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Abstract

The first fermion family might play a special role in understanding the physics
of flavour. This possibility is suggested by the observation that the up-down splitting
within quark families increases with the family number: mu ∼ md, mc > ms, mt ≫
mb. We construct a model that realizes this feature of the spectrum in a natural way.
The inter-family hierarchy is first generated by radiative phenomena in a sector of heavy
isosinglet fermions and then transferred to quarks by means of a universal seesaw. A
crucial role is played by left-right parity and up-down isotopic symmetry. No family
symmetry is introduced. The model implies mu/md > 0.5 and the Cabibbo angle is

forced to be ∼
√

md/ms. The top quark is naturally in the 100 GeV range, but not
too heavy: mt < 150 GeV.

Inspired by the mass matrices obtained in the model for quarks, we suggest an
ansatz also including charged leptons. The differences between u-, d- and e-type
fermions are simply parametrized by three complex coefficients ǫu, ǫd and ǫe. Ad-
ditional consistent predictions are obtained: ms=100-150 MeV and mu/md < 0.75.
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1. Introduction

One of the major issues in modern particle physics is to understand the origin of the ob-

served pattern of fermion masses and mixing. In the Standard Model all the flavour struc-

ture is determined by uncalculable Yukawa couplings. A hypothetical Theory of Flavour

should allow a calculation of these couplings, or somehow constrain them. When thinking

of such a theory, one should keep in mind the following qualitative features:

i) An inter-family mass hierarchy which is stronger for the up quarks than for the down

quarks [1]. The plot in Fig. 1 suggests for the i-th family quark masses

mu
i ∼ ǫ3−i

u mu
3 md

i ∼ ǫ3−i
d md

3 (1)

where ǫ−1
u = 200 − 300 and ǫ−1

d = 20 − 30.

ii) The CKM mixing matrix V is close to the unit matrix, and it has a hierarchy in its

off-diagonal entries: Vub ∼ ǫ2d, Vcb ∼ ǫd and Vus ∼ ǫ
1/2
d .

The inter-family hierarchy makes the radiative picture of fermion mass generation

[2-4] attractive. In particular, the quark mass pattern (1) can be interpreted in terms of a

charge diagonal radiative cascade. In this view ǫu and ǫd are the loop expansion parameters

respectively in the up and the down sector [4]. Leptons, on the other hand, seem to evade

the simple rule mi ∼ ǫ3−im3, and this suggests that their masses may be more difficult to

understand (see Fig. 1). We therefore focus first on the quark sector.

When discussing quarks, we can also exploit experimental information on the CKM

matrix. The relation V ≃ 1 implies that the Standard Model Yukawa matrices Γu and

Γd are somehow aligned. This property might hint that some “isotopic” symmetry in-

terchanging u- and d-quarks has played a role in the mass generation phenomenon. (A

horizontal family symmetry could also be responsible for the alignment of Γ’s. However

the idea of an up-down symmetry is simpler.) Let us suppose that such a symmetry indeed

exists, and let us call it Iud. In the low energy theory, i.e. the Standard Model, Iud plays

the role of the usual custodial symmetry [5]. In the limit of exact Iud it would be Γu = Γd,

so that we would have V = 1 and the up and down sectors unsplit. Within the radiative

picture the breaking of Iud implies the appearance of small mixing angles Vub ∼ ǫ2d and

Vcb ∼ ǫd.
1)

As far as the spectrum is concerned, Fig. 1 shows that Iud is more badly broken for

the heavier families. By focusing on the first family, we don’t see a big violation of Iud:

1) However, also Vus has to be O(ǫd). This is a generic problem of the direct radiative

scenarios [3-4]. As it was shown in Ref. [6], the correct value Vus ≈ 0.22 implies a choice

of parameters which spoils the validity of perturbation theory.
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mu/md = O(1). What we consider interesting is the case in which Iud becomes exact at

very high energies, namely the case of spontaneous or soft breakdown. With this picture

in mind, it is suggestive to think that the masses of u and d are somehow related to an

energy scale Λ1 at which Iud is still good, while the masses of the second and third families

are respectively related to lower scales Λ2, Λ3 at which Iud is no longer as good. Thus, the

first family seems to play a special role in mass generation. This is directly opposite to the

common radiative picture [2-4], in which the third family (i.e. the heaviest) is the starting

point. However, by taking the top and bottom masses as the seeds of mass generation, it

is difficult to understand their large splitting.2) On the other hand, if we could start from

u and d, we would have better chance to understand t-b splitting. Suppose that u and d

are indeed the starting point, and that an expression like eq. (1) holds for 1/mi instead of

mi, namely

1/mu,d
i ∼ ǫi−1

u,d /m. (2)

Then we have mu ∼ md ∼ m and mt/mb ∼ (ǫd/ǫu)2 ∼ (mc/ms)
2 ≫ 1. In this way,

the splitting between up and down quark masses in Fig. 1 is understood by means of one

parameter (ǫd/ǫu) > 1. We call the above formula for 1/mi the inverse hierarchy pattern.

In this paper we explore the idea of inverse hierarchy for fermion masses. In Section

2, we discuss an illustrative model for the quark sector. The model is a particular case of

the class of models discussed in Ref. [7]. These models naturally avoid the key problems

of the previous models of radiative mass generation (see footnotes1,2)). A set of isosinglet

heavy quarks, Q-fermions, in a one to one correspondence with the ordinary ones (q’s),

is introduced. The mass matrices of the q’s M̂u and M̂d are induced by a seesaw mixing

with the Q’s [8]. In terms of the mass matrices M̂U,D of the Q’s we have essentially the

inverse proportionality3) M̂u ∝ M̂−1
U

, M̂d ∝ M̂−1
D

. Thus the smallest masses mu and md

are indeed related to the highest scale: m−1
u ∝ MU and m−1

d ∝ MD, where MU and MD

are the largest eigenvalues respectively in M̂U and M̂D. These matrices are generated by

a radiative mechanism analogous to that in Ref. [4]: the largest eigenvalues MU,D appear

at tree level, while the other ones are induced by charge diagonal loop effects. Moreover,

2) In Ref. [3-4] the large t − b splitting is introduced at tree level by hand. A difficulty

of charge diagonal radiative models is also the appearance of flavour-changing neutral

currents (FCNC), generally contradicting the experimental bounds [4].
3) The seesaw mechanism [9], universally extended to quarks and charged leptons was

also explored in the papers in Ref. [10,11]. The inverse hierarchy, however, corresponds to

the spirit of the original paper [8], where it was first suggested, though in the context of

horizontal symmetry.
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the relation MU ∼ MD arises naturally as a consequence of an up-down symmetry. Then

mu ∼ md, so that the pattern of eq. (2) is realized.

In the model we discuss below, the field content and the Iud symmetry imply strictly

MU = MD. The model also has PLR and CP symmetries. These, together with Iud,

are softly (or spontaneously) broken in the scalar potential. The effects of this breaking

are reflected in the fermion sector via loop corrections only. As a consequence, the mass

matrices are more constrained than those in Ref. [7]. In particular, the splitting between u

and d is related to the enhancement of the Cabibbo angle above its natural radiative value

O(ǫd). The consequences, including formulae for the top quark mass and the Cabibbo

angle, are discussed in Section 3.

The quark mass matrices obtained in the model are a very attractive realization of

the inverse hierarchy. Inspired by the form of those matrices, in Section 4 we simply

postulate an inverse hierarchy ansatz, which includes charged leptons. It turns out that

the first family (u, d, e) really plays the role of a mass unification point, with its splittings

understood by the same mechanism that enhances Vus. This ansatz provides remarkable

predictions for the light quark masses, consistent with the present knowledge on these

quantities.

Finally, in Section 5 we discuss our results.

2. A model

Let us consider the simple left-right symmetric model, based on the gauge group

GLR = [SU(2)L × U(1)L] × [SU(2)R × U(1)R] × U(1)B−L, suggested in [7]. The left-

and right-handed components of usual quarks qi = (ui, di) and their heavy partners Qi =

Ui, Di are taken in the following representations

qLi ∼ (1/2, 0, 0, 0, 1/3)

ULi ∼ (0, 1, 0, 0, 1/3)

DLi ∼ (0,−1, 0, 0, 1/3)

qRi ∼ (0, 0, 1/2, 0, 1/3)

URi ∼ (0, 0, 0, 1, 1/3)

DRi ∼ (0, 0, 0,−1, 1/3)

(3)

where i = 1, 2, 3 is the family index (the indices of the colour SU(3)c are omitted). We

also introduce an additional family of quarks 4)

pL ∼ (0,−1/2, 0, 3/2, 1/3) pR ∼ (0, 3/2, 0,−1/2, 1/3)

nL ∼ (0, 1/2, 0,−3/2, 1/3) nR ∼ (0,−3/2, 0, 1/2, 1/3).
(4)

4) Notice that, by adding the obvious lepton fields (with B − L = −1) to the quarks of

eqs. (3-4), the theory is free of gauge anomalies.
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The scalar sector of the theory is given by

HL ∼ (1/2, 0, 0, 1, 0)

TuL ∼ (0,−2, 0, 0,−2/3)

TdL ∼ (0, 2, 0, 0,−2/3)

φ ∼ (0, 1/2, 0,−1/2, 0)

Ωu ∼ (0, 1/2, 0, 1/2,−1)

HR ∼ (0, 1, 1/2, 0, 0)

TuR ∼ (0, 0, 0,−2,−2/3)

TdR ∼ (0, 0, 0, 2,−2/3)

Φ ∼ (0, 2, 0,−2, 0)

Ωd ∼ (0,−1/2, 0,−1/2,−1)

(5)

where the T -scalars are colour triplets or sextets. We impose CP , PLR and Iud discrete

symmetries. The left-right symmetry PLR [12], which is essentially parity, and CP act in

the usual way. The “up-down” symmetry Iud is defined by

UL,R ↔ DL,R, pL,R ↔ nL,R, Aµ
L,R → −Aµ

L,R,

HL,R ↔ H̃L,R, Tu
L,R ↔ T d

L,R, φ ↔ φ∗, Φ ↔ Φ∗, Ωu ↔ Ωd

(6)

where Aµ
L,R are the gauge bosons of U(1)L,R. Then the most general Yukawa interactions,

consistent with gauge invariance, Iud, PLR and CP are

L1 = Γij
{

q̄LiURjH̃L + q̄LiDRjHL + (L ↔ R)
}

+ h.c.

L2 =
λij

2

{

TuLULiCULj + TdLDLiCDLj + (L ↔ R)
}

+ h.c.

L3 =
{

hi(φ
∗ŪLipR + φD̄LinR) + h(Φ∗p̄LpR + Φn̄LnR) + (L ↔ R)

}

+ h.c.

(7)

where C is the charge conjugation matrix. The coupling constants h, hi, λij , Γij (i, j =

1, 2, 3) are real, due to CP -invariance. In what follows we do not make any particular

assumption on their flavour structure. We only suppose that they are typically O(1), just

like the gauge coupling constants. Notice that λ is antisymmetric (symmetric) when the

T -scalars are colour triplets (sextets). Without loss of generality, by a suitable redefinition

of the fermion basis, we can always take

h2,3 = 0, λ13 = 0, Γij = 0 if i < j . (8)

We assume that the discrete symmetries CP , PLR and Iud are softly broken by bilinear

and trilinear terms in the Higgs potential 5). The trilinear terms are given by

L4 = ΛuT ∗
uL

TuRΦ + ΛdT
∗
dL

TdRΦ∗ + h.c. (9)

5) Actually, these symmetries can be broken spontaneously by suitable scalars [7].
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where Λu,d are mass dimensional coupling constants. We suppose that these couplings are

complex, and also that Λu 6= Λd. In this way, CP , PLR and Iud are broken.

The v.e.v.’s 〈Φ〉 = vΦ, 〈φ〉 = vφ and 〈Ωu〉 break the U(1)L × U(1)R × U(1)B−L

symmetry down to the usual U(1)B−L: B − L = YL + YR + B − L. (Notice that we must

have 〈Ωd〉 = 0.) Then, interactions L3 in eq. (7) give rise to mass terms for p and n,

and also for the Q-fermions of the “first family” U1 and D1. It is interesting to consider

the limiting case vΦ ≫ vφ. In this case, the tree-level mass eigenvalues are given by

the seesaw formula: Mp = Mn ≃ hvΦ and MU1,D1
= M ≃ h2

1v
2
φ/hvΦ. Because of the

relation M ≪ Mp,n, the mass matrices obtained after including radiative effects depend,

in general, on a smaller number of parameters. In fact, we shall see below that a soft

hierarchy hvΦ/h1vφ ∼ 3 is already enough for our purposes.

The coloured scalars TuL,TuR and TdL,TdR get mixed due to interaction terms in eq.

(9). At this point the interactions in L2 trigger the radiative mass generation chains

U1 → U2 → U3 and D1 → D2 → D3 (see Fig. 2). The two-loop corrected mass matrices

for the Q-fermions can be written as

M̂U,D =M
{

P̂1 + ǫu,d λT P̂1λ + Cu,d|ǫu,d|2 λT2
P̂1 λ2

+ ǫu,dλ
T
(

βL

u,dλ
T2

+ αL

u,dΓ
TΓ

)

P̂1λ + ǫu,dλ
TP̂1

(

βR

u,dλ
2 + αR

u,dΓ
TΓ

)

λ
} (10)

where P̂1 = diag(1, 0, 0) is the tree-level term. In terms of the mixing angle ξu,d and mass

eigenvalues Mu,d
+ , Mu,d

− of the scalars Tu,d
L -Tu,d

R , the expansion parameters are

ǫu,d = CT
eiωu,d

16π2
sin(2ξu,d) ln ru,d, ru,d = (Mu,d

+ /Mu,d
− )2,

Cu,d =
1

2

(

1 + H(ru,d)
)

.

(11)

Here ωu,d are the arguments of the mixing terms Λu,d in eq. (9), while H is a real function

given in the Appendix. CT is a colour factor equal to 1/2 for a triplet T and to 1 for a

sextet T . The first three addenda in eq. (10) represent respectively the contributions of

graphs (a), (b) and (c) of Fig. 2. They are rank 1 matrices determining the eigenvalues

of M̂ to be O(M), O(ǫM) and O(ǫ2M). The terms proportional to βu,d and αu,d in eq.

(10) arise from the graphs in Figs. 2d-e. Apart from pieces which are formally 3-loop, i.e.

O(ǫα2, ǫβ2, ǫαβ), these terms simply determine a multiplicative redefinition of the 1-loop

contribution (Fig. 2b). (We remind that α’s and β’s are loop coefficients ∼ 1/16π2.)

This means that in 2-loop order their effect on the eigenvalues is only multiplicative, i.e.

Mi → Mi(1 + O(α, β)) [3]. For our purposes, these terms are therefore negligible.

6



Some comments on eqs. (10-11) are in order. Eq. (11) is valid in the regime M2 ≪
Mu,d

+

2
, Mu,d

−

2 ≪ M2
p . In this regime the loop-diagrams of Fig. 2b-c are dominated by loop

momenta between Mu,d
− and Mu,d

+ . Thus, the result is completely determined by the ratios

ru,d, and the predictivity is increased. The choice of the intermediate range for Mu,d
± is

also motivated by the fact that both for Mu,d
± < M and for Mu,d

± > Mp the loop integrals

are suppressed. In the first case the suppression factor is given by ∼ (Mu,d
+ /M)2, in the

second by ∼ (Mp/M
u,d
− )2. (In fact Mp acts as a cut-off of the mass insertions in Fig. 2

[4].) Notice also that (M/Mp)
2 ≃ (h1vφ/hvΦ)4 ≪ 1 is already implied by our assumption

vΦ > vφ. For instance, h1vΦ/hvΦ ∼ 3 already gives (M/Mp)
2 ∼ 10−2.

The function H(r) = H(1/r) has the maximum at r = 1 and goes to zero mono-

tonically when r → ∞ (see Appendix). However, in a reasonable range (1 < r < 10) it

is H(r) ≃ 0.3 with good accuracy. Thus, in what follows we shall set Cu,d = C ≃ 0.65.

Notice that the two loop term proportional to Cu,d in eq. (10) is real. This is because the

mass insertions on the two scalar lines in Fig. 2c are complex conjugate of each other.

As a final comment, notice that, in the basis of eq. (8), we have

M̂ ∝





O(1) O(ǫ) O(ǫ2)
O(ǫ) O(ǫ) O(ǫ2)
O(ǫ2) O(ǫ2) O(ǫ2)



 (12)

Then, in lowest order, the eigenvalues are given by the diagonal entries of M̂ , and their

ratios are O(1) : O(ǫ) : O(ǫ2).

3. The quark mass matrices

We now discuss the masses of the ordinary quarks q. The v.e.v’s 〈HL〉 = (0, vL) and

〈HL〉 = (0, vR), with vR ≫ vL = 174 GeV, break the intermediate SU(2)L × SU(2)R ×
U(1)B−L symmetry down to U(1)em, and at the same time mix the q’s to the Q’s via the

interactions L1 in eq. (7). The mass matrix of the u-type quarks is written in block form

as

(ū, Ū)L

(

0 vLΓ
vRΓT M̂U

) (

u
U

)

R

(13)

and analogously for the d-type ones. When M̂U,D ≫ vR, the resulting mass matrix M̂u,d

for the ordinary quarks is given by the seesaw formula [8-10]

M̂u,d = vLvRΓM̂−1
U,D ΓT (14a)

7



In this way the inverse proportionality of eq. (2) is realized [7,8]. The seesaw limit MU,D ≫
vR is certainly very good for light quarks, since their masses must be much smaller than

vL. However, since mt = O(vL), we expect the mass of its Q-partner MT to be of the order

of vR (remember that the Γij are considered to be O(1)). Thus, to evaluate mt, we need

the mass matrix without the restriction M̂U ≫ vR. This is given by

(M̂u,d
†M̂u,d)

−1 = v−2
L

Γ−1
{

v−2
R

M̂U,D
†(ΓΓT)−1M̂U,D + 1

}

(ΓT)−1. (14b)

Notice that, when vR ≫ M̂U,D, this equation gives the obvious result M̂u,d = vLΓ. On the

other hand, when vR ≪ M̂U,D, eq. (14b) reduces to the seesaw formula.

The v.e.v. vR ∼ MT plays the role of the Flavour scale ΛF . Below the scale vR the

effective theory is the minimal standard model. In fact vRΓM̂−1
U,D ΓT = M̂u,d/vL are the

standard model Yukawa matrices Γu,d arising at the decoupling of the heavy Q states.

The Q-fermion masses are such that MT ≪ MB ≪ ... ≪ MU = MD = M . Then the ratio

M/vR is given by vL/mu ∼ 105. Obviously, FCNC’s are well controlled in such a theory

[8] due to natural flavour conservation within the standard model [13]. Flavour changing

effects are suppressed by inverse powers of the Q masses. Phenomenologically, the most

stringent constraints come from K0 − K̄0 mixing and KL → µ+µ−. It turns out that the

typical scale of suppression for these processes is given by M . This is readily seen in basis

(8): the light quarks u, d mix only with the heaviest Q-fermions U, D. Consistency with

the data is obtained for M > 100 TeV. Since M/vR ∼ 105, we have that vR ∼ 1 − 10 TeV

is already consistent with the experimental data. Therefore, it is in principle possible to

have the WR bosons and the lightest Q-fermion, T , in the TeV range, with implications at

SSC/LHC.

It is useful to first study M̂u,d in the seesaw limit (14a). The exact formula (14b) will

only be relevant to evaluate mt. Once again, the inverse matrices are easier to analyse.

Neglecting α and β terms, as explained above, eq. (10) gives

(M̂u,d)
−1 = m−1

{

P̂1 + ǫu,d γT P̂1 γ + C|ǫu,d|2 γT2
P̂1 γ2 + · · ·

}

(15)

where γ = ΓλΓ−1 and m = Γ2
11vLvR/M . We also used the relation (ΓT)−1P̂1Γ

−1 =

Γ−2
11 P̂1, true in the basis of eq. (8). Notice that, in general, γ is no longer symmetric or

antisymmetric. However Tr γ = Tr λ, Detγ=Detλ and, because of eq. (8), γ13 = λ13 = 0.

Eq. (15) is then written in the same form as eq. (12), which is easily diagonalized to lowest

order in ǫ.

There is, however, a subtlety involving the Cabibbo angle. Let us consider eq. (15)

restricted to the first two families at O(ǫ). We have

(M̂)−1 = m−1

{(

1 0
0 0

)

+ ǫ

(

γ11
2 γ11γ12

γ11γ12 γ12
2

)}

. (16)

8



This gives, in lowest order, sin θC ≃ ǫdγ11γ12 and d/s ≃ ǫdγ12
2. These relations imply

ǫdγ11
2 ≃ sin2 θC(s/d) ≃ 1, which looks like trouble for perturbation theory [6-7]. How-

ever, γ11 = λ12Γ21/Γ22 is not a coupling constant: its value can be enhanced by the ratio

Γ21/Γ22, without trouble for perturbativity [7]. This is an advantage of the seesaw mech-

anism: the “sandwiching” between Γ’s in eq. (14a) allows the mass matrix in eq. (15) to

deviate a little bit from the rigid radiative form of eq. (12). In particular, when Γ21 is

larger than Γ11 and Γ22, the 1-2 entry gets enhanced. This effect is reflected in eq. (15-16)

by the fact that γ11 is large. Notice that, by supposing ǫdλ12
2 ∼ d/s = 1/20, we only need

Γ21/Γ22 = 4 − 5.

To accommodate a large Cabibbo angle, the matrix (15) must be diagonalized con-

sidering that ǫdγ11
2 = O(1). With an obvious notation, we indicate by u, d, ... the quark

mass eigenvalues at the flavour scale ΛF . Then we get

(m/u) = |1 + ǫuγ11
2|

(m/d) = |1 + ǫdγ11
2|

(m/c) =
|ǫu|γ12

2

|1 + ǫuγ11
2|

(m/s) =
|ǫd|γ12

2

|1 + ǫdγ11
2|

(m/t) = C|ǫu|2γ12
2γ23

2

(m/b) = C|ǫd|2γ12
2γ23

2
(17a)

and the Cabibbo angle is

Vus = γ11γ12

∣

∣

∣

∣

( d

m

)

ǫde
iδd −

( u

m

)

ǫueiδu

∣

∣

∣

∣

= γ11

√

|ǫd|
√

d

s

∣

∣

∣
1 − s

c
ei(ωu+δu−ωd−δd)

∣

∣

∣

δu,d = arg(1 + ǫ∗u,dγ11
2).

(17b)

By dropping terms proportional to ǫu,dγ11
2 in the above equations, we would get the naive

lowest order result. (Notice that we have kept also ǫuγ11
2 terms. However, we shall see that

ǫu ≪ ǫd, so that those terms are not relevant). Notice also that the third family masses

are simply given by the 3-3 entry in eq. (15), i.e. they do not get relevant contributions

from off-diagonal terms. This is because their mixings Vcb and Vub must be of the natural

radiative size, namely Vcb ∼ ǫd ∼ d/s, s/b and Vub ∼ ǫ2d ∼ d/b.

The following comment is in order. In contrast to the quantities in eqs. (17), Vcb and

Vub get lowest order contributions which are not expressed in terms of ǫ. One of these

comes from Fig. 2d-e: these graphs contribute in lowest order to Vcb and Vub, but not

to the quantities in eq. (17). In particular, Vcb gets contributions O(α, β), whereas Vub

gets O(ǫα, ǫβ). This is consistent with the radiative picture of mixings, since α, β are loop

parameters ∼ ǫ.

Another contribution comes from the renormalization of Γ’s. These effects are given

at 1-loop by triangle graphs involving three Yukawa vertices in L1 in eq. (7). The mass

9



splittings between up and down Q-fermions determine this renormalization to differ by a

finite amount in the two sectors. This is an additional source of mixing. It is remarkable,

however, that a contribution appears at 1-loop only in the mixing between the second and

third family, namely in Vcb. This is a consequence of the fact that the first family (u, d) is

only connected to the first heavy family (U, D), which is unsplit in lowest order. Then the

vertex graphs involving u and d are equal and do not contribute to the mixing in lowest

order: the relation MU = MD protects Vus and Vub from 1-loop corrections and thereby

maintains Vub as a two loop effect.

The above observation selects the present model from the wide class discussed in Ref.

[7], not only as a predictive one (see below), but also as the only one in which the mixing

angles Vcb and Vub follow the natural radiative pattern: Vcb ∼ 1-loop, Vub ∼ 2-loop.6)

Let us now discuss the implications of eqs. (17). We have seen that Vus is enhanced by

seesaw effects above the radiative value O(ǫd). Eqs. (17) show the connection between the

large value of the Cabibbo angle and the u-d splitting. Neglecting terms of order |ǫu/ǫd|,
we get

Vus ≃
√

d

s

∣

∣

∣
1 − u

d
eiδd

∣

∣

∣
(18)

Thus, without any hypothesis on δd, we have Vus in the right range: |Vus| ∼ ǫ
1/2
d . For

instance, for u/d ≤ 0.6 and s/d = 20 [1], we obtain 0.14 ≤ |Vus| ≤ 0.26. Notice that the

experimental value of |Vus| requires large values δd ∼ 1. On the other hand, δd contributes

appreciably to the CP phase in the CKM matrix, even though there are other independent

contributions. These are related to the effects on Vub and Vcb that we discussed above.

However, barring accidental cancellations, we can conclude that the model favours a large

CP -phase, in accord with experiments [14].

Let us now discuss the mass eigenvalues. From the masses of the first two families in

eq. (17a) we get
∣

∣

ǫu

ǫd

∣

∣ =
sd

cu
. (19)

On the other hand b/t = |ǫu/ǫd|2, so that we have a mass formula

t

b
=

(uc

ds

)2
. (20)

6) The relation MU = MD does not generally hold in the models of Ref. [7]. It was con-

sidered to be broken at tree level. Consequently, in order to have a small enough Vub, some

Yukawa coupling in L1 (namely Γ31) must be taken about one order of magnitude smaller

then the others. In Ref. [7] the role of the renormalization of Γ’s had been overlooked.
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This equation, valid in the seesaw limit of eq. (15), is an appealing expression for the

top mass. However, even when exact, eq. (20) does not translate into a sharp top mass

prediction, because of our poor experimental knowledge of R = (uc/ds)2. By using the

correct mass matrix of eq. (14), eq. (20) is reduced to an inequality

(

1/λt

)2
=

(

1/λbR
)2

+
(

1/Γ33

)2 ≥
(

1/λbR
)2

(21)

where λt,b = mt,b/vL are the standard model Yukawa couplings. Eq. (21) is valid at the

“Flavour scale” vR, and, to discuss its implications, the running of masses needs to be

considered. For our purposes, we only need to consider the combined effects of QCD and

of the top Yukawa coupling [15] (electroweak gauge couplings modify our conclusions by

less than 5%). In what follows we assume αs(MZ) = 0.11 and use the estimate of the QCD

running of masses given in ref. [16] at 2-loop accuracy. There are two implications from

eq. (21).

i) An upper bound on the top mass. This value is determined by the maximal allowed

values for R and Γ33. Taking mu/md ≤ 0.8 and mc/ms ≤ 10.7 from the values given in Ref.

[1,17] we have R < Rmax = 74 (Notice that R is not affected by the running of masses,

when electroweak couplings are neglected [15].) On the other hand, Γ33 is bounded by

requiring the perturbativity of the model: Γ33 < 0.5 − 1. This upper bound requires

some explanation. From the definition of γ, and from the basis choice eq. (8), we have7)

Γ21/Γ33 = (ǫdγ11γ23)/(ǫdλ12λ23). Then, from the expressions for d/s and sin θC in eq.

(17), we have ǫdγ11
2 ≃ 1, while from the b-mass we have ǫdγ23

2 ∼ 0.06. On the other

hand, ǫdλ12λ23 is a true loop expansion parameter in eq. (10), so that we demand that it be

smaller than 0.1−0.05 ∼ d/s. Putting all these constraints together we get Γ21/Γ33 > 2−4.

Finally, by demanding the reasonable perturbative upper bound Γ21 < 2 we obtain the

bound Γ33 <∼ 0.5 − 1.0.

The results are shown in Table 1a for different values of ΛF . Notice that for ΛF =

1012 GeV the heaviest states of the model lay just below the Planck mass. However, for

the sake of demonstration we also kept ΛF = 1016 GeV. As we see the top quark cannot

reasonably be heavier than 150 GeV. For instance, for ΛF = 108 GeV, in order to push mt

to 170 GeV we should take Γ33 ∼ 2.2. Such a value, as discussed above, would lead to a

large Γ21 > 4 and the loss of perturbative control. In fact, at the same value of ΛF , even

in the limiting seesaw case, i.e. Γ33 → ∞ in eq. (21), the top quark cannot weigh more

than 176 GeV.

7) Actually this relation is true only in the case of a triplet T . However, the consequences

in the case of a sextet do not differ appreciably.

11



ii) A lower bound on
√

R. This is a consequence of the CDF bound mt > 91 GeV [18]

(see Table 1b). Notice that the lower bound on
√

R = (mumc/mdms) is given, in practice,

by R > [mt/mb(mt)] >∼ 30 = Rmin. Then, by using the maximal value c/s = 10.7 [1], we

get

u/d >
√

Rmin(s/c) > 0.5 (22)

The determination of u/d in chiral perturbation theory is still controversial, essentially

because the axial U(1)A is broken by the anomaly and instanton effects may mimic a

substantial portion of the u quark mass [19]. The range of u/d allowed in our model is

consistent with the values reported by Leutwyler in Ref. [17]. On the other hand, Donoghue

and Wyler [20] give the estimate u/d = 0.3± 0.1. If this last estimate turns out to be the

correct one, then our model is ruled out, unless c/s >∼ 14. By taking mc(1 GeV) ≤ 1.4 GeV

[1], this bound translates into ms <∼ 100 MeV, which seems too small a value for ms. (Even

though it is very difficult to determine the absolute scale of the strange quark mass [1]).

4. Inverse Hierarchy Ansatz with charged leptons

Lepton masses have a mixed behaviour, mµ/me ∼ ǫu and mτ /mµ ∼ ǫd, which seems

hard to explain by means of only one expansion parameter (see Fig. 1). On the other hand,

we saw that the large value of the Cabibbo angle requires a deviation from the genuine

radiative pattern in the quark sector. In fact the off-diagonal entries in the mass matrix

affect sizably the masses of the first two families. Here we want to show that the same

mechanism allows to explain charged lepton masses by means of one complex expansion

parameter ǫe.

We simply postulate the inverse hierarchy form of eq. (15) for all mass matrices8)

(M̂k)−1 = m−1
{

P̂1 + ǫk γT P̂1 γ + |ǫk|2 γT2
P̂1 γ2

}

(23)

where k = u, d, e. This ansatz is simple: the difference between u-, d- and e-type fermions

is parametrized by the ǫk only. The first family plays the role of a mass unification point.

The eigenvalues of quarks at the Flavour scale ΛF are the same as those in eq. (17)

(with C = 1) while for leptons we have the analogous formulae

(m/e) = |1 + ǫeγ11
2| (m/µ) =

|ǫe|γ12
2

|1 + ǫeγ11
2| (m/τ) = |ǫe|2γ12

2γ23
2. (24)

8) We set C = 1 by rescaling γ23. This does not affect the generality of the ansatz.

12



Comparing the above equation with eq. (17a), we see that the experimental relation τ ≃ b

implies |ǫd| ≃ |ǫe|. Then |ǫe|γ11
2 ≃ 1 as in the down sector, so that e and µ receive in

general sizable corrections from this term. In particular, when the phase of ǫe is close to

zero, we have that µ is enhanced and e is decreased as required by the experimental data

(Fig. 1). Eq. (24) gives a mass formula involving leptons and analogous to eq. (20) for

quarks. We can write it in terms of down-type quark and lepton masses

τ

b
=

∣

∣

∣

∣

ǫd

ǫe

∣

∣

∣

∣

2

=
(eµ

ds

)2

. (25)

Running down this relation from the Flavour scale ΛF , we get a prediction for msmd

msmd = memµ

√

mb

mτ
z
1/4
t η2

sη
−1/2
b η

3/2
F ≃ 277 z

1/4
t η

3/2
F ( MeV)2. (26)

Where ηs is the QCD running of masses from mt = 130 GeV to 1 GeV, and ηb is the

analogous quantity from mt to mb. The remaining zt and ηF account for the running from

ΛF to mt: ηF = (αs(mt)/αs(ΛF ))4/7 represents the effects of pure QCD. While zt gives

the effects of the top quark Yukawa coupling [15]. For mt < 180 GeV the effects of zt in

eq. (26) are always < 5%, so that we neglect it. The quantity msmd for different values

of ΛF and the corresponding results for the light quark masses are displayed in Table 2.

We have let ΛF go up to 1016 GeV.9) The values reported correspond to αs(MZ) = 0.11,

and the η’s have been deduced from Ref. [16]. Notice that the prediction for ms (and

hence md) is increased by about 30% when αs(MZ) = 0.13. The lower bounds on mu/md

correspond to the limit R = Rmin = 30. We also get an upper bound for mu/md. Indeed,

from eqs. (17a) and (24) we obtain

|1 + ǫdγ11
2| = |1 + ǫeγ11

2|
(

es

µd

)1/2
(τ

b

)1/4

<

(

x +
1

x
|ǫd|γ11

2

) (

mems

mµmd

)1/2

(27)

where x = (ηbηF mτ/mb)
1/4 = 0.9 − 1.1, for ΛF varying between 104 GeV and 1016

GeV. To derive the inequality in eq. (27) we have used eq. (25) for |ǫe/ǫd|. Then rather

independently on ΛF we obtain u/d = |1+ ǫdγ11
2|/|1+ ǫuγ11

2| < 0.75, by considering that

|ǫd|γ11
2 ≃ |Vus|2(s/d) ≃ 1 due to eq. (17b) and |ǫu/ǫd| < 1/6 due to eq. (19).

The ansatz (23) gives correct predictions by taking the first family as a mass unification

point (namely, by taking the same normalizing factor 1/m for u, d, and e type fermions).

9) Notice that even in a model like the one of the previous section it is meaningful to

run up to such a scale. The fact is that, in comparing quarks to leptons, QCD running

becomes effective above vR.
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We can also reverse the argument, by testing different factors 1/Mi in eq. (23), instead

of the same 1/m. It is then interesting to see what values for Mi’s are implied by our

experimental knowledge on fermion masses. We have (Md/Mu)3 = (t/b)(ds/uc)2 and

(Md/Me)
3 = (τ/b)(ds/eµ)2. For instance for ΛF = 1012, after rescaling masses, we get

Md

Mu
≃ z

−1/3
t

(

mt

120 GeV

4.25 GeV

mb

)1/3 (

ms

130 MeV

1.35 GeV

mc

)2/3 (

0.6
md

mu

)2/3

Md

Me
≃ z

−1/6
t

(

4.25 GeV

mb

)1/3
( ms

130 MeV

)4/3
(

20
md

ms

)2/3
(28)

where we have put the lepton masses to their values. It is remarkable to see that, by

varying the masses of eq. (28) in their allowed experimental ranges, all Mi’s remain equal

within a factor of 2.

5. Discussion

Motivated by the observation of the inverse hierarchy pattern 1/mu,d
i ∼ ǫi−1

u,d /m in

the quark spectrum and by the fact that an up-down symmetry could be responsible for

the smallness of the CKM mixing angles, we have constructed a realistic model for quark

masses. The key features of this model are:

i) A universal seesaw mechanism [8,10]: the masses of the ordinary quarks q are induced

via their mixing with ultraheavy families of weak isosinglet fermions Q.

ii) The mass matrices of the Q’s are generated by a charge diagonal radiative cascade

[4,7]: the 1st family gets its mass at tree level, while the 2nd and 3rd get their masses

at 1- and 2-loops, respectively.

iii) The left-right PLR and up-down Iud
10) discrete symmetries. These are softly or

spontaneously broken in the Higgs potential.

The heaviest Q-family (U, D) is unsplit because of the Iud symmetry. The lighter Q’s

get their masses from loop-diagrams involving the breaking of Iud and are thereby split. We

considered a particular, but reasonable range for the masses of the scalar fields involved in

mass generation (see the discussion below eq. (11)). In this range, the Q mass matrices are

simply determined by two expansion parameters ǫu and ǫd. These are in general complex

10) In fact, we used a discrete up-down symmetry just for simplicity. Iud can be eas-

ily extended to a local “isotopic” invariance via the embedding U(1)L × U(1)R × Iud ⊂
SU(2)Q

L × SU(2)Q
R. Again, for simplicity we have imposed CP -invariance. Our results are

unchanged in the case of complex Yukawa coupling constants.
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and ǫu 6= ǫd, due to the breaking of CP , PLR and Iud. The SU(2)R breaking scale plays

the role of the Flavour scale. The Q masses are such that vR ∼ MU3
< MD3

< ... < M .

The ratio vR/M is determined by mu/vL ∼ 10−5. As a result, the q’s mass matrices, given

by a seesaw mixing with the Q’s, have the inverse hierarchy form displayed in eq. (15).

Once again we would like to stress that in our approach the ordinary light quarks

are just spectators of the phenomena that determine the flavour structure. This structure

arises in a sector of heavy fermions and is transferred to the light ones at their decoupling.

This explains why flavour changing effects are suppressed in low energy phenomena.

The mass matrices of eq. (15) reproduce the quark spectrum (see Fig. 1) and mixing

angles in a very economical way. The big differences between u- and d-type quark masses

are essentially determined by one parameter |ǫd/ǫu| =
√

R ∼ 6 − 8. Upper bounds for

mt and md/mu are then obtained. Rather independently on the Flavour scale ΛF =

vR, by invoking reasonable perturbativity requirements, we have mt < 150 GeV. On

the other hand, without further assumptions, we obtain (mumc/mdms) > 6. Then the

relation mu/md > 0.5 is obtained by using the strange quark mass range given in Ref.

[1]. The experimental input mu/md < 1 forces the the Cabibbo angle to be large: Vus ∼
(md/ms)

1/2 instead of Vus ∼ md/ms as one generally expects within the radiative scenario.

Moreover, the correct value Vus ≃ 0.22 does not imply the loss of perturbativity, in contrast

to the previous models of radiative mass generation.

The model shows that the inverse hierarchy pattern can be obtained in an ordinary

field theory. Having in mind the idea of some symmetry between quarks and leptons,11) eq.

(15) can be generalized to charged leptons, in the inverse hierarchy ansatz of eq. (23). In

this ansatz the differences between u-, d- and e-type fermions are simply parametrized by

three complex numbers ǫu, ǫd and ǫe. In fact, in eq. (23) we have kept the same notation of

eq. (15) just for convention: actually P̂1, P̂2 = γTP̂1γ and P̂3 = γT2P̂1γ
2 parametrize the

most general set of three symmetric and real matrices of rank 1. Then, eq. (23) contains

11 relevant parameters to calculate 13 observables (9 masses + 4 angles). Hence, we have

the two relations in eq. (20,25). (Notice, however, that even by taking P̂i hermitean these

relations remain; this simply means that CP -invariance is not essential for our results.)

The predictions can be phrased as ms = 100 − 150 MeV and mu/md = 0.35 − 0.75.

11) The question of whether the SU(4) quark-lepton symmetry of Pati-Salam [21] could

provide this ansatz requires further speculations. The T -scalars of SU(4) contain lepto-

quarks, that violate in general the charge diagonality of the radiative cascade. Also, SU(4)

or any GUT extension brings neutrinos into the game. The related physical consequences

are under study.
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We find it amusing that the radiative idea, implemented with the simplest symmetries

(P , CP , “isotopic” and “lepton-quark” symmetries), can explain the key features of the

fermion mass spectrum and weak mixing. Notice, that we did not exploit any horizontal

structure, in contrast to all known predictive frameworks for fermion masses (see e.g.

[11,22]). Clearly, a clever horizontal structure would only enhance the predictive power of

our approach.

Last but not least, we wish to remark that our approach can automatically solve the

strong CP-problem, without introducing an axion. In fact, due to P/CP -symmetries the

coefficient ΘQCD of GG̃ is zero. In addition, the contribution to Θ, that arises from the

determinant of the whole mass matrix of the fermions q, Q and p, n, is vanishing at tree

level. This is a consequence of P/CP and of the seesaw structure [23]. Higher order

corrections to the mass matrix can provide a Θ-term in the range 10−9 − 10−10 which is

of interest for the search of the the neutron electric dipole moment.
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Appendix

We report the expression of the function H(r). Let us define:

f(r) =

∫ ∞

0

dx

x(x + r)
ln(x + 1) =

1

r
{ln r ln |1 − r| + ℜLi2(r)} A.1

where ℜLi2 is the real part of the Euler dilogarithm. Then H is given by:

H(r) =
2

ln2 r

[

f(r) + f(1/r) − π2

3

]

. A.2

H is a positive function which reaches its maximum at r = 1: H(1) = π2/3 − 3 ≃ 0.290.

In the range 1 < r < ∞, H decreases monotonically and very slowly to zero (see Fig. 3).
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Figure captions

Fig. 1 Logarithmic plot of fermion masses as a function of the family number. Points corre-

sponding to fermions with the same electric charge are joined. Leptons are given by

the dashed line. The value mt = 130 GeV has been assumed. The masses correspond

to a renormalization scale µ = 106 GeV.

Fig. 2 a) tree level diagram giving mass to U via mixing with p. b) one-loop correction to

the mass matrix of the Q-fermions. c,d,e) two-loop corrections. The analogues of d)

and e), where a TR and a HL are respectively exchanged, are not displayed.

Fig. 3 Plot of H(r).
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