the compact model.

Using the LTI property, the above can be reduced to the follow-

ing equation

T (tn+1) = AT (tn) +BP (tn) (2)

where A and B are matrices which are derived from the com-

pact model parameters. The above equation can be solved by

training a linear NN, which can be expressed generally as

yj =
∑

i

wijxi (3)

where y and x are vectors that denote the outputs and inputs, re-

spectively, and w denotes the weight terms, which would learn

the A and B matrices of (2). For a given system, the weight

terms can be learnt by training using data obtained from real

chip measurements or obtained from simulation results on a

tool like Hotspot. Results in [14] show that such a NN, once

trained offline, can be use to simulate the system in time-hops

of about 0.5 s, with small error margins. A crucial advantage

of such an approach is that a NN can be inexpensively fabri-

cated on-chip using an array of weighted current mirrors. Each

of the weight terms, wij may be represented by say b binary

bits. We showed in [14] that with a negligibly small fraction of

transistor count of the entire chip, a NN can be designed that

can simulate the temperature of the entire chip.

B. NN simulator for arbitrary thermal sensor layout

In [14] the NN simulator that was applied to a uniformly dis-

tributed grid of points on a chip. This uniform distribution was

based on the granularity of the corresponding compact model.

For accurate results, a fine compact model is used. However,

a fine model implies that temperature data of a large number

of points need to be fed into the NN as inputs. This is a rea-

sonable assumption for simulation-based off-chip training of

the NN. However, for on-chip training, which is the goal of

this work, we cannot expect such detailed thermal data. Only

a few thermal sensors are fabricated on-chip: a decision based

on the non-negligible area and cost overheads of thermal sen-

sors. Hence, it is necessary to adapt the NN simulator to work

with different sensor layout configurations, and to quantify the

accuracy of the simulation for such configurations.

Research on placement of sensors on-chip is not yet conclu-

sive. One approach is to place the sensors so that they cover the

hot regions of the chip [15]. Another approach is to perform

clustering based optimizations to place sensors which attracts

them to the thermal gradients [20]. In [18] the authors also sug-

gest a regular layout of sensors with an interpolation operation

to reduce errors. We study three representative sensor layout

configurations: a) Reg, b) HS, and c) Rand. In Reg, we place

the sensors in a regular grid around the chip. This leads to max-

imum area coverage and minimum reliance on off-chip data.

In HS, we place the sensors in the hottest regions of the chip,

which are identified based on simulations of common bench-

marks. Finally, we also consider Rand layouts where several

randomized layouts are considered, and all results are averaged

across the different layouts. In all cases, to facilitate compari-

son, we consider a constant number of sensors.

Adapting the NN simulator to work with a given thermal

sensor layout is equivalent to a Model Order Reduction (MOR)

of the set of differential equations represented in (1) to a re-

duced set of equations involving only the temperatures of the

points covered by the sensors. This requires finding out effec-

tive thermal parameters - conductance and capacitance matri-

ces - networking these sensor points. This can be performed by

analyzing the RC network, and performing standard projection

based MOR as studied for RLC interconnect networks in [17].

The reduced set of equations would define effective matrices

Ar and Br such that

Ts(tn+1) = ArTs(tn) +BrPs(tn) (4)

where Ts and Ps are vectors that denote the temperature and

power consumption, respectively, of the points covered by the

thermal sensors.

Note that the MOR step retains (a) the linear nature of (4),

and (b) the time-invariant nature of the system. Thus, the MOR

operation is also LTI. Composition of two LTI operations is

also LTI. Hence, we can design an augmented NN, that per-

forms both the MOR and the simulation of temperature, inher-

ently. Such a NN would take as inputs the current tempera-

ture and power consumption of points covered by sensors and

provide their future temperatures as outputs. Thus, by simulat-

ing a model in a simulator like HotSpot or by using real-chip

data, we can train the NN for temperatures of only those points

where sensors are fabricated, and thereby learn the weight ma-

trices Ar and Br.

C. Run-time adaptation in NN simulator

To adapt the NN on-chip in the face of variations discussed

earlier, we must refine the underlying NN model during run-

time. This would require that the weight terms, wij of the NN

that model the Ar and Br matrices, be programmable. In other

words, the b bits used to represent each weight term, should

be stored digitally and be modifiable. We can then use back-

propagation learning algorithms [3] to adapt the weights as fol-

lows:

Δwij ← Δwij + (y∗i − yi)yj (5)

wij ← wij + μΔwij (6)
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Fig. 2. Floorplan of the Niagara chip with 340 cells for compact modeling

where y∗i is the correct value of the ith output and μ is the

learning rate. We adopt the batch learning rule [3], wherein (5)

is executed several times before updating the weight terms as

shown in (6). The Δw terms are then reset to 0.

It is important to distinguish between off-chip and on-chip

training of the NN. Note that the least normalized unit of the

weight terms is given by 2−b, where b is the number of bits

used in the representation of the weight terms. In off-chip train-

ing, this quantization needs to be imposed only during the final

translation of the computed weight terms to the required b bits.

However, during on-chip training, each of the updates of (6),

would enforce a quantization. With this quantization, the accu-

racy of the simulator can potentially reduce. We quantify the

loss in accuracy in Section B.

It is important to note that the only additional hardware re-

quirement of this extension is that b bits be stored for each

weight term. The binary weighted current mirror based mul-

tipliers as proposed in [14] remain the same. For instance, for

a chip with 12 sensors fabricated and with b = 8, the additional

storage requirement is 264 bytes. This is an acceptably small

overhead for the crucial property of run-time adaptability.

IV. EXPERIMENTAL RESULTS

A. Target system and benchmark applications

Our case study, as in [14], is based on the 8-core Ultra-

SPARC T1 (Niagara-1) architecture from Sun Microsystems

[12]. This MPSoC has been manufactured in 90-nm process

technology. In each core, four threads share an integer pipeline.

Every two cores share an L2-cache and the cores communicate

through shared memory. The floorplan of this chip, with an

accuracy of 340 cells, is shown in Figure C. From the ther-

mal parameters and thickness of Si and Cu layers based on data

in [22], we derive the compact model parameters - conductance

and capacitance matrices.

For benchmarking applications, we refer to the elaborate re-

sults collected for the UltraSPARC T1 chip as reported in [7].

For real world applications such as Web, Database, MPlayer,

gcc and gzip, the utilizations of different parts of the chip are

noted, and in combination with dynamic and leakage current

estimates, power consumption values are computed. These

computed power numbers are at the component level such as

for a core or for a cache. We assume that the power consump-

Fig. 3. Sensor layouts for Reg (top) and HS (bot) layouts

Fig. 4. Accuracy of the thermal simulation for different sensor layout

configurations

tion within such a component is homogeneous and equally dis-

tribute it among the compact model cells of that component.

We compare all our results with the HotSpot simulator [11],

configured with temperature-dependent compact model param-

eters and small time-steps.

B. Accuracy for different sensor layout configurations

In the first set of experiments, we study the accuracy of the

extended NN simulator for different sensor layout configura-

tions. We study the three configurations discussed earlier: HS,
Reg, and Rand. For the Niagara chip, Fig. B shows the cho-

sen HS and Reg layouts. In both cases, the chip is divided into

12 regions, and one sensor is placed on each region as per the

configuration. For each of the choices, we vary the design pa-

rameter b - the number of bits used to represent the digitally

stored weights. A higher value of b can potentially give more

accurate results, but at the expense of a larger transistor count.

The results of the maximum error in temperature for differ-

ent values of b are shown in Fig. B. We plot also the error in

simulation for using a grid of 42 cells as reported in [14]. The

results indicate that the accuracy achieved for different sensor
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Fig. 5. Adaptability of NN to variation in leakage current

Fig. 6. Adaptability of NN to variation in conductance to ambient (Genv)

layout configurations is comparable and in some cases better

than the results presented in [14] for a uniform grid of finely

separated sensors. This indicates that performing the MOR us-

ing NNs and quantization at every update according to (6) does

not lead to large errors. On the contrary, the smaller size of the

NN allows the learning to be more accurate than the results for

a large grid as presented in [14]. Amongst the different sensor

layout configurations, HS has the highest error while Reg and

Rand perform very similarly. This is expected as the higher

values of temperatures at the hotspots would lead to larger non-

linearity. Thus, for an overhead of 1 byte of storage per neuron,

the maximum error for all sensor layout configurations is about

1.5K.

C. Run-time refinement

In these set of experiments, we study the on-chip adaptabil-

ity of NN to variations. Firstly, we consider the variation of

the leakage power. Leakage-current-based power consumption

is an increasingly large component of total power consump-

tion of a chip. In [1], it has been shown that, for the 180nm

CMOS technology up to 20x variation of normalized leakage

power can be observed for just 30% variation in frequency. We

computed the mean of the variation reported in [1] to be 7x.

We conservatively study a set of cases where we progressively

increase the maximum variation in the power consumption of

the chip, between 1.5x to 3.5x. For each case, we inject ran-

dom power variations, with a Gaussian distribution, on differ-

ent points up to the chosen maximum variation. We perform

these experiments on each of the three sensor layout configu-

rations, with a value of b = 9. In all experiments, the on-chip

training is performed for 100,000 iterations of HotSpot simula-

tor running with a time step of 10μs, totaling to adaptation for

10s of real-time.

The results are shown in Fig. B, where the errors in maxi-

mum temperature are shown in stacked columns. The lowest

stack of a column shows the maximum error during off-chip

training, without any power variation. The next stack shows

the additional error that is incurred, on introducing the power

variation and after run-time refinement of the NN. The topmost

stack indicates the additional error due to the power variation

before the refinement and thus represents the improvement in

accuracy due to on-chip adaptation. The charts indicate that

significant errors in temperature, of up to 15K, are possible for

expected variations in power. Further, on-chip refinement of

the NN, can substantially reduce the error: by up to 90%. This

trend is consistent across different sensor layout configurations.

We perform a similar set of experiments for the case of vari-

ation in the conductance to the ambient, Genv . We considered

a general study with a varying percentage of error in Genv .

For each case, in Fig. B, we again plot stacked columns, as

described above, for each sensor layout configuration. The re-

sults indicate that the error introduced due to variation of Genv

is of a smaller magnitude of up to 6K. On-chip adaptation again

reduces the error, in all cases, to below 2K.

The main conclusion of these set of experiments is that ex-
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pected variations in leakage current and thermal model can lead

to unacceptably large errors in computed temperatures. Fur-

thermore, the proposed adaptable NN can substantially reduce

these errors.

V. CONCLUSIONS AND FUTURE WORK

Power densities of chips continue to rise, leading to an ever

difficult problem of effective heat dissipation. To complement

hardware cooling methods, architectural-level Dynamic Ther-

mal Management (DTM) techniques are increasingly becom-

ing an essential part of today’s systems. An important com-

ponent of such techniques is the thermal trigger that initiates

different response mechanisms. Intuitively, such thermal trig-

gers perform better if they are predictive in nature. We pre-

sented a trade-off space of such predictive thermal triggers and

qualitatively placed on it different triggers proposed in the lit-

erature. We identified that run-time adaptability is a key pa-

rameter which skews the otherwise simple trade-off between

accuracy and efficiency. The Neural Network (NN) simulator

presented in [14] provides key benefits over other thermal trig-

gers proposed in literature.

We extended the NN simulator with two features, compat-

ibility with an arbitrary sensor layout configuration and run-

time adaptability. The extended NN simulator can simulate

temperature up to 0.5s into the future with accuracies of about

1.5 K, for different sensor layout configurations. This com-

pares favorably against the results presented for 42-cell floor-

plans with a much larger NN in [14]. We showed that with ex-

pected leakage current variations, the errors in computed tem-

perature, without on-chip adaptation, can be as large as 15 K.

We showed that with the proposed run-time adaptable NN sim-

ulator, these errors can be brought down by up to 90%. For

variation in thermal model parameters, simulation errors can

be up to 6 K, which can be brought down to about 2 K with the

proposed run-time adaptable NN simulator.

In this paper we show that with 12 sensors and run-time

adaptation the simulation results were accurate to up to a 2-

3 K. Having more on-chip sensors would make the NN more

expressive and potentially lead to improved accuracy. How-

ever, at the same time a larger NN would necessitate greater

amount of training to learn the larger number of weight terms.

As a future work, it would be instructive to establish this trade-

off between learning time, run-time simulation accuracy and

number of on-chip sensors.
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