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Abstract

Heavy partners of the top quark are a common prediction of many models in
which a new strongly–coupled sector is responsible for the breaking of the EW
symmetry. In this paper we investigate their experimental signature at the
LHC, focusing on the particularly clean channel of same–sign dileptons.
We show that, thank to a strong interaction with the top quark which allows
them to be singly produced at a sizable rate, the top partners will be discovered
at the LHC if their mass is below 1.5 TeV, higher masses being possible in
particularly favorable (but plausible) situations. Being the partners expected
to be lighter in both the Higgsless and Composite–Higgs scenarios, the one of
same–sign dileptons is found to be a very promising channel in which these
models could be tested.
We also discuss several experimental signatures which would allow, after the
discovery of the excess, to uniquely attribute it to the top partners production
and to measure the relevant physical parameters, i.e. the top partners masses
and couplings. We believe that our results constitute a valid starting point for
a more detailed experimental study.
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1 Introduction

Models in which a new strongly coupled sector is responsible for the breaking of the electroweak symmetry
(EWSB), solving the Hierarchy Problem, have received renewed attention in the last few years. Progresses
came from warped compactifications [1] which allowed to reformulate old scenarios such as Technicolor [2]
and Composite–Higgs [3] in terms of calculable five–dimensional (5d) effective theories leading respectively
to the Higgsless [4–6] and to the Minimal Composite Higgs models [7, 8].

That any of these 5d models is exactly dual to some 4d strong dynamics is far from established, but it is
known that striking similarities exist. Compatibly with our qualitative understanding of strongly–coupled
dynamics any 5d model result can be consistently interpreted in 4d language. For phenomenological
purposes, however, the 5d models could be considered per sé and their validity as effective field theories
might well extend above the maximum energy reach of the LHC. Moreover, their UV completion could
come from string theory rather than from a strong sector. If this is the case, the strongly–coupled language
would just be a useful tool to give an alternative (and sometimes simpler) interpretation to the 5d–theory
results.

The 5d models not only provided calculable realization of previous scenarios, they also suggested new
model–building solutions. It is the case of the “partial compositeness” idea (originally proposed in [9])
which is automatically implemented in the 5d construction [10] and actually constitutes its key feature in
terms of which much of the 5d physics can be captured by simple 4d models [11]. In partial compositeness
the SM fermions f (similarly to the SM vector bosons which mix with the currents) couple to the strong
sector, and therefore acquire their mass after EWSB, by mixing linearly with some strong–sector operator
O, i.e. through terms like f O in the UV Lagrangian. In the IR, where a mass–gap is generated, a
composite fermion with the quantum numbers of O exists and the UV term is converted into a mixing
of the SM fermion with this composite state. After EWSB, the mass eigenstates are a light SM fermion
and its heavy partner, with mass of the TeV order. Since small masses require small mixings, the light
SM families are mostly elementary and very weakly coupled to the strong sector. This realizes the so–
called RS-GIM mechanism of flavor protection [12] which almost, but not completely [13], solves the
long–standing flavor problem of previous strong–sector EWSB models. Among the partners, the one of
the top quark is special and is the subject of our study. To acquire its high mass, indeed, the top quark
must have a sizable composite component and therefore sizable interactions with the strong sector and in
particular with its partner. These interactions could make deviations from the SM of the top interactions
detectable [14] and they play a major role in our study of the top partners production at the LHC.

The existence of top partners is a generic and robust prediction of the 5d models and, more generally,
of 5d–inspired partial compositeness scenarios [11]. Another signature are massive vector resonances in
the adjoint of the color group; the latter are expected to be present if the strong sector carries color as it
must in partial compositeness in order for the strong sector operators O to mix with the quarks. These
resonances are the partners of the gluon in the language of [11] and arise as Kaluza–Klein (KK) gluons
in the 5d models, their production and decay to tops should be observable at the LHC if their mass is
below about 4 TeV [15]. The most direct and robust signature of strong–sector EWSB (independently on
whether it realizes partial fermion compositeness or not) would however be the detection of color–singlet
vectors with Electro–Weak (EW) quantum numbers, essentially analog to the QCD ρ mesons. The latter
are the partners (or the KK, in the 5d language) of the EW gauge bosons and play a crucial role in
the WW scattering unitarization even in the case of a composite Higgs at high enough energies. These
states will be visible at the LHC only if they are lighter than about 2 or 3 TeV [16]. The EW partners,
however, directly contribute to the S parameter at tree–level and in the absence of cancellations their
mass should be higher than a few (& 3) TeV in order for the model to be compatible with precision EW
measurements [8,17]. In the higgsless model the EW partners are forced to be light, and therefore possibly
visible at the LHC, since they are the sole responsible for WW unitarization. This requires a fine–tuning
in S which renders the model less appealing. 1 In the composite Higgs case, on the contrary, the EW
partners masses (or, which is the same, the strong–sector compositeness scale Λ) can be above 3 TeV
without violating perturbative unitarity due to the presence of an Higgs particle which can postpone
unitarity violation to higher energies. This is achieved by a fine–tuning in v/f , where v = 246 GeV is

1It is actually the request of an enhanced calculability (i.e. of a large number of colors Nc) which, combined with WW
unitarization, implies low EW partners mass. In a QCD–like case (Nc = 3) the partners should be as heavy as 2.5 TeV and
a moderate tuning would be sufficient.
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the Higgs VEV and f is the decay constant of the Higgs, which arises as a Goldstone boson in these
models. Making f large, the EW partners become heavy and no extra fine–tuning is needed in S. The
EW partners, however, will be invisible at the LHC and it becomes difficult, more in general, to probe
the strongly–coupled nature of the Higgs sector [18].

In this paper we study the possibility of observing the top partners in the extremely clean channel
of two same-sign hard and separated leptons, large total transverse energy HT and some missing energy
/ET . We will show that discovery is possible, if the coupling to tops is large as expected, up to 1.5 TeV
top partner mass, but it becomes difficult if they are heavier. The channel we study is therefore relevant
for the higgsless case, in which the strong scale Λ is low and it is natural to have top partners below
1.5 TeV, while it might appear marginal in models with Λ of about 3 TeV. This is not the case, however,
in the compelling composite Higgs scenario where, as discussed in detail in [8], the top partners are always
parametrically lighter than Λ and lie in the [.5, 1.5] TeV mass range. This happens in all the allowed
parameter space and independently on details of the model such as the 5d representations in which the
SM fermions are embedded. An heuristic explanation of this is that the Higgs mass–term, which is finite
and calculable in these models, is the result of a cancellation between the low–energy SM–like contribution
and the high–energy contribution of the new states. The bigger SM contribution comes from the top loops
and is canceled by the top partners loops (which play in this context essentially the same role as the stop
loops in supersymmetry) while the SM gauge fields loops are canceled by the EW partners contribution.
But the Higgs is light (below 190 GeV) in these models, which is also helpful with EWPT, and requiring
an upper bound on mh enforces an upper bound on the mass of the partners, which have to be light
enough for the SM divergence cancellation to begin at small enough energies. The most stringent bound
is on the top partners, since their role is to cancel the larger SM contribution, while the EW partners
are allowed to be heavier. Along the lines above, the bound of 1.5 TeV on the top partners mass can be
derived, and a correlation of the top partners mass with the Higgs mass is established, we refer the reader
to [8] for a complete discussion. Summarizing, top partners in the [.5, 1.5] TeV range are likely to be the
best experimental signature of the composite Higgs scenario, all other new states being expected sensibly
heavier.

The production of heavy colored fermions at the LHC has been extensively studied [19, 20] , but the
analysis which is more closely related to ours is the one of ref. [21], which also considered top partners in
same–sign dileptons. While ref. [21] focused on pair production, we also consider the single–production
mediated by the previously discussed interaction with the top quark. Being the latter the distinctive
feature of the top partner, the inclusion of this production channel will help in distinguishing it from a
generic colored heavy fermion and will permit, as we will discuss, a simple measurement of the coupling.
Moreover, the single production greatly enhances the cross–section for high masses and makes discovery
possible in the entire range of interest. At the technical level, our event–selection strategy differs from the
one of [21]. We indeed find an HT cut to be extremely efficient in reducing the background. Our selection
makes only use of this variable, of the leptons momenta and of some /ET . We include in our analysis the
experimental effect of charge misidentification which is potentially important for same–sign dileptons due
to the very large opposite–sign SM background. We make the conservative assumption of 1% flat charge
misidentification probability (typical lepton pT 100 < pT < 500 GeV) and with this assumption one main
background is an opposite–sign process. Our results could therefore improve if charge misidentification is
closer to 10−3 as expected. We also discuss how, after the discovery of the excess, the underlying exotic
particle content could be identified and the masses and couplings of the top partners measured, we believe
that our result are a valid starting point for a more detailed experimental analysis.

2 The Model

We describe the top partners using the language of partial compositeness, that provides a simple parametriza-
tion of 5d strong–sector EWSB models [11]. We therefore introduce heavy vector–like colored fermions Q
and T̃ which are the partner of, respectively, the standard qL = (tL, bL) doublet and the tR singlet; we
ignore light families and the bR partners since they will not play a role in what follows. The strong sector,
which generates the partners, is assumed to respect a global Gs = SU(2)L × SU(2)R ×U(1)X symmetry,
where the SM SU(2)L is embedded in the first factor while for the Hypercharge we have Y = TR3 +X. The
first SU(2)L×SU(2)R ' SO(4) factor will be spontaneously broken down to the custodial SO(3)c, either
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by the strong sector itself as in the Higgsless scenario or by the Higgs VEV in the composite Higgs, making
in both cases purely strong–sector contributions to the T parameter vanish. The partners therefore live
in representations of Gs, and since their role is to give a mass to the top quark they must be chosen such
that a Gs–invariant “proto–Yukawa” term for them exists and at the same time they can mix with the
SM fermions without breaking the SM group. This last requirement actually forces the strong sector to
carry color as an additional global symmetry, the group is SU(3)c×Gs and the partners are color triplets.

Both cases in which the strong sector delivers an Higgs field or not can be treated simultaneously if
we write

H =
[

h†d hu
−h†u hd

]
=

v√
2
U '

[
1√
2

(v − iϕ0) ϕ+

−ϕ− 1√
2

(v + iϕ0)

]
, (1)

where H is the Higgs field, in the (2,2)0 of Gs, U is the Goldstone bosons unitary matrix parametrized by
the neutral (ϕ0) and charged (ϕ− = ϕ+

†) Goldstone fields and the last approximate equality is obtained
by expanding U at the first order in the Goldstones. In the case of a Composite Higgs, v should be a
dynamical degree of freedom whose fluctuations describe the physical Higgs boson, but since we are not
interested in interactions of the partners with the physical Higgs we have set it to its VEV v = 246 GeV.
We will write the proto–Yukawa interactions in term of H, but after making use of eq. (1) we will obtain
the same Lagrangian we would have written in the higgsless case where only the Goldstones in U (and
not the entire H) are present. What we denote as proto–Yukawa term is actually, in the higgsless case, a
non–SO(4) invariant mass term properly “dressed” with Goldstones in order for the SO(4) symmetry to
be restored.

The concrete model we consider is the same as in [21], which provides a parametrization of the compos-
ite Higgs model of [8] and of the higgsless model of [5]. The top partner representations and the associated
proto–Yukawa term are

Q = (2,2)2/3 =
[
T T5/3

B T2/3

]
, T̃ = (1,1)2/3 , LY = Y ∗t Tr

[
QH

]
T̃ + h.c. , (2)

where the (T,B) doublet has the same SM quantum numbers as qL = (tL, bL) and T̃ the ones of tR. The
Q and T̃ multiplets have masses MQ,eT of the order (though a bit smaller in the composite Higgs case, as
we have discussed) of the compositeness scale Λ ∼ TeV, and also mix with strength ∆Q,eT to qL and tR.
Diagonalizing the mixings one gets a mass term for the top. From eq. (2) we find

yt =
√

2mt

v
= Y ∗t sinϕq sinϕt , (3)

where ϕq,t are the qL, tR mixing angles.
The equation above immediately tells us that the proto–Yukawa coupling Y ∗t cannot be very small, it

has at least to exceed yt ' 1. It will actually be bigger in concrete models, because of the following. If
Y ∗t is generated by a strong dynamics (or by an extra–dimensional model) it can be estimated as

Y ∗t =
4π√
N
,

where N is the number of colors of the strong sector. In the 5d language, 1/
√
N corresponds to the

expansion parameter and indeed making N big makes our IR description of the strong sector more weakly
coupled. A strong bound on the number of colors N comes from the S parameter which grows linearly
with N as a result of the fact that the vector resonances mass mρ decreases (at fixed 4πf ∼ mρ

√
N) as

1/
√
N . This requires N . 10 [8] which in turn implies Y ∗t & 4. As an upper bound on Y ∗t , which could

still ensure calculability in the 5d model, we could take for instance the gρ coupling of the ρ meson of
QCD which corresponds to N = 3 and is around 6.

The lagrangian in eq. (2) also delivers top partners interactions with two SM particles, which will
mediate top partner decay and single production. These are

LY = −Y ∗t sinϕt cosϕqϕ+tRB + Y ∗t sinϕtϕ−tRT5/3 + i Y ∗t sinϕt cosϕq
ϕ0√

2
tRT

−i Y ∗t sinϕt
ϕ0√

2
tRT2/3 − Y ∗t sinϕq cosϕt

[
ϕ−bL + i

ϕ0√
2
tL

]
T̃ + h.c. , (4)
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B T5/3

u

g

d

W+ → l+νl

t̄→ b̄ hadrons

t→ l+νlb

B̄1/3

W+
L

t̄

u

g

d

W+ → l+νl

t→ l+νlb

t̄→ b̄ hadrons

T5/3

W+
L

t

q

q̄

W+ → l+νl

t̄→ b̄ hadrons

t→ l+νlb

B̄1/3

B1/3

W− → hadrons

q

q̄ W+ → l+νl

t̄→ b̄ hadrons

t→ l+νlb

T̄5/3

T5/3

W− → hadrons

Figure 1: Typical single and pair production diagrams for T5/3 and B for signals with two positively
charged leptons. We notice that for T5/3 the leptons always comes from its decay, while for B they
originate in two different legs.

and correspond, when going to the unitary gauge and making use of the Equivalence Theorem, to vertices
with the longitudinal EW bosons. From the Lagrangian above it is easy to see that only the B and the
T5/3 partners will be visible in the final state we want to study, which contains two hard and separated
same–sign leptons; the pair and single production diagrams are shown in fig. 1.

The couplings λB = Y ∗t sinϕt cosϕq = yt/ tanϕq and λT = Y ∗t sinϕt = yt/ sinϕq are potentially
large since Y ∗t is large, as we have discussed, and for sure λT ≥ yt ' 1. But they will actually be
bigger in realistic models where the amount of compositeness of qL, sinϕq, cannot be too large. The bL
couplings have indeed been measured with high precision and showed no deviations from the SM. Large
bL compositeness would have already been discovered, for instance in deviations of the ZbLbL coupling
from the SM prediction. Generically, corrections δgL/gL ∼ sinϕq2 (v/f)2 [11] are expected which would
imply (for moderate tuning v/f /� 1) an upper bound on sinϕq. It is however possible to eliminate such
contributions by imposing, as in the model of [8] (see also [22]), a “Custodial Symmetry for ZbLbL” [23]
which makes the correction reduce to δgL/gL ∼ sinϕq2 (mZ/Λ)2. Still, having not too big bL compositeness
is favored and further bounds are expected to come from flavor constraints in the B–meson sector. To be
more quantitative we can assume that sinϕq < sinϕt, i.e. that qL is less composite than the tR. This
implies sinϕq <

√
(yt/Y ∗t ) and therefore λT >

√
(ytY ∗t ) & 2 and λB >

√
(ytY ∗t − y2

t ) &
√

3. We will
therefore consider λT,B couplings which exceed 2 and use the reference values of 2, 3, 4; smaller values for
both couplings are not possible under the mild assumption sinϕq < sinϕt.

Our analysis, though performed in the specific model we have described, has a wide range of applica-
bility. The existence of the B partner is, first of all, a very general feature of the partial compositeness
scenario given that one partner with the SM quantum numbers of the bL must exist. Also, it interacts
with the tR as in eq. (4) due to the SU(2)L invariance of the proto–Yukawa term. The T5/3 could on the
contrary not exist, this would be the case if for instance we had chosen representations Q = (2,1)1/6 and
T̃ = (1,2)1/6 for the partners (which is however strongly disfavored by combined bounds from δgb/gb and
T), or in the model of [11]. To account for these situations we will also consider the possibility that only
the B partner is present. 2 The existence of the T5/3 is a consequence of the ZbLbL–custodial symmetry,
which requires that the B partner has equal T 3

L and T 3
R quantum number. This, plus the SO(4) invariance

of the proto–Yukawa, implies that the T5/3 must exist and couple as in eq. (4). Our analysis, as we have
remarked, can also apply to Higgsless scenarios in both cases in which the custodian T5/3 is present or
not. The results could change quantitatively in other specific models because for instance other partners
can be present and contribute to the same–sign dilepton signal, or other channels could open for the decay

2In this case, our analysis perfectly applies to the model proposed in [11], where the tR is entirely composite, sin ϕt = 1,
and the coupling is large.
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of the partners making the branching ratio to top, which is one in our model, decrease. This cannot
however qualitatively invalidate our conclusions on the discovery, which are robust if the partners are not
too heavy and their couplings, which determine the single production cross–section, are not too small.

3 Discovery Analysis

The cross–sections of single and pair top partners production at the LHC are shown in fig. 2. After
production, the partners decay to top quark and W as depicted in fig. 1 with unit branching ratio, but
reaching the dilepton final state will cost us an extra factor of ≈ 2

9 · 2
9 · 6

9 ≈ 0.03 (id.· 69 ≈ 0.02) for
single (pair) production. Compared with pair, the single production cross–section is always sizable in
the mass range we are interested in and, since it decreases slower with the top partner mass, rapidly
becomes dominant. This is somewhat surprising since the single production diagram contains one weak
interaction vertex and is also suppressed, in comparison with pair production, by the three–body phase
space. Very similar situations, however, are encountered in the case of a fourth heavy family production,
studied in [24], and in the phenomenology of little Higgs models [20].

mass,   [TeV]  
0.6 0.8 1 1.2 1.4 1.6 1.8 2

,  
[f

b
] 

   
σ

-110

1

10

210

310

      5/3 T + 
5/3

single : T

 5/3 T
5/3

pair : T

14 TeV

Figure 2: Cross sections, summed over charge, for pair (plain) and single (dashed) production of T5/3

(or B) as a function of its mass. The dotted lines show the effect for the single production of varying
2 < λT,B < 4.

The main reason for the single production enhancement (or which is the same, for the pair production
suppression) is explained by figure 3, where the single and pair production partonic cross–sections are
shown as a function of the partonic center–of–mass energy

√
ŝ = x1x2

√
S (where

√
S = 14 TeV and x1,2

the parton momenta fractions) for, respectively, qg and gg initial states and 1 TeV top partner mass.
Even though the the latter is bigger by a factor ≈ 10 in the first 500 GeV

√
ŝ slice, it starts at higher√

ŝ (
√
ŝ > 2M) while the threshold is lower (

√
ŝ > M +mt) in the single production case. The partonic

cross–sections will have to be convoluted with the corresponding differential partonic luminosities which
are defined as

dLi,j
dŝ

=
1
S

∫ 1

bs/S
dx

x
Fi(x)Fj(ŝ/(Sx)) ,

and shown in figure 3, computed using the MSTW PDF grids [25] with Q = 2 TeV. It is immediate to see
that, since the differential luminosities decrease exponentially, the integrated one in the [M+mt, 2M ] range
is much larger than the one from 2M and

√
S. The pair production total cross–section, which only receives

contributions from the second
√
ŝ interval (

√
ŝ ∈ [2M,

√
S]), is suppressed w.r.t. single by a large factor.

For the 1 TeV case, the suppression factor is approximately given by Li,j(2M)/Li,j(M + mt) ∼ 1/20,
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500 1000 1500 2000 2500 3000 3500 4000

, [
fb

]
σ

0.1

0.2

0.3

0.4

0.5

0.6
= 1.0 TeV

5/3TM

 jt 5/3 T→ug 

5/3T 5/3 T→gg 

= 1.0 TeV
5/3TM
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, [
G

eV
s

d
 

i,j
d

 L

S1

-1010

-910

-810

-710

-610

-510

ug
gg

 = 14 TeVS

Figure 3: On the left, the partonic cross-section for two typical contributions to single (ug → T5/3t̄; λ = 3)
and pair (gg → T5/3T̄5/3) production. To find the total cross-sections, these have to be convoluted with
the corresponding partonic luminosities which are shown on the right for ug and gg as function of

√
ŝ.

which is enough to compensate for the different partonic cross–sections of the two processes. Also, the
suppression factor decreases for higher masses and this explains why the single production process is
comparatively more important for higher masses, as figure 2 shows.

Notice that, as discussed in [24], the single production process can be considered as a W–gluon fusion
because the intermediate W tends (in order to maximize its propagator) to have low virtuality, of order
−m2

w, while still carrying enough energy to produce the heavy partner. This makes the final state partonic
line from which the W is emitted to be very forward, leading to a forward jet similar to the ones of W–
boson fusion Higgs production [26]. For pT . mw, and an energy around the TeV, the forward jet will
have rapidity η & 3; the presence of this forward jets constitutes an important feature of our signal which
we will discuss in more detail in the following.

3.1 Signal and Background

The one of same–sign dileptons is a very clean channel in which the single and pair production of the top
partner can be observed. The decay chains leading to positively charged leptons for both the B and T5/3

production are shown in fig. 1, the case of negative charge final leptons can be easily worked out. Notice
that while the pair production process contributes the same to both charges, single production leads to
a charge asymmetry. The hard initiating parton, which has to provide most of the energy for producing
the partner, is indeed preferentially a valence quark and specifically an up in the (l+, l+) case and a down
for (l−, l−). We therefore have a factor of roughly two between the single production contribution to the
positive and negative charge signal. This leads to a sizable charge asymmetry that could be exploited to
measure the single production cross–section and eventually the top partner coupling, as we will discuss.

Not to enter in subtleties of τ reconstruction, we only consider electrons and muons and also, in order
to neglect leptons from heavy flavors and jet/lepton misidentification, we require leptons to be separated
from hadronic activity with a separation cut ∆R(LJ) > 0.4. Also, our leptons should be hard enough
(pT > 10 GeV) and of course inside the detector (η < 2.5). Since there are also neutrinos, our signal is
in conclusion pp→ l±l± + /ET + n jets with hard and separated leptons. Notice that the separation cut,
in the case of very high mass, starts becoming costly for T5/3 since the leptons come from boosted tops
and tend to be close to the b–jet. This does not represent a problem for MT . 1.5 TeV, but above it is
a serious limitation. But in this case, independently of this effect, discovery in the dilepton channel will
become hard due to the decrease of the cross–section worsened by the small leptonic W branching ratio.
In order to go further hadronic W final states should be included and advanced techniques of boosted top
reconstruction (see for example [15]) will be needed.

The background, because of our isolation and hardness cuts, comes from the production of SM heavy
particles subsequently decaying to leptons. Processes in which exactly two same–sign leptons are produced
are W±W±, tt̄W±, W±W±W∓ and tt̄W+W− where the latter two are competitive with the former if the
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σ(l+l+), [fb] σ(l−l−), [fb]
T5/3 + B, M = 0.5 TeV 84.6 45.2
T5/3 + B, M = 1.0 TeV 5.00 2.49
T5/3 + B, M = 1.5 TeV 0.596 0.272
T5/3 + B, M = 2.0 TeV 0.116 0.041

T5/3T5/3 + BB, M = 0.5 TeV 67.0 67.0
T5/3T5/3 + BB, M = 1.0 TeV 1.47 1.47
T5/3T5/3 + BB, M = 1.5 TeV 0.076 0.076
T5/3T5/3 + BB, M = 2.0 TeV 0.0053 0.0053

tt̄ + 0, 1, 2 j 56.7 56.7
Z∗/γ∗ + 0, 1, 2, 3 j 168.0 168.0

W +W− + 0, 1, 2 j 5.83 5.83
tt̄W± + 0, 1, 2 j 2.25 1.52
W±Z + 0, 1, 2 j 7.66 4.44

W±W± + 2, 3 j 2.87 1.60
W±W±W∓ + 0, 1, 2 j 1.97 1.28
tt̄W±W∓ + 0, 1 j 0.595 0.595

Table 1: Cross-sections for the various processes after a minimal set of cuts, pT (L) > 10 GeV,
M(LL) > 120 GeV; a charge misidentification probability of 10−2 is taken into account. The single
production cross–section is for λT,B = 3, by varying λ it scales as λ2.

SM Higgs is heavy enough to give a resonant contribution to the W+W− pair production. To maximize
this possibility we have assumed this to be the case and chosen the Higgs mass to be mH = 180 GeV.
Notice that we label the background processes only in terms of their heavy SM particles content but we
will take into account additional hadronic activity they might also include. Strictly speaking, the suffix
“+n jets” should be attached to all our background process names. There are also processes in which
three leptons are produced but one is lost, either outside the detector (η > 2.5) or below threshold, which
we set at 5 GeV. The only relevant such a process is W±Z which, despite of the geometrical suppression
factor for loosing a lepton, is competitive with W±W± since the latter final state starts being produced,
necessarily in association with at least two partons, to a higher αS order. The W±W±Z process is on the
contrary subdominant compared with W±W±W∓ and can be neglected.

All the backgrounds listed up to now will be referred to as true background, while a second very
important source of background, originating because of charge misidentification, will be denoted as sign
background. The latter are tt̄, Z∗/γ∗ and W+W− whose cross–sections are clearly much larger than
those of the true backgrounds we have listed. Their real impact on our analysis depends on the charge
misidentification probability of the detector which is hard to estimate because it strongly depends on the
pT and rapidity of the leptons, as well as on the detector and the lepton species (muons are typically better
identified that electrons, for instance). On top of this, it has been only poorly covered in the literature the
case of lepton momenta pT ∼ 100− 500 GeV, which is the region we are interested in. We will therefore
use a flat charge misidentification probability of 1% believing this to be a conservative assumption, rates
closer to 10−3 (or even less for muons), being expected [27].

Simulation

We generated signal and background events using MadGraph/MadEvent [28], with higher order emis-
sions of extra parton taken into account. 3 Showering was performed with Pythia [29], where hadroniza-
tion, which should not play any role in our analysis, was turned off. For each process, we generated
matrix element events with different final state partons content and, after showering, different matrix
elements were combined by the MLM matching prescription with kT jet algorithm [30–32]. Finally, jets

3We are indebted with R. Contino for providing us with the MadGraph model for the top partners.
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were reconstructed using the Paige’s cone jet algorithm implemented in GetJet [33], with parameters
∆R = 0.7, Emin = 20 GeV. The resulting cross–sections are shown in table 1 where for each process the
different matrix elements combined by MLM matching are also reported. The cross–sections of table 1 are
for hard and separated leptons inside the detector, as previously specified, but a cut M(LL) > 120 GeV
was also implemented. The latter is needed to forbid real Z production to contribute to the Drell–Yan
Z∗/γ∗ background. Also, the suppression factor of 10−2 for charge misidentification is already taken into
account.

The detailed simulation described above, including MLM matching, was performed in order to obtain
as realistic as possible samples of events, on which the more detailed analysis of the top partners, which we
will discuss in sect. 4, can be reliably performed. The discovery results presented in this section, however,
do not rely on this detailed simulation. For event selection we will indeed not use observables, such as for
instance the number of jets, which require a detailed knowledge of the hadronic structure of the event. We
have checked explicitly that the results of the present section can be reproduced by pure matrix element
simulations with additional hard QCD contributions. This makes our analysis more robust.

In addition to the lepton charge misidentification, we have included the detector effect of fake /ET [27].
A cut on /ET is indeed very useful to get rid of the Z∗/γ∗ background but fake /ET is crucial for a realistic
estimate of the efficiency of this cut. Both for ATLAS and CMS the error on the each component of the
missing pT can be estimated by a Gaussian distribution with a width given by the activity inside the
detector:

σ = κ

√ ∑
jet,lep.

|pT | , (5)

where for atlas κ = 0.46 , while κ = 0.97 for CMS [27]. We use κ = 1.0 and, at the stage of the analysis
of the simulated events, add a random δpT fluctuation to the missing pT .

3.2 Event Selection

The dominating background, as table 1 shows, is Z∗/γ∗, but this will become substantially irrelevant
when a cut on /ET will be applied. Second comes tt̄ which will be more difficult to get rid of. The choice of
the observables and their optimization focuses on the single production, which is the relevant production
mechanism in the range of high masses where discovery becomes less easy. Our search strategy, however,
turns out to be efficient for pair production as well. The first observables we focus on are the pT of the
hardest and second hardest leptons, L1 and L2, whose distributions are shown figure 4. Notice that the
leptons are typically softer for B than for T5/3, but this had to be expected since in the second case both
leptons come from the heavy particle decay while in the first only one comes from the B and the other
originates from the top quark. A cut on pT (L1) will nevertheless be useful also for the B, but pushing it
to too high values would induce a big unbalance between T5/3 and B lowering too much the cross–section
for the latter. The pT of the second lepton, which would not in any case solve this problem, turns out to
be an inefficient cut because a hard cut on pT (L1) already implies, on the background, a certain hardness
of pT (L2). This is the case, for instance, for the dominant tt̄ background, we therefore find it convenient
to keep the cut on pT (L2) to its minimal value of 10 GeV.

The essence of our signal is simply the decay of a heavy particle, whose energy needs to be distributed
among its different products, leptons, jets (J) and /ET . It is therefore useful to define the total transverse
energy HT :

HT =
∑

J,L,/ET

| ~pT | . (6)

The HT distribution is shown in figure 4 and, as expected, peaks around the heavy particle mass. A cut
on HT will therefore be extremely useful and will also solve the problem of the unbalance among B and
T5/3 due to the pT (L1) cut since HT is typically bigger for B than for T5/3. The reason why HT is bigger
for B is that /ET , which directly contributes to /ET , is also bigger and this is due to the following. The
partner has, when singly produced, low transverse boost so that the T5/3 decay products, the t and the
W , are back to back in the transverse plane and boosted. This favors the two neutrinos from t and W
to be back to back and in this configuration there is a cancellation in /ET . This cannot happen for the
B where there is only one hard neutrino. It will nevertheless be hard, for masses > 1.0 TeV, to balance
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Figure 4: Distribution of pT (L1), pT (L2), HT and /ET for signal (×100) and background after the minimal
set of cuts, pT (L1,2 > 10) GeV, M(LL) > 120 GeV. The case λT,B = 3 is considered.

Cut Mass, [TeV] pT (L1), [GeV] HT , [GeV] /ET , [GeV]
soft 0.5 60 500 50

medium 1.0 100 1000 50
hard 1.5 200 1200 100
max 2.0 250 1600 100

Table 2: Table of the cuts depending on the mass of the partners. To these, there is a cut on the invariant
mass of both leptons, M(LL) > 120 GeV, and the pT of the second lepton, pT (L2) > 10 GeV.

soft medium hard max
Process ++ -- ++ -- ++ -- ++ --

Single T5/3 38.4 18.7 1.50 0.64 0.154 0.059 0.015 0.005
Pair T5/3 28.1 28.1 0.662 0.662 0.03 0.03 0.0021 0.0022
Single B 32.4 14.4 1.76 0.72 0.226 0.085 0.042 0.015
Pair B 26.3 26.3 0.651 0.651 0.03 0.03 0.0022 0.0022

True background 3.5 2.0 0.68 0.34 0.174 0.077 0.058 0.020
Sign background 12.3 12.3 0.72 0.72 0.100 0.100 0.009 0.009

Table 3: Cross-section in [fb] for the different processes. For the signal, the mass corresponding to the cut
is used.
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Mass, [TeV] Ldiscovery, [fb−1] # signal # background
0.5 0.024 5 0
1.0 1.103 8 2
1.5 26.40 17 11
2.0 326.7 28 31

Table 4: Discovery luminosity, for different mass, in the case of degenerate top partners with λT,B = 3.

Mass, [TeV] Ldiscovery, [fb−1] # signal # background
0.5 0.076 8 2
1.0 4.3 16 11
1.5 82 30 37
2.0 637 39 61

Table 5: Discovery luminosity, for different mass, when only the B partner is present and λB = 3.

the B and T5/3 signals after cuts. The lepton-jet separation will indeed unavoidably disfavor the T5/3

selection since it forbids too boosted leptonic tops.
The two main cuts we will use are, in conclusion, pT (L1) and HT , but we will also ask some /ET and

M(LL) > 120 GeV as mentioned above to get rid of the Z∗/γ∗ background. For different masses, we
optimize our cuts for the case in which both the T5/3 and B are present, have degenerate masses and
“average” coupling λT,B = 3. The optimized values are shown in table 2 and the corresponding cross–
sections are reported in table 3. We define the discovery luminosity to be the one for which S/

√
B = 5 or,

if the background is negligible as in the 0.5 TeV mass case, as the luminosity which is needed to observe
5 signal events; the results are shown in table 4. We see that discovery will be possible, in the degenerate
mass case, up to at least 1.5 TeV top partner mass while it appears difficult for 2 TeV even when the entire
LHC program of 300 fb−1 total luminosity will be completed. For masses below around 1 TeV, moreover,
even 100 fb−1 of luminosity will allow to collect a significant number (greater than 800) of signal events
which will allow to study the top partners in some detail measuring their masses and couplings as we will
discuss in the following section.

The situation is worst, clearly, when only the B partner is present. The discovery luminosity for
different masses and for λB = 3 are shown in table 5 after applying the cuts of table 2. Though the cuts
are not optimized for this case, we see that the discovery is impossible for 2 TeV while the case of 1.5 TeV
is within the reach of the LHC. Lowering the coupling renders the discovery more difficult for high mass,
where the pair production is small, given that the single production cross–section decreases as λ2. For
λT,B = 2 and degenerate masses, for instance, 90 fb−1 are needed for 1.5 TeV mass while the 2 TeV case
is by far beyond reach. When only the B is present and λB = 2, the 1.0 case should be discovered with 11
fb−1, while the 1.5 TeV case becomes difficult as the discovery luminosity, though again estimated with
the cuts of table 2 which are not optimized for this case, is of 287 fb−1.

The top partners, even if both exist, need not to be degenerate or to have equal couplings. Actually,
an unavoidable source of splitting is that, as discussed in sect. 2, the B mixes with the bL while the T5/3

does not. In the specific model described in sect. 2 this results in MB = MQ/ cosϕq while MT = MQ

which implies:
MT

MB
=

λB
λT

= cosϕq , (7)

where ϕq is the mixing angle of the qL doublet. Since the qL will not be very composite to satisfy
experimental constraints, i.e. sinϕq is small, in our model the partners are likely to have similar masses,
though the B will always be heavier than the T5/3 and also more weakly coupled since λB < λT . The B
cross–section will therefore quickly decrease, especially for high masses where single production is more
relevant, by increasing sinϕq, and a valid (although pessimistic) approximation of this case is to neglect
the entire B partner contribution. This leads us to consider the case in which only the T5/3 is present and
λT = 2, which correspond to maximal sinϕq. We obtain that the discovery is surely possible for 1 TeV
mass, with 10 fb−1, but it is very difficult for 1.5 TeV where 470 fb−1 would be needed. This case is worst
than the one of the B since our cuts are, as we have explained, more efficient for the B than for the T5/3 if
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Figure 5: Topology for which mT2 is defined: pair production of particle with semi-invisible decay

MT > 1.0 TeV. Even though discovery is difficult in this unfavorable situation for exactly 1.5 TeV mass,
the cross–section decreases so fast with the mass that already for 1.3 TeV discovery is possible, 90 fb−1

being required. Intermediate cases obeying eq. 7 could also be considered, but we prefer not to restrict
to the specific model of sect. 2 and instead consider more general situations. Similar but not equal top
partner masses and couplings will be considered in the following section where we will discuss the LHC
phenomenology of the top partners in more detail.

Our event selection strategy is also efficient for the pair production, as we have mentioned. If only
pair production is considered, indeed, we find (when both partners are present) a discovery luminosity of
64 pb−1 and of 8.9 fb−1 for, respectively, 0.5 and 1.0 TeV mass, and this has to be compared with the
values of 56 pb−1 and of 15 fb−1 which have been found in [21]. Since our background is larger, especially
for low mass, due to the charge misidentification effect which was ignored in [21], our strategy seems more
efficient.

4 Phenomenology of the top partners

The discovery of an excess in the same sign dilepton channel would not be a proof of the existence of the top
partners since other new physics scenarios, or an erroneous estimate of the background cross–section, could
lead to the same effect. The aim of this section is to underline the main features of the top partner signal,
which will be crucial for recognizing it, and also to propose some strategies for measuring the partner’s
masses and couplings. Since a large number of events is required to perform reliable measures, the results
presented in this section are expected to be useful for masses below 1.2 or 1.3 TeV, the cross–section being
likely too be too small in the 1.5 TeV case.

4.1 SM particles

Let us first of all try to identify the heavy SM particles, the W ’s and the hadronic top, which are present
in our signal. This will already give us some confidence in the hypothesis that the dilepton excess is
due to a modified charged current in the top sector, even though this feature is shared by the ttW and
ttWW backgrounds. Identifying the t will also help us later to reconstruct the new particles which would
constitute the most striking evidence for their existence.

In our signal the leptons come from the decay of W bosons and even if this property is shared by most
of the backgrounds, and is quite common for leptons in a hadronic environment, it is good to establish
this fact in order to exclude, for instance, an exotic particle coupled to the charged lepton current such as
a heavy W ′. The presence of the W ’s in our signal, where the only sources of /ET are the two neutrinos,
is easily observable by the end–point of the mT2 (also called stransverse mass) [34] distribution. This
variable is designed to extract the mass M of a pair produced particle with semi–invisible decay as shown
figure 5. It is defined as

mT2 = min
~/p
1
T

+~/p
2
T

=~/pT

{
max
i=1,2

{
mT (~/p i

T , ~q
i
T )
}}
≤M , (8)

where ~/pT is the /ET vector and ~q iT are the transverse components of the visible part of the decay. In our
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Figure 7: The left plots show the Lorentz factor γ of the hadronic top for T5/3 and B, while the right
plots shows the ∆R separation of the partons origination from the W decay. Signal events are used with
MT,B = 1.0 TeV, λT,B = 3 and “medium” cuts are applied.

case, ~q iT are the leptons transverse momenta and the mT2 distribution ends at mW as shown in figure 6.
It should be noted that when, as in our case, the transverse mass mT in eq. (8) is computed with massless
particles (the lepton and the neutrino), mT2 will vanish if the neutrino momenta /~p1,2

T can be chosen to be
parallel and aligned with the leptons. This is always possible when the /ET vector lays inside the angle
between the lepton transverse momenta and, since our leptons are usually back to back, this will roughly
happen one half of the times. The mT2 distribution therefore shows a peak at zero and, since the events
in the peak are useless for determining the threshold, this effects reduces the efficiency of the procedure
by a factor one half.

The signal also contains a hadronic top which we can reconstruct in two steps. First we reconstruct
the hadronic W and afterwards we associate to it the corresponding jet from the top decay. The latter
will be a b jet, but b–tagging will not be needed. Except for single production of T5/3 , the top will be
slightly boosted since it comes from the decay of a heavy particle, as shown in figure 7. The W and the
b will still be separated enough to be resolved while the two W jets have a certain probability (we use a
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cone jet with ∆R = 0.7 and /ETmin = 20 GeV) to merge into a single jet, as figure 7 shows. We therefore
proceed as follows. First we look for a single jet with |m(J) −mW | ≤ 20 GeV and if none is found, we
do the same with all the jet pairs |m(J1 + J2) −mW | ≤ 20 GeV. To each W reconstructed in this way
we try to associate a jet such that |m(W + J) − mt| ≤ 30 GeV and when this is achieved the top is
considered to be reconstructed. For the signal, we estimate the efficiency of this procedure to be above
60%, even though a detailed detector simulation would be needed for a more detailed identification and
hence a realistic estimate.

4.2 Evidences of single production

If the top partners coupling to top is large, as theoretically expected, a sizable fraction (or even the
entire sample, for high mass) of the dilepton events originates from single production and establishing this
fact will permit to distinguish the top partner from a generic pair–produced new heavy colored fermion.
Studying single production will also allow to measure the top partners coupling.

The first evidence of single production is the presence of a charge asymmetry which is due, as discussed
in section 3, to the fact that the single production originates from a W radiated by an initial quark which,
because of the high energy needed, will most of the times be a valence quark (90% of ug initial partons
for M = 1.0 TeV with l+l+ final state). The difference in the (++) and (−−) cross–section is shown in
figure 8 for MT,B = 0.5− 1.5 TeV and λT,B = 2, 3, 4. The difference in the cross-sections, rather than the
asymmetry, could be a better observable in our case because the sign background contribution, as well as
the one from pair production, disappears. In the asymmetry it enters in the denominator. For known MT

and MB , the charge asymmetry will put a constraint on the λT,B couplings, we will come back on this
later.

The presence of a forward energetic jet is, as we have discussed in section 3, another evidence of the
single production. Initial state radiation (ISR) in the pair production signal or in the background, when
constrained by our cuts to kinematical regions of high hard scale, produces forward jets which are similar
to the one we want to observe. The ISR jets are the main background to the forward jet identification
and it is therefore important to take this effect into account. Figure 9 shows the typical ISR distribution
for a hard scale of 2 TeV in the pT –η plane and in the jet energy. Compared with the signal (see again
figure 9), the ISR jets distribution is peaked around softer and more central emissions even for very hard
(2 TeV) processes. For technical reasons, we have obtained the ISR radiation distribution in figure 9 by
simulating the Drell–Yan production of a Z ′ boson of 2 TeV mass. This allowed us to obtain quickly
large samples of high hard scale events and therefore a readable 2d distribution, while the resulting shapes
are independent of this technicality. Figure 9 suggests the following criteria to identify the forward jet.
Firstly, it has to be energetic, E > 300 GeV, but this will also be often true for the other hard jets of
our signal and background. Among these candidates, we therefore look for low pT and forward jets by
imposing pT < 150 GeV and η > 2.5. In case of multiple candidates, we take the most energetic one.
The efficiency on the single production at 1.0 TeV is 65%, while the fake forward jet probability from the
backgrounds and pair production is around 20%. Most of this fakes come, as we have explained, from the
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ISR effects which are of course included in our simulation of the background and of the pair production.

4.3 Identification of the top partners

The evidences for the top partners discussed up to now are indirect, we will now try to identify the
particles responsible for the excess, which would provide a direct proof of their existence. In what follows
we will propose a method to detect the presence of the T5/3 and/or of the B particles and to extract their
mass. If one of them is significantly lighter than the other, or more strongly coupled, it will appear as the
only particle present. Else, our signal will contain a mixture of the two charges whose relative importance
depends on the masses and on the couplings.

Charge: We would like first of all to establish whether our signal can originate from a heavy fermion
with charge −1/3 (the B), +5/3 (the T5/3) or from a combined contribution of both. We will make use
of the fact that (see figure 1) both leptons come from the partner decay in the case of the T5/3 while the
second lepton comes from the other top (or B) leg in the case of the B. This will be used in different ways,
depending on the mass. For low masses, MT,B = 0.5 TeV, the partners will be boosted along the beam
axis (see figure 10) and when this is the case their decay products tend to be aligned and in the forward
region. This is inherited, in the case of the T5/3, by the two leptons, which therefore are preferentially
emitted in the same hemisphere. The opposite happens when the T5/3 is at rest since its decay products
tend to be back to back in this case. This makes, as shown in figure 11, that the angle θ(L2) of the second
(in pT ) lepton with the beam, having oriented the system in such a way that θ(L1) < π/2, peaks at
small values when the T5/3 is boosted and at large values when it is at rest. The T5/3 being preferentially
boosted for 0.5 TeV, the total distribution shows a preference for aligned leptons and, since this feature
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Figure 11: The angle with the beam of the second lepton (θ(L2)) for T5/3 and B, MT,B = 0.5 TeV. The
system is always oriented to have θ(L1) < π/2. We see that boosted T5/3 leads to aligned leptons in the
forward region, while if it is at rest the leptons tend to be opposite. The distribution is more symmetric
in the case of the B.
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seen in the left plot. For the B one lepton comes from its decay while the other comes from the opposite
top leg, their azimuthal angles are therefore less correlated.
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Ahemisphere
ll B T5/3

T5/3 or B 0.05 0.23
T5/3 and B 0.14

Table 6: Table giving the asymmetry between leptons in same or opposite hemisphere, Ahemisphere
ll , for

the signal (single & pair production) at MT = MB = 0.5 TeV with soft cuts applied. The background
contribution is negligible for low masses, therefore it has been ignored.

R∆ϕ
ll B T5/3

background 2.95
(T5/3 or B) + background 1.98 6.00
T5/3 + B + background 3.33

Table 7: Table giving R∆ϕ
ll = (#∆ϕll > 2.5)/(#∆ϕll < 1.0) for MT = MB = 1.0 TeV, with medium cuts

applied. Significantly different results are obtained in the various configurations with only the T5/3, only
the B or a superimposition of the two.

is not present in the case of the B, in can be used to distinguish the two. We therefore define the
asymmetry between the events in which both leptons are in the same or opposite hemispheres (θ ≶ π/2),
Ahemisphere
ll = (#same−#opposite)/(#all). The predicted asymmetry for B, T5/3 and for a combination

of the two are shown in table 6, we observe significantly different results in the various cases.
For higher masses, MT,B & 1.0 TeV, the partners will hardly be boosted and the hemisphere asymmetry

will be washed out. To distinguish the T5/3 from the B we can use, in this case, the fact that the partners
usually have very small transverse boost as a result of the single production mechanism. Moreover, since
they are heavy, the top and the W from their decay will be significantly boosted so that they will transmit
their direction to their decay product. In the case of T5/3, therefore, the leptons will preferentially be
back to back in the transverse plane, as shown in figure 12. Notice that the leptons tend to be separated
in the transverse plane also for the B, due to the fact that the B and the leptonic top in the single
production diagram preferentially go in opposite transverse directions. This feature is however less sharp
for the B and can be used for the identification of the partners. The ratio between opposite lepton pairs
and the aligned ones, R∆ϕ

ll = (#∆ϕll > 2.5)/(#∆ϕll < 1.0), is reported in table 7 and seems a promising
observable to distinguish among the partners.

Mass: Let us now discuss some strategies to measure the top partners mass. The first method that
could be employed is based on the “mT2–assisted” missing momenta reconstruction proposed in [35],
which is suited for our case since the only sources of /ET are the two neutrinos from the W decays. This
is based on the possibility of reconstructing the neutrino’s momenta, and therefore also the W ′s, in the
events which lie close to the mW threshold of the mT2 distribution of figure (6), and once these are known
the top partners could be reconstructed both in the single and pair production cases (see figure 1) by
reconstructing their decay products. In all cases we need to identify a b quark not belonging to a hadronic
top, and for the B we also need to establish which of the reconstructed W originates from a semi-leptonic
top. This could be achieved by requiring the b+W invariant mass to be close to mt. We will not study
this interesting possibility in detail, but we will rather describe other methods to measure the top partner
mass based on more standard observables.

For the T5/3, two strategies can be employed. If it is pair produced, the T5/3 which produces the leptons
is accompanied by a second T5/3 with hadronic decay (see figure 1). The latter can be reconstructed and
its mass measured as proposed in [21]. A second method, not based on pair production and therefore
suited also for high masses where the pair production cross–section is low, is based on the usual transverse
mass mT [36], extended to more than two particles

mT =

√(∑
i

pT i

)2

−
(∑

i

~pT i

)2

, (9)
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MT = 1.0 TeV, MB = 0.8 TeV
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Figure 13: mT (T5/3) and mT2(B) distributions constructed as defined in the text, with respectively
∆ϕll ≷ 2.5. These plots show the results only for the l+l+ channel after medium cuts. b tagging efficiency
is taken into account. We notice how well the ∆ϕll selection works. For the mT (T5/3) we look for a peak
followed by a threshold at MT , while for mT2(B) we observe for a sharp decrease at MB . It seems that
all masses could be extracted.

where the sum will run over i = /ET , L1, L2, b, the b being defined as a b-jet (identified with an efficiency of
εb ≈ 0.5) not belonging to the hadronic top. Our mT is an underestimate of the true T5/3 transverse mass,
since the sum of the neutrinos transverse energies has been replaced with /ET = |/~ET | = |~pT (ν1)+~pT (ν2)| ≤
|~pT (ν1)|+ |~pT (ν2)|. The central relation mT < MT is therefore satisfied and we can use the end–point of
the mT distribution to measure the T5/3 mass. The main background which affects this distribution is the
other partner, we can however obtain a cleaner sample of T5/3 events by the cut ∆ϕll > 2.5 (see figure
12). We will describe a concrete example of this method in the following subsection.

In the case of the B, and for single production, we can use the mT2 variable introduced above (eq. (8)),
but in a non-standard way since we will apply it to a system of non–degenerate particles, the B and the
leptonic top (see figure 1). To assign each lepton to the right leg we will use that the one coming
from the decay of the B will often be the hardest one (for MB = 1.0 TeV this is true the 83% of the
cases). The hardest lepton will therefore be combined with the hadronic top, reconstructed as discussed
above, and constitutes the first visible decay product . Therefore, in the notation of eq. (8), we have
q1 = p(L1) + p(hadronic top). For the second particle we require a b jet (paying again an efficiency
εb ≈ 0.5) and we combine it with the second lepton: q2 = p(L2) + p(b). The end–point of the mT2

distribution is the heaviest of the two decaying particles, namely MB . The biggest background for the
MB determination is the T5/3 contribution, which can be lowered by selecting events with ∆ϕll < 2.5, see
figure 12.

18



Example: The methods described in this section should allow to easily distinguish the situations in
which only the B or only the T5/3 are present, and to measure their mass. In order to test our abil-
ity to disentangle the B and T5/3 effects in more subtle situations, we consider now the case in which
MT = 1.0 TeV and MB = 0.8(1.2) TeV and λT,B = 3. We will see that the identification of the two
particles is more difficult but still possible. The total cross-section after cuts for the signal is 12.2 fb
(5.0 fb), while for the background we have 2.5 fb, which leads to Ldisc = 490 pb−1 (2.4 fb−1). The differ-
ent mass distributions are shown in figure 13, they indicate that it should be possible to extract the mass
of both exotic quarks even in these intermediate situations using the different transverse semi-leptonic
mass distributions defined above.

Coupling constants: If only one partner is present, its nature could be established and its mass
measured in the way we have discussed. Once this is done, its coupling constant could be extracted from
the charge asymmetry, see figure 8. When both partners are present, we will still be able to measure
their mass, but even when the latter is known one more observable will be needed, on top of the charge
asymmetry, to measure their couplings. One possible strategy would be to measure the charge asymmetry
(or better, the cross–section difference) for the two sets of events with ∆ϕll ≶ 2.5. Since we have already
seen that the transverse angular separation is (for MT,B ∼ 1.0 TeV, at least) an efficient criterion for
separating the two contributions, the two observables will show different sensitivities to λT and to λB .
This is shown in figure 14.
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Figure 14: Charge asymmetry for events with ∆ϕll > 2.5 (rather T5/3 like) and ∆ϕll < 2.5 (rather B like),
for MT = MB = 1.0 TeV and varying λT , λB . The bigger λ, the larger asymmetry since single production
is enhanced. The two points with only T5/3 or B with λB,T = 3, and the two points with different values
of MB , described in the example above, are also shown. We see that these two variables have distinct
dependence in λT , λB and could therefore in principle be inverted to measure them independently.
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5 Lower beam energy

In our analysis we have assumed the LHC to work at its design center–of–mass energy of
√
S = 14 TeV,

and there is no reason to doubt that this energy will be reached at some stage of the LHC program. It is
known, however, that the program will start with lower beam energies, so that it is worth discussing how
our result will be modified in that case. Two mechanisms are at work when lowering the beam energy.
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Figure 15: Dependence on the beam energy of the cross section for single & pair B (MB=1.0 TeV), tt̄
and W±W±. They are normalized to their 14 TeV value. We observe that the higher the intrinsic scale
is, the more it is suppressed at low beam energy.

First, all the cross-sections scale down, but those with a high intrinsic scale decrease faster as figure 15
shows. For instance, while single B(1.0 TeV) goes down by a factor ≈ 4.0, tt̄ only decreases of a factor
≈ 2.3 for

√
s = 14 → 10 TeV. Second, since our cuts are only based on the hard transverse dynamics

resulting from the decay of the partners, their efficiency on the signal will only depend on the mass and
not on the beam energy.
For the background, on the contrary, the efficiency of the cuts decreases with the beam energy since hard
background events which could pass the cuts become less frequent. As an example, medium cuts on tt
have an efficiency of 2.6 · 10−2 at 14 TeV and of 1.7 · 10−2 at 10 TeV.

It is therefore not worth modifying the cuts for lower energies. The discovery luminosities at 10 TeV
energy in the case MB = MT and λT,B = 3, presented in table 8, are obtained with the same cuts discussed
in section 3. The table shows that for MB = MT = 0.5 or 1.0 TeV the discovery will be relatively easy,
and that even for MB = MT = 1.5 TeV discovery will be possible if the entire programmed luminosity of
300 fb−1 will be collected at this energy.

Under the assumption that enough luminosity will be collected, the phenomenological study of the
top partners and the measure of couplings and masses will still be possible, we have checked that the
discussion of section 4 is still valid, for 10 TeV energy, with minor numerical modifications.

Mass, [TeV] σ, [fb]
Ldiscovery, [fb−1] # events

signal background signal background
0.5 69.8 10.9 0.072 5 0
1.0 1.64 0.65 5.5 9 3
1.5 0.11 0.092 210.0 22 19

Table 8: Cross-sections and discovery luminosity for MB = MT = 0.5, 1.0 & 1.5 TeV, with a beam energy
at 10 TeV. The cuts used are the same as at 14 TeV, which leads to similar signal over background and
hence lower significance. They are nevertheless still relevant.
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6 Conclusions

We have studied the possibility of observing heavy partners of the top quark at the LHC, in the channel
of same–sign dileptons. The top partners constitute a robust consequence of the partial compositeness
hypothesis, which is realized in the compelling 5d (or 5d–inspired) models of strong–sector EWSB. We
have seen that, under wide and motivated assumptions, the top partners are expected to couple strongly
to the top quark through a vertex which also contains a longitudinal W boson, and that this vertex is
responsible for a sizable single production cross–section. The latter dominates, for high top partner mass,
over the QCD–mediated pair production and therefore extends the discovery reach of the LHC. We have
found that the discovery will be possible up to at least 1.5 TeV in almost the entire expected parameter
space.

Top partners below 1.5 TeV are, as discussed in the Introduction, very likely to be present in both the
Higgsless and in the composite Higgs scenarios, so that the one of same–sign dileptons is found to be a
very promising channel in which these models could be tested at the LHC. For the composite higgs case, in
which all other new states are expected to be heavier than the top partners which lie in the [0.5, 1.5] TeV
range, the signal we have studied could constitute the most accessible experimental prediction.

We have also discussed how, after the discovery of an excess, the presence of the top partners could
be detected and their masses and couplings measured. Single production plays, also in this case, a major
role since it allows to distinguish the partners from generic colored heavy fermions and to measure their
couplings.

The above results have been established by performing a quite detailed simulation, using the Mad-
Graph/MadEvent tools with showering performed with Pythia and the emission of extra partons taken
into account by the MLM matching prescription. However, no genuine higher order corrections have been
taken into account while these are expected to be sizable [37] both for the signal and for the background.
Also, we have not included detector effects apart from charge misidentification and fake /ET . A more
detailed analysis, for which we hope our results constitute a valid starting point, should clearly include a
full detector simulation and the above–mentioned radiative corrections should be taken into account.
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