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Abstract

T lymphocytes (T cells) are key components of the adaptive immune system. These cells
are able to recognize an enormous variety of pathogens thanks to the great specificity of their
trans-membrane proteins, the T cell receptors (TCRs). TCR diversity is created during T cell
maturation in the thymus by somatic gene-segment rearrangements and random nucleotide ad-
ditions or deletions. Out of all possible T cell clones bearing specific TCRs, only a small frac-
tion are successfully released in peripheral blood as the result of clonal selection. Among the
selected clones, some self-reactive cells with the capacity to induce an auto-immune disease are
erroneously released in periphery. To compensate for this functional flaw, the immune system
has developed peripheral control mechanisms. One of them are regulatory T cells that are spe-
cialized in the control of harmful self-reactive clones. In this thesis, we combine mathematical
modeling and experimental data to address immunological questions related to the dynamics
of regulatory T cells and to the measurement of the structural diversity of T cell receptors. The
dissertation is split into two main parts.

In the first part, we model the lifelong dynamics of human regulatory T cells (Tregs). De-
spite their limited proliferation capacity, Tregs constitute a population maintained over the entire
lifetime of an individual. The means by which Tregs sustain a stable pool in vivo are controver-
sial. We define a novel mathematical model that we use to evaluate several biological scenarios
about the origins and the proliferation capacity of two subsets of Tregs: precursor CD4+CD25+-
CD45RO− and mature CD4+CD25+CD45RO+ cells. The lifelong dynamics of Tregs are de-
scribed by a set of ordinary differential equations, driven by a stochastic process representing
the major immune reactions involving these cells. Most of the parameters are considered as
random variables having an a priori distribution. The likelihood of a scenario is estimated us-
ing Monte Carlo simulations. The model dynamics are validated with data from human donors
of different ages. Analysis of the data led to the identification of two properties of the dynam-
ics: (a) the equilibrium in the CD4+CD25+ Tregs population is maintained over both precursor
and mature Tregs pools together, and (b) the ratio between precursor and mature Tregs is inverted
in the early years of adulthood. Then, using the model, we identified four biologically relevant
scenarios that have the above properties: (1) if the unique source of mature Tregs is the antigen-
driven differentiation of precursors that acquire the mature profile in the periphery, then the
proliferation of Tregs is essential for the development and the maintenance of the pool; if there
exist other sources of mature Tregs, such as (2) a homeostatic regulation, (3) a thymic migration,
or (4) a peripheral conversion of effectors into Tregs, then the antigen-induced proliferation is
not necessary for the development of a stable pool of Tregs.

In the second part of the dissertation, we address the general question of TCR diversity by
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improving the interpretation of AmpliCot, an experimental technique that aims at the diversity
measurement of nucleic acid sequences. This procedure has the advantage over other cloning
and sequencing techniques of being time- and expense- effective. In short, a fluorescent dye
that binds double-stranded DNA is added to a sample of PCR-amplified DNA. The sample is
melted, such that the DNA becomes single-stranded, and then re-annealed under stringent con-
ditions. The annealing kinetics, measured in terms of fluorescence intensity, are a function of
the diversity and of the concentration of the sample and have been interpreted assuming second
order kinetics. Using mathematical modeling, we show that a more detailed model, involving
heteroduplex- and transient-duplex formation, leads to significantly better fits of experimental
data. Moreover, the new model accounts for the diversity-dependent fluorescence loss that is
typically observed. As a consequence, we show that the original method for interpreting the re-
sults of AmpliCot experiments should be applied with caution. We suggest alternative methods
for diversity extrapolation of a sample.

Keywords: Mathematical modeling, regulatory T cells (Tregs), T cell receptor (TCR) diver-
sity, AmpliCot, ordinary differential equations, likelihood estimation.
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Résumé

Les lymphocytes T (cellules T) sont des éléments clés du système immunitaire adaptatif.
Ces cellules reconnaissent une large variété de pathogènes grâce à la spécificité de leurs pro-
téines trans-membranaires, les récepteurs des cellules T (TCR). La diversité des TCR est créée
lors de la maturation des cellules T dans le thymus par des réarrangements de segments de
gènes et l’ajout ou la suppression aléatoire de nucléotides. Parmi tous les clonotypes possible-
ment générés ainsi, seule une petite fraction est sélectionnée pour sortir du thymus et rejoindre
les tissus périphériques en tant que population fonctionnelle. Cependant, parmi les clones sélec-
tionnés, certaines cellules auto-réactives, ayant la capacité d’induire une maladie auto-immune,
sont libérées dans la périphérie. Pour compenser cette faille fonctionnelle, le système immuni-
taire a développé des mécanismes de contrôle périphérique dont font partie les lymphocytes T
régulateurs. Ces cellules sont en effet spécialisées dans le contrôle des clones autoréactifs pos-
siblement nuisibles. Cette thèse combine la modélisation mathématique à des données expéri-
mentales pour répondre à des questions immunologiques concernant la dynamique des cellules
T régulatrices et l’estimation de la diversité structurelle des TCR. La dissertation consiste en
deux parties principales.

Premièrement, nous étudions la dynamique des cellules T régulatrices (Tregs). En dépit de
leur capacité de prolifération limitée, ces dernières constituent une population qui persiste pen-
dant toute la vie d’un organisme humain. Les mécanismes par lesquels les Tregs se renouvellent
et maintiennent une réserve stable in vivo sont controversés. Nous définissons un modèle ma-
thématique afin d’évaluer plusieurs scénarios biologiques concernant les origines et la capacité
de prolifération de deux sous-ensembles de Tregs : les cellules Tregs précurseurs (CD4+CD25+-
CD45RO−) et matures (CD4+CD25+CD45RO+). La dynamique des Tregs est décrite par des
équations différentielles ordinaires couplées à un processus stochastique qui simule les réac-
tions immunitaires majeures impliquant ces cellules. La majorité des paramètres est considérée
aléatoire, ayant une distribution déterminée à priori (approche du type Bayesien). Le rapport
de vraisemblance entre deux scénarios est estimé par des simulations Monte Carlo. Les trajec-
toires du modèle sont validées par des données expérimentales provenant de donneurs humains
sains de différents âges. L’analyse des données a permis l’identification de deux propriétés : (a)
l’équilibre dans la population des Tregs opère sur les deux sous-populations de cellules précur-
seurs et matures prises ensemble, et (b) le rapport entre les précurseurs et les Tregs matures est
inversé au cours des premières années de l’âge adulte. À l’aide de notre modèle, nous avons
identifié quatre scénarios biologiquement réalistes qui possèdent les propriétés précédentes :
(1) si la seule source de Tregs matures est la différentiation engendrée par un stimulus antigé-
nique des précurseurs dans les tissus périphériques, alors la prolifération des Tregs est essentielle
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au développement et au maintien de leur population ; s’il existe d’autres sources de Tregs ma-
tures, telles que (2) la prolifération homéostatique, (3) la migration du thymus, ou (4) la trans-
formation de cellules effectrices en Tregs, alors la prolifération en réponse à une stimulation
antigénique n’est pas nécessaire au développement d’un bassin stable de Tregs.

Dans la deuxième partie de la thèse, nous abordons la question générale de la diversité
des TCR en améliorant l’interprétation d’AmpliCot, une technique expérimentale destinée à
la mesure de la diversité des séquences d’acides nucléiques. Cette procédure présente l’avan-
tage par rapport aux autres techniques de clonage et de séquençage d’être plus efficace en
termes de coût et de temps. En bref, un colorant fluorescent, qui lie l’ADN double-brin, est
ajouté à un échantillon d’ADN amplifié par PCR. L’échantillon est fondu, de sorte que l’ADN
devient simple-brin, puis re-associé dans des conditions expérimentales strictes. La cinétique
de ré-association, mesurée en termes d’intensité de fluorescence, est une fonction de la diver-
sité et de la concentration de l’échantillon. Elle a été interprétée en assumant une cinétique
du second ordre. À l’aide de modélisation mathématique, nous montrons qu’un modèle plus
détaillé, comportant des hétéroduplexes et des complexes transitoires, reproduit de façon plus
fidèle les données expérimentales. En outre, le nouveau modèle permet d’expliquer une perte
de fluorescence généralement observée et qui est positivement corrélée à la diversité. En consé-
quence, nous montrons que la méthode d’interprétation des résultats expérimentaux, suggérée
initialement, devrait être appliquée avec prudence. Nous suggérons des méthodes alternatives
d’extrapolation de la diversité d’un échantillon.

Mots clés : Modélisation mathématique, lymphocytes T régulateurs (Tregs), diversité des ré-
cepteurs des cellules T (TCR), AmpliCot, équations différentielles ordinaires, estimateur de
vraisemblance.
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Chapter 1
General Introduction

In this thesis, we address two immunological questions by using mathematical modeling:
the lifelong dynamics of regulatory T cells and the diversity measurement of a T cell receptor
sample. Both questions are treated independently, but they are linked on general immunological
grounds. This introduction provides the necessary immunology background and bridges the
gap between both topics. A detailed introduction related to each question can be found in the
corresponding chapter.

1.1 Adaptive Immunity: from Diversity to Self-Tolerance

The immune system is composed of several sophisticated and efficient defense mechanisms
that have evolved to protect living organisms against pathogen attacks. The adaptive immune
system is specific to vertebrates and has the ability, thanks to very specialized cells, to recognize
and remember a particular invader, while it is able to tolerate “self".

One of the main actors of adaptive immunity are T lymphocytes. Also called T- or white
blood cells, these cells exist in various types and perform different tasks. For example, cyto-
toxic (or killer) T cells eliminate virus-infected cells by inducing cell death of the target; helper
T cells are responsible for orchestrating an immune response by secreting soluble factors, cy-
tokines, which help and control the activation of killer T cells.

A key feature of adaptive immunity is its diversity that renders possible an appropriate
response to practically any pathogen. One way to achieve this adaptability is through the T

cell receptor (TCR), a cell surface protein that allows T cells to recognize specific antigens.
The TCR-mediated recognition requires that antigens are processed and presented in the form
of peptides on self-MHC molecules of antigen presenting cells (APCs). In order to be able
to mount an immune response to any pathogen, our bodies contain a large number of T cells
with distinct TCRs. Immature T cells are produced in the bone marrow and their development
continues in the thymus (hence the name “T cells"). There, immature T cells create their
unique TCRs that need to pass through a series of “security checks" before cells are released in
the peripheral blood as functional naive lymphocytes. The “security checks" are named clonal
selection (Burnet, 1959) and are crucial for the good functioning of the immune system, as one
of their goals is to delete the self-reactive cells that may induce auto-immune diseases.
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CHAPTER 1 : General Introduction

1.1.1 Generation of TCR diversity

The T-cell receptor is a heterodimer, i.e., a protein composed of two different chains. Ac-
cording to the type of these chains, T cells are divided in two families: αβ T cells are those
that bear the α- and β- TCR chains, and γδ T cells, those composed of γ- and δ- chains. αβ
T cells are further divided in two subsets based on their expression of the CD4 or CD8 surface
molecules (or co-receptors). CD8+ T cells are the cytotoxic T cells. They recognize peptides
presented on MHC class I molecules and kill target cells bearing antigens recognized by their
TCR through intercellular contact. CD4+ T cells are the helper T cells. They recognize pep-
tides presented on MHC class II molecules and respond to antigen by releasing cytokines that
in turn help other immune cells to combat pathogens.

Both α- and β- chains of the TCR are partitioned into a constant (Cα or Cβ) and a variable
(Vα or Vβ) regions. The constant regions are anchored in the cell membrane, whereas the
variable regions are those that enter in contact with the MHC-peptide complex. Each TCR
chain is encoded by multiple gene segments and specificity is created by somatic (random)
rearrangement of these segments. The result of this rearrangement is a DNA sequence unique
to a cell and its progeny. A large number of configurations, or clonotypes, is possible and a
small number of each clonotype is released in the peripheral blood from the thymus. The notion
of diversity used throughout this thesis refers to the number of distinct TCR clonotypes that
are part of the peripheral blood repertoire. This is also stated as the structural diversity.

The theoretical number of TCR gene combinations is about 1018 in humans (Janeway et al.,
2005). However, only a small subset of all these possible rearrangements are effectively found
in peripheral blood: about 2.5 × 107 αβ TCRs in humans (Arstila et al., 1999). The reasons for
the large disparity between the theoretical and the effective numbers are multiple. First, there
are about 1012 T cells in an adult male (Clark et al., 1999), thus there would be a space constraint
if all successful TCR rearrangements were exported from the thymus. Second, clonal selection
eliminates a large proportion of the immature thymocytes; only about 3% of all thymocytes are
released in the periphery (Sompayrac, 2003). Third, the above diversity estimate (2.5 × 107)
is only a lower bound; currently, the diversity of human T cells is unknown. However, it has
been shown that a loss of repertoire diversity (with respect to a healthy state) is associated
with disease or aging. Studying the repertoire diversity is hence important for understanding
pathological states.

Several experimental techniques aim at the measurement of the structural TCR diversity of
a repertoire sample. For example, Immunoscope (or Spectratype) gives a qualitative insight
of the repertoire’s shape in terms clonal sizes (Currier and Robinson, 2001; Pannetier et al.,
1993); high-throughput DNA sequencing exhaustively enumerates the clonotypes of a sample,
thus providing a more detailed picture of the repertoire (Mardis, 2008; Shendure and Ji, 2008).
AmpliCot is an alternative experimental technique that allows the sample diversity measure-
ment through quantitation of the re-hybridization speed of denatured PCR products (Baum and
McCune, 2006). This elegant approach has the advantage over the cloning and sequencing
methods to be time- and expense- effective. However, in order to obtain accurate diversity
estimates, the assay should be performed under very stringent experimental conditions.

2



1.1 Adaptive Immunity: from Diversity to Self-Tolerance

1.1.2 Clonal Selection

Clonal selection occurs in two steps. The first step is positive selection. As T cells recognize
processed peptides presented on self-MHC molecules, TCRs need to be compatible with self
MHC-peptide complexes. At the stage of positive selection, cells whose TCRs do not have
a sufficient binding affinity (or equivalently, avidity) with self MHC-peptide complexes are
eliminated. The second step is negative selection. Most of the self-reactive clones, which have
a too strong affinity to self MHC-peptide complexes, are eliminated at this stage. Only a small
proportion of all produced T cells survive positive and negative selection (Figure 1.1A).
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Figure 1.1: Clonal selection: the link between TCR diversity and regulatory T cells. T cells
are selected in the thymus according to their TCR. Only a small number of maturating T cells
survive positive and negative selection and are released in the peripheral blood as functional
naive lymphocytes. A: qualitative view of the clonal selection process; B: quantitative view
revealing one possible way of generating natural Tregs (the “instructive" model). According to
this model, Tregs would originate from “slightly" self-reactive thymocytes whose TCR avidity
is in the grey zone on the frontier between positively and negatively selected clones. Figure
source: panel A: from HSeT, www.iol.ch, panel B: adapted from Schwartz (2005).

However, clonal selection is not perfect. Intuitively, if cell fate is determined by the interac-
tions between TCRs and self-antigens presented on MHC molecules, then the TCR repertoire
is shaped according to the self-antigens that are presented in the thymus during the maturation
process. In view of the large amount of self-antigens, it is easy to imagine that not all self-
antigens are presented in a particular time frame, hence some self-reactive TCR clonotypes can
be released in peripheral tissues. Additional tolerance mechanisms are therefore needed to con-
trol such self-reactive cells. Among those reported, we find receptor editing (McGargill et al.,
2000) and functional inactivation (anergy) (Ramsdell and Fowlkes, 1990), which both occur
in the thymus. Despite these central tolerance mechanisms, some self-reactive cells still es-
cape clonal selection and find their way through to periphery. Fortunately, there are peripheral
tolerance mechanisms; regulatory T cells (Tregs) are one of these.
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1.1.3 Regulatory T cells

Regulatory T cells (Tregs) are a subset of CD4+ helper T cells. These specialized "con-
trollers" act as antagonists to immune responses by suppressing the activation and proliferation
of CD4+ helper and CD8+ killer T cells. By this means, Tregs are involved in self-tolerance (Kim
et al., 2007), homeostasis and in the control of excessive immune reactions. Several types of
cells exhibit regulatory functions, for example the induced Tregs, the IL-10 secreting TR1 cells,
the TGFβ-secreting TH3 cells, or the adaptive Tregs. Here, we focus mainly on the so-called
naturally occurring Tregs.

Naturally occurring Tregs are identified by the surface expression of CD4, as well as by
the expression of the transcription factor forkhead box P3 (FoxP3), a negative modulator of
IL-2 transcription (Fontenot et al., 2003; Hori et al., 2003). These cells are generated in the
thymus through mechanisms that are not yet fully understood. Their development is programed
and controlled by the master regulator FoxP3 and requires high-affinity interactions between
their TCR and self MHC-peptide complexes (Picca et al., 2006). Similarly to the commitment
to CD4+/CD8+ cell lineages, or the differentiation pathways of effector/memory cells, two
models of thymic Tregs generation have been proposed: a deterministic “instructive" model
(Jordan et al., 2001; Lio and Hsieh, 2008; Modigliani et al., 1996) and a “stochastic" selection
model (van Santen et al., 2004). In the first, immature thymocytes that are potentially self-
reactive commit to the regulatory lineage. The concept can be visualized by considering the
distribution of TCR avidities, result of the TCR gene segment rearrangements (Figure 1.1B).
The low avidity cells are eliminated by positive selection, whereas the high avidity cells are
deleted by negative selection. The selected naive (non-regulatory) T cells have TCR avidity that
is neither too high, nor too low. According to the instructive selection model, Tregs would have
TCR avidity in the high end of the avidity spectrum because they originate from potentially self-
reactive clones (Schwartz, 2003). In the stochastic selection model, the Tregs lineage conversion
signal would be rather stochastic, independent of TCR avidity.

Tregs ontogeny therefore suggests that these cells are either created as a separate lineage
through unknown factors independent of TCR specificity (stochastic selection), or they origi-
nate from a thymocyte ancestor common to conventional CD4+ T cells, where TCR specificity
plays a key role (instructive selection). These two distinct pathways affect the way Tregs are
viewed in terms of proliferation capacity. Indeed, the paradigm of central tolerance in the thy-
mus states that self-reactive clones are either deleted (Burnet, 1959), or rendered functionally
inactive (anergic) (Ramsdell and Fowlkes, 1990). If the instructive selection model is accepted,
it would be logical to think that Tregs are anergic cells, thus have a limited proliferation capac-
ity. If, instead, the stochastic selection model is accepted, there is no reason to think that Tregs

would have an impaired proliferation capacity. The dichotomous nature of their ontogeny is
probably at the source of what we call the Tregs “proliferation controversy".

A major challenge in current studies of regulatory T cells is the lack of cell surface mark-
ers proper to this population. The expression of the transcription factor FoxP3, which identi-
fies Tregs, is intracellular and consequently necessitates the destruction of cells for detection.
Moreover, FoxP3 does not solely identify thymus-derived Tregs, but also cells that have ac-
quired suppressive phenotype and functions in the periphery (Curotto de Lafaille et al., 2004;
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Vukmanovic-Stejic et al., 2006) 1. The cell surface marker mostly used hitherto is CD25, the
α-chain of the IL-2 receptor, which has been shown to be constitutively expressed on Tregs

(Baecher-Allan et al., 2001; Miyara et al., 2009b; Sakaguchi et al., 1995; Taams et al., 2002).
However, CD25 is also expressed transiently on activated (non-regulatory) T cells, which ren-
ders the isolation of Tregs difficult. Several other markers have been associated with naturally
occurring Tregs, notably high levels of CTLA-4 (cytotoxic T-lymphocyte associated molecule-
4), CD62L, CCR7, GITR (glucocorticoid-induced TNF receptor) and low levels of CD127 (the
alpha-chain of the IL-7 receptor) (Codarri et al., 2007; Liu et al., 2006; Seddiki et al., 2006a).
Currently, the combination of high or low expression levels of several of the above surface
proteins are used to detect Tregs within a reasonable degree of purity (reviewed in Sakaguchi
et al. (2010)). Hitherto, a typical experimental approach consists in isolating CD4+CD25+ T
cells, performing the desired experiment, and verifying a posteriori the enrichment of Tregs in
the sample by immobilizing the cells.

Robust Treg cell identification is one among many unresolved issues related to these cells.
Although important advances have been recently made, the main molecular mechanism(s) of
Tregs-mediated suppression in humans remain elusive. It is established that Tregs need to be
activated through their TCR to be functionally suppressive and the strength of TCR stimulation
influences the effectiveness of suppression. Moreover, suppression can be contact-dependent
or cytokine-mediated (see Sakaguchi et al. (2010) for a review). Despite the remaining open
questions, the broad range of clinical applications of regulatory T cells (Miyara et al., 2009a;
Safinia et al., 2010; Trzonkowski et al., 2009) is rendering this research area very active and
intriguing.

1.2 Mathematical Modeling in Immunology

With the modern advances of experimental techniques, a large amount of immunological
data is created. The complexity of interactions between individual components and the dif-
ficulty to isolate influencing factors makes the use of mathematics challenging, but valuable.
Mathematical models in immunology exist since several decades. Like any other research field
where two or more disciplines are crossing, the challenges of modeling a biological phenom-
ena are multiple. The size of a living system, the number and the complexity of interactions
between individual components is such that tractable and computationally efficient models are
difficult to derive. Nevertheless, mathematical models have been applied to immunology since
more than 50 years (Louzoun, 2007).

In this thesis, we develop mathematical models in order to gain biological insight and im-
prove the interpretation of T-cell-related experimental data. The dissertation is divided in two
parts, each part addressing the following immunological questions: (I) the in vivo dynamics
of human regulatory T cells; (II) the measurement of the structural diversity of a TCR sample
with the AmpliCot technique.

1. Moreover, a non-regulatory FoxP3-expressing CD4+ T cell population has been recently discovered in the
peripheral blood of humans (Miyara et al., 2009b).
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1.3 Dissertation Outline

The dissertation is structured as follows. In Chapter 2, we define a generic model that
describes the lifelong dynamics of regulatory T cells. We use our model to address the Tregs

proliferation controversy. In that perspective, we derive from the generic model several bio-
logically plausible scenarios about the origins and the proliferation capacity of these cells. The
model scenarios are challenged against human ex vivo data and some of them are discarded.

In Chapter 4, we address the general question of TCR diversity by improving the interpreta-
tion of AmpliCot, an experimental technique that aims at the diversity measurement of nucleic
acid sequences. We use mathematical modeling to describe AmpliCot experimental data. Once
again, we evaluate two model variants by fitting them to data. Practical and methodological
conclusions are then drawn.

Chapter 3 and Chapter 5 are auxiliary chapters that contain theoretical and analytical results
related to the Tregs and the AmpliCot models respectively. We make concluding remarks in
Chapter 6.
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Dynamics of Regulatory T cells





Chapter 2
Lifelong Dynamics of Human CD4+CD25+
Regulatory T Cells

2.1 Introduction

As of today, two developmental pathways of human regulatory T cells in vivo have been
identified (Sakaguchi, 2003): naturally occurring thymus-derived Tregs (Fritzsching et al., 2006;
Hoffmann et al., 2006; Seddiki et al., 2006b; Wing et al., 2002) and adaptive or induced Tregs,
derived from non-regulatory CD4+CD25−FoxP3− T cells (Kretschmer et al., 2005; Vukmanovic-
Stejic et al., 2006; Walker et al., 2003a). Naturally occurring Tregs originate in the thymus and
are released in the periphery with a naive phenotype (Cupedo et al., 2005; Seddiki et al., 2006b;
Takahata et al., 2004; Wing et al., 2002, 2003). They are identified as CD4+CD25+CD45RO− T
cells and will be called “precursor" Tregs throughout this chapter 1. Once precursors encounter
their cognate antigen, they acquire a suppressive capacity and a memory phenotype (Fritzsching
et al., 2006). We call these differentiated cells “mature" Tregs. Adaptive Tregs are derived from
rapidly proliferating activated-effector or memory CD4+CD25− T cells that acquire the per-
manent expression of CD25 and the suppressive function in the periphery (Vukmanovic-Stejic
et al., 2006; Walker et al., 2003a). Because they have experienced antigen, these cells have
a mature profile and express the memory phenotype CD45RO. It is important to remark that
there is no difference regarding the surface markers characterizing both types of mature Tregs

and consequently, one can not distinguish both Tregs origins using fluorescent techniques. The
same observation can be made about T-cell receptor excision circles (TREC): Tregs from both
origins have similar decreased TREC content (Kasow et al., 2004). Thymus-derived regulatory
cells divide during clonal selection in the thymus and in the periphery, whereas activation-
induced regulatory cells come from rapidly proliferating non-regulatory T cells and therefore
have decreased TREC content.

In vivo studies of human Tregs have shown that the number of precursors decreases signifi-
cantly with age (Seddiki et al., 2006b; Valmori et al., 2005), whereas the number of mature Tregs

increases in elderly individuals (Gregg et al., 2005). Thymic involution, together with the fact

1. These cells are also named naive Tregs (Miyara et al., 2009b).
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that CD4+CD25+CD45RO+ mature regulatory T cells are known to be non-proliferating, intro-
duces the question of how is developed and maintained a stable pool of Tregs throughout life.
Different hypotheses are evoked in Akbar’s opinion paper (Akbar et al., 2007); the question of
proliferation is central. The first hypothesis claims that precursor CD4+CD25+CD45RO− cells
are able to proliferate (Klein et al., 2003; Walker et al., 2003b) and even though the thymic
involution reduces the input of newly produced precursors with age, these cells are the main
reservoir of mature Tregs. The second hypothesis suggests that both precursor and mature Tregs

are non-proliferating but although mature Tregs are sensitive to death because of their high levels
of CD95 (Fritzsching et al., 2006; Taams et al., 2001), the fact that precursors are apoptosis-
resistant suffices to sustain a stable pool of mature Tregs. Finally, the third hypothesis points out
the presence of an external source of mature Tregs, derived from rapidly proliferating effector
CD4+CD25− T cells (Taams et al., 2001; Vukmanovic-Stejic et al., 2006). Thus, there is a
controversy about the mechanisms by which Tregs regenerate throughout the lifetime of indi-
viduals. The objective of our study is to evaluate the above biological hypotheses by the means
of a mathematical model and to measure their effect on the development and maintenance of a
pool of human Tregs.

A major difficulty encountered in mathematical modeling of biological systems is dealing
with parameter values. The more detailed the model is, the more parameters it involves and its
behavior can be completely different according to the values taken by the latter. Good parame-
ter estimates exist in some cases, but it is often difficult to build an experiment that allows for
their direct measurement. In the mathematical model presented hereafter, we employ a mod-
eling technique that alleviates the parameter estimation problem by considering parameters as
random variables having a priori distributions (as in Bayesian approaches). This approach
allows us to evaluate simultaneously several values, to produce results that depend little on
the exact values, and therefore to diminish the probability of errors due to wrong parameter
estimates.

Using the above technique, we define a generic model describing the lifelong dynamics
of Tregs. We attempt to include in it all the actual knowledge about the population dynamics
of regulatory T cells, while keeping the model as simple as possible. We consider all events
that affect the population size of Tregs: immune reactions to self or foreign antigens, the home-
ostatic activity and the external input – from the thymus or from the non-regulatory effector
CD4+CD25− T cell pool. We then implement the above-mentioned hypotheses about the ori-
gins and proliferation capacity of Tregs. In order to validate the model, we compare it to human
data consisting in measurements of Tregs as a function of age. We first study the expected
model behavior where the stochastic parameters take the average value of their a priori distri-
butions. Then, we evaluate the performance of the model with random parameters. Its behavior
is evaluated for several values inside the given parameter range and the density of trajectories
is estimated. This density leads to the definition of the likelihood of a model scenario, used to
formally reject the scenarios that are unable to fit the data.

2.1.1 Mathematical Models of Tregs: State of the Art

As of today, a certain amount of mathematical models of regulatory T cells can be found
in the literature. Most of them analyze the suppression mechanisms of these cells and their
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interactions with other cell types and cytokines. In this section we give an overview of the cur-
rently existing work. For each cited study, in addition to the main findings, the methodological
approach is highlighted. We also mention whether Tregs were considered as proliferative or not.

Crossregulation Model of Immunity (Tregs and APCs)

The most extensively studied and developed model of regulatory T cells is certainly the
Crossregulation model of immunity (León et al., 2000). In their original paper, León et al.
(2000) test several suppression mechanisms by considering populations of antigen presenting
cells (APCs), regulatory and conventional T cells. The authors postulate that the cell-mediated
suppression occurs through the formation of multicellular conjugates of T cells and APCs.
Three suppression scenarios are examined: (1) competition between Tregs and conventional T
cells for conjugation sites on APCs; (2) proliferation inhibition of conventional T celly by Tregs

on conjugates with APCs; (3) in addition to the proliferation inhibition, the growth of Tregs

is hypothesized to be dependent on conventional T cells. The model is described by ordi-
nary differential equations (ODE) and a quasi-steady state assumption is applied to conjugates
(which significantly simplifies the equations). The authors identify different parameter regimes,
according to which the equilibrium points might change (and bi-stability appears). Using a
phase-plane and bifurcation analysis, each possible scenario is related to existing experimental
observations (qualitatively). To account for the outcome of adoptive transfer experiments, the
authors conclude that the correct suppression model should exhibit bi-stability, leading to a
tolerant and an auto-immune steady state, where either Tregs or effectors dominate. The third
suppression model is retained as most plausible: active growth suppression of effectors by Tregs

and maintenance of Tregs dependent on effectors (through IL-2).
The same model is then applied to the analysis of experimental data of linked suppression

in vitro (León et al., 2001). The experimental set up consists in APCs and target conventional
T cells that are co-cultured with or without Tregs. Target cells are stimulated and the population
expansion is measured. It is hypothesized that when conjugated with Tregs simultaneously, the
proliferation of conventional T cells is reduced. The inhibition index is defined as the ratio
between the cell counts in a culture containing Tregs and those in a culture without Tregs. In this
model, Tregs are assumed to be non-proliferative and two mechanisms of suppression are ex-
amined: simple competition for APC conjugation sites versus competition + active inhibition.
The authors observe that the inhibition index is mainly determined by the number of regulatory
cells per APC and is insensitive to the number of target (suppressed) cells. However, they fail
to fit the model to the experimental data and put forward several explanations, among which
the possibility that Tregs proliferate in the presence of IL-2-producing conventional T cells.

In the subsequent study, León et al. (2003) further develop the Crossregulation model to
add thymic input and the simultaneous peripheral dynamics of several T cells clones. This is
done by simulating clonal selection. New clones are generated stochastically and the equations
describing their dynamics are appended to the existing ODE system. If the population size of a
particular clone vanishes, its corresponding equation is removed. The system is then perturbed
in order to simulate two types of events: the introduction of a foreign antigen and its clearance.
After each external perturbation, the new steady state is computed. This is different than our
system, where immune reactions are internally generated by the stochastic process. The authors
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test the effect of thymectomy and observe that diversity is lost by competitive exclusion.

The Crossregulation model is used by León et al. (2004) to study the correlation between
the incidences of autoimmune diseases and infection. An inverse correlation is revealed: the
risk of autoimmunity is the price that must be paid for assuring immune responses to pathogens.

Carneiro et al. (2005) further study an alternative self-tolerance mechanism, mediated by
the tuning of activation thresholds, which would make auto-reactive T cells reversibly "anergic"
and unable to proliferate. It turns out that this hypothesis is only partially compatible with the
qualitative observation of adoptive transfer experiments and was therefore left out.

The Crossregulation model was also applied to study tumor immunobiology. León et al.
(2007a) provide an explanation to the observation that the development of some tumors expand
regulatory T cells, whereas others do not. In a subsequent study (León et al., 2007b), the
same authors consider how these two tumor classes respond to different therapies, namely
vaccination, immune suppression, surgery, and their different combinations. Model responses
to different therapies are simulated as particular dynamical perturbations to the ODE system.

In a review paper, Carneiro et al. (2007) gather all the above facts and observations revealed
by the Crossregulation model, both theoretical and experimental, in an unifying theory in which
"the persistence and expansion of Tregs depend strictly on specific interactions they make with
APCs and conventional effector T cells." Although the importance of APCs in the function of
Tregs is largely emphasized in the Crossregulation model, throughout all the papers, the actual
dynamics of these cells are either considered as a parameter or as an externally controlled
variable. The following work brings more attention to the explicit dynamics of APCs.

Tregs and APCs

Alexander and Wahl (2010) model antigen-specific natural Tregs, together with a particular
type of self-antigen, its corresponding APCs and the responding effectors. The authors focus
on a positive feedback loop between effectors that release antigens, which are taken up by
APCs that, in turn, stimulate more effector T cells. The production of Tregs is proportional
to both effectors (IL-2 producing cells) and APCs and they act by suppressing the action of
APCs. Different suppression mechanisms are analyzed. Interestingly, the authors present both a
deterministic and a stochastic version of the same system. The ODE system reveals bi-stability,
as in most Tregs models, with a trivial (tolerance) and non-trivial (auto-immune) stable state.
The limit behavior determined by the basic reproductive ratio R0. The stochastic version of the
ODEs is derived using an approach similar to the one of Chao et al. (2004), in which the ODEs
are discretized and the populations are updated at each time step by generating Binomial or
Poisson random variables. Once again, the model is not challenged against experimental data.
One of the conclusions is that self-antigen-specific Tregs play no role in the system’s qualitative
long-term behavior, but have quantitative effects that could potentially reduce and clear an auto-
immune response. The important role of Tregs with arbitrary specificity is highlighted. Finally,
the probability of developing a chronic auto-immune disease increases with the quantity of
initial-exposure antigen or of auto-reactive effectors.
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Tregs and Cytokine Kinetics

Burroughs et al. (2006) study regulatory and auto-immune (conventional) T cells by assum-
ing that all cell interactions are realized through cytokines. In particular, the authors observe
the consequences of Tregs inhibition of IL-2 secretion. Their model is composed of resting
and activated regulatory and auto-immune T cells, as well as two cytokines: IL-2 produced
by auto-immune cells and consumed by both auto-immune and regulatory T cells, and another
cytokine, produced by tissues, consumed by Tregs only. Tregs inhibit the secretion of IL-2 and do
not produce IL-2 themselves. It is assumed that Tregs proliferate homeostatically by competing
for the tissue-secreted cytokine. In addition, these cells can also proliferate in the presence
of IL-2, but less efficiently than conventional T cells. The stability analysis of the ODE sys-
tem reveals a "control" state in which Tregs dominate and eliminate auto-immune cells, and an
"auto-immune" state in which the latter expand and escape Tregs control. The main conclusion
of this theoretical work is that the shift towards control or auto-immunity is dependent on the
efficiency of auto-immune T cells to utilize IL-2 compared to Tregs. This efficiency can be com-
pensated by auto-immune cells by an increase in their number. In a later paper, Burroughs et al.
(2008) further analyze the above model and provide a sensitivity analysis to the parameters.

More recenlty, Garcia-Martinez and León (2010) extend the Crossregulation model by ex-
plicitly modeling the dynamics of IL-2. By doing so, they allow for non-local/unspecific in-
teractions between effectors and Tregs in the sense that interactions are possible not only upon
simultaneous conjugation on the same APC, but also via the free IL-2 present in the same
lymph node. Thus, this model combines the assumptions of the Crossregulation model and the
model of Burroughs et al. (2006) and constitutes a rather complete picture of the cell interac-
tions in a lymph node. The same methodological approach as in León et al. (2000) is applied.
Two model variants, with different roles of IL-2 in suppression, are tested: (1) Tregs suppress
effectors by competition for IL-2 only; (2) in addition to competition, Tregs inhibit the activa-
tion of effectors co-localized on the same APC. The authors establish parameter constraints in
the extended models in order to reproduce the basic properties of the Crossregulation model
(bi-stability, etc.). Furthermore, the extended models lead to new properties of the dynamics.
An interesting characteristic regarding the unspecific regulation is observed. The authors con-
sider the case of two different antigen-specific clones of effectors and Tregs responding to two
sets of APCs. An abrupt increase in the number of APCs of type 1 is then applied, simulating,
for example, a particular infection. In version (1) of the model, the responses to both types of
APCs are fully coupled. This means that the increase in APCs of type 1 can break tolerance
for the corresponding cells (effectors of type 1 take over Tregs of type 1) and the same would
happen for the cells of type 2. This would lead to collateral damages if all clones are activated
by the stimulation of a single one. The situation is more realistic in model variant (2), where
the activation of clone of type 1 does not imply the activation of the other clone.

Adaptive/Induced Tregs

Fouchet and Regoes (2008) model an interaction network composed of adaptive Tregs, effec-
tor T cells and APCs. The model is very similar to one version of the Crossregulation model,
except for the fact that resting APCs can induce the transformation of effectors into Tregs. The
authors define an ODE system in which precursor T cells may differentiate into either adaptive
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Tregs or effector T cells, depending on the activation state of the APC. An equilibrium analy-
sis reveals the existence of two stable equilibriums (similarly to the Crossregulation model):
one tolerant (regulated) state where Tregs control effectors and one unregulated state where the
vanishing population of Tregs cannot control the effectors. Then the authors study the effect
of parameters on the nature of the equilibrium regime. The bifurcation analysis reveals that
the switch from the regulated to the unregulated state depends on the strength of the antigenic
stimulus and the state from which the network has been perturbed.

In their experimental study of adaptive Tregs, Vukmanovic-Stejic et al. (2006) use the model
developed in Macallan et al. (2003) to estimate the in vivo proliferation and death rates of
memory-derived FoxP3+ regulatory T cells. The latter model is specifically defined for la-
beling experiments, where deuterium from deuterated glucose is incorporated into the DNA
of dividing cells. The model has one compartment, the amount of labeled deoxyadenosine,
and accounts for its appearance and disappearance due to cell proliferation and death (further
deuterium labeling models can be found in Mugwagwa (2010)). The analysis of experimen-
tal data reveals the peripheral conversion or rapidly proliferating CD4+CD25−FoxP3− memory
effectors into a regulatory CD4+CD25hiFoxP3+ phenotype.

After developing an extremely detailed delay differential equations (DDE) model to study
the role of natural Tregs in the adaptive immune system (Kim et al., 2007), Kim et al. (2010)
study the dynamics of primary T-cell responses and the possible involvement of adaptive regu-
latory T cells. The authors challenge the paradigm of a primary T cell response, according to
which, (1) T-cell dynamics in response to an antigen do not depend on the level and duration
of antigen stimulation; and (2) T-cell responses are independent of the clone size of antigen-
specific responders. Using delay and partial differential equations, the authors conclude that
the old "paradigm does not entirely capture the observed robustness of T cell responses to vari-
ations in precursor frequency". They propose an alternative mechanism in which the dynamics
of a primary T-cell response are governed by a feedback loop involving adaptive regulatory
cells rather than by intrinsic developmental programs.

Tregs and Gene Expression

In a general setting of helper T cell differentiation, Van den Ham and de Boer (2008) pro-
pose a model describing the expression of master regulators. Master regulators are transcription
factors that are both necessary and sufficient for the induction of a certain cellular phenotype.
For example, to polarize a helper T cell towards the helper 1 type, Tbet is necessary, whereas
for helper type 2, it is GATA3. In the case of Tregs, FoxP3 is the master regulator. The gen-
eral framework of Van den Ham and de Boer (2008) has been applied to experimental data
measuring the expression levels of FoxP3 and GATA3 mRNA.

Tregs and Evolution

Saeki and Iwasa (2009) develop a mathematical model to study the advantages of having
regulatory T cells in the immune system. The authors weight the pros and the cons of a robust
ability to cope with foreign antigens, versus auto-immunity. Using a probabilistic approach,
they define the fitness function of an organism, which takes into account the benefit of having
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effector T cells reactive to foreign antigens and the severity of having effectors attacking self
tissues. A model of cell maturation in the thymus is presented, where immature T cells are
determined to be regulatory or effectors, based on whether or not they interact with self-antigens
during clonal selection (they also consider another version, where cell fate is pre-determined).
It is assumed that the number of times a particular auto-reactive immature T cell meets with
its corresponding antigen during clonal selection follows a Poisson distribution. Further, once
in the periphery, activated Tregs are assumed to suppress effectors by direct interaction. The
Poisson distribution is again used to model the number of times a particular effector T cell
meets regulatory T cells. From this is calculated the probability of a cell not being suppressed.
The fitness function of a system with Tregs is then compared to the fitness without Tregs and
conclusions are drawn with respect to the parameters. Localized and global suppression are
compared. It turns out that it is advantageous to have regulatory T cells if suppression is
localized, i.e., "if the body is composed of many compartments, and regulatory T cells suppress
the immune reactions only within the same compartment". The framework presented by the
authors gives an interesting insight of T cell maturation and Tregs formation.

In the following paper, Saeki and Iwasa (2010) use an extension of the same mathematical
model to study the optimal number of regulatory T cells. The authors propose that this num-
ber depends on the "number of self-antigens, the severity of auto-immunity, the abundance of
pathogenic foreign antigens, and the spatial distribution of self-antigens in the body."

2.1.2 Our Contributions

None of the above models has studied in depth the quantitative effect of Tregs proliferation
capacity and origins on the lifelong peripheral pool size in humans. At the time of development
of our model, the proliferation capacity of Tregs was a controversial issue. Our first contribution
is therefore to address quantitatively this question and to challenge the plausibility of several
hypotheses with human ex vivo data.

From the perspective of proliferation capacity of Tregs, the model of Burroughs et al. (2006)
is the closest one to ours, because it considers strict conditions for Tregs proliferation. However,
the authors of this study did not consider the lifelong dynamics resulting from the repeated
exposure to self- or foreign- antigens.

None of the above studies has sorted Tregs on the expression of the memory-type receptor
CD45RO. Once again, the closest discrimination was in Burroughs et al. (2006), where the
authors consider active and inactive Tregs, which was mainly translated in a suppression capacity
difference. In addition to distinguishing the activated from the resting Tregs populations, we
also account for antigen-unexperienced precursors, which were known to have only a limited
suppression and a marked proliferation capacity.

A striking difference between our model and most of those studying Tregs dynamics is the
fact that we neglect the population of APCs. However, only in Alexander and Wahl (2010)
are the dynamics of APCs modeled explicitly. In all the variants of the Crossregulation model
(Carneiro et al., 2007), the APCs are assumed to be in equilibrium and their presence is only
expressed through one parameter, the density of APC conjugation cites. Thus, these models
reduce to a predator-pray system, where either one of the conventional or regulatory T cells
outcompetes the other, either both populations co-exist. Our intention is to start by building
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the simplest possible model that can address the relevant question. As we are not concerned
with suppression mechanisms, we ignore APCs and conventional T cells. The effect of IL-2
as a growth factor is modeled implicitly through the parameters. Nevertheless, the inclusion of
these components would certainly be of interest.

Our second contribution is the fact that our model is conceptually different from the existing
Tregs models. Indeed, the combination of a stochastic process with ODEs is an original approach
that has not been applied to the study of T cell dynamics. In addition, we employed random
parameters with a Bayesian-type statistical analysis, which is also a marginal manner of treating
unknown parameter values.

Finally, we have fitted a quantitative model to time-series experimental data, which has not
yet been done in the case of human regulatory T cells. Hitherto, data sets have been used to
fit the time-dependent dynamics of conventional CD4+ or CD8+ T cells (De Boer et al., 2003;
Mugwagwa, 2010).

2.1.3 Chapter Outline

This chapter is organized as follows. We first present in Section 2.2.1 the detailed de-
scription of the model, followed by the materials and methods necessary to the data obtention
(Section 2.2.2). In Section 2.2.3, we describe how the model is fitted to the data and how
the scenarios are formally evaluated. The results are in Section 4.3 and the discussion in Sec-
tion 4.4.
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2.2 Materials and Methods

2.2.1 Tregs Mathematical model

In order to model the biological hypotheses concerning the origins and the proliferation
capacity of Tregs, we consider several scenarios of a generic mathematical model. The scenarios
are the result of imposing constraints on model parameters such as the input, proliferation and
death rates of precursor and mature Tregs in the generic model.

We use several mathematical tools in order to describe in a robust way Tregs lifelong ki-
netics. Changes in the populations’ sizes due to immune reactions and homeostatic activity
are described by ordinary differential equations (ODEs). Events corresponding to encounters
with antigen-presenting cells leading to (auto-)immune responses are generated according to a
stochastic process. A sketch of the entire system with all its components can be seen in Fig-
ure 2.1. For a quick reference, Table 2.1 summarizes all the assumptions of our model. In what
follows, we describe in detail the generic model, the model scenarios, the parameter fitting and
the model evaluation procedure.

Generic model

The generic model describes the lifelong dynamics of Tregs. We call it generic because it
is taking into account all possible events that may affect Tregs population size and because it is
a generalization out of which we define the model scenarios that describe the studied biolog-
ical hypotheses. The generic model is composed of two parts: a deterministic part describing
cell dynamics during immune responses and homeostasis, and a stochastic part generating all
infection events occurring in a human lifetime.

(Auto-)Immune reactions process In order to study the dynamics of regulatory T cells over
the entire lifetime of a human, responses to self- and foreign-antigens are included in our model.
We consider two types of immune reactions: the minor ones, occurring frequently and triggered
by self- or dietary antigens, and the major ones, occurring rather seldom, mainly provoked by
foreign antigens and having a great impact on the Tregs pool. Minor immune reactions trig-
gered by antigens sampled in the mucosa-associated lymphoid tissues are taken into account
in the pool-size control dynamics described in the next section. Major immune reactions are
triggered by successful interactions with antigen-presenting cells, in which a cytokine environ-
ment allowing Tregs activation and (possibly) proliferation is present (Carneiro et al., 2007). As
we found no information about the frequencies and time-distribution of such immune reactions
in vivo, we model this phenomena with a stochastic process having a constant rate. Thus, we
assume the length of time-intervals between two infections to be random, having a shifted ex-
ponential distribution with mean λ+δ, where δ is the minimal duration of an immune response.
We make the simplifying assumption that during the first phase of an immune response (of
length δ), no other infections are occurring and that the capacity to present self-peptides is not
altered with time in healthy individuals. We call {τn}n∈N the stochastic process of infection
times. The dynamics of cells between the events of the stochastic process are described in what
follows.
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Figure 2.1: A sketch of the different components of the mathematical model. A: The output
of our mathematical model are cell counts as function of time. We are considering three cell
types, namely CD4+CD25+CD45RO− precursor Tregs and CD4+CD25+CD45RO+ quiescent or
activated mature Tregs. B: The model is composed of a stochastic process generating the events
corresponding to successful encounters with antigen-presenting cells leading to (auto-)immune
responses. These responses are characterized by a transient increase in the activated mature
Tregs population. C: The dynamics of cells between two events of the stochastic process are de-
scribed using ordinary differential equations. These equations take into account all events that
affect the cell population size. A detailed description of each component of the cell dynamics
can be found in the Generic Model section.

Cell dynamics Based on the expression of the surface protein CD45RO, one can sort two
subpopulations of Tregs: CD4+CD25+FoxP3+CD62L+CD45RO− precursor and CD4+CD25+-
FoxP3+CD62L+CD45RO+ mature Tregs. For the sake of the mathematical model, we consider
a third population that we call activated mature Tregs and that has the same surface receptors
as the quiescent mature Tregs

2. Activated mature Tregs are composed of both precursors that
experience peripheral antigens for the first time (they can be also activated precursors that
have just acquired the mature phenotype), and mature Tregs that are recruited into a secondary
immune response. Thus, the mathematical model has three compartments: P , the precursor
Tregs, Q, the quiescent mature Tregs, and R, the activated mature Tregs.

2. Note that the population of activated Tregs has been recently discovered as part of the peripheral in vivo pool
of human Tregs (Miyara et al., 2009b). We position our model with respect to this new perspective in Chapter 6.
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a) Immune responses. In vitro experiments show that following acute antigenic stimula-
tion, precursor Tregs activate and up-regulate the memory-type CD45RO receptor, as they loose
their naive phenotype CD45RA receptor (Fritzsching et al., 2006; Valmori et al., 2005). In the
meanwhile, they differentiate into mature Tregs able to exert their suppressive function. Once
the antigenic stimulation is lost, a small proportion of all activated Tregs becomes long-lived
mature cells, and the others die by apoptosis, similarly to other lymphocytes. As we are not
modeling the dynamics of other cell types and of pathogens, we apply the two-phase immune
response model used to describe CD4+CD25− and CD8+ cell dynamics (Althaus et al., 2007;
De Boer et al., 2003, 2001; Fouchet and Regoes, 2008). We call τn the beginning of the nth

immune response to a foreign antigen (n ∈ N) and τn + δ the time at which the expansion phase
ends. We assume that the effect of antigen on cells has a fixed duration δ, after which cells

Biological
process

Assumptions

(Auto-
)
Im-
mune
reac-
tions
process

1. Major immune reactions modeled as a stochastic process with one
(constant) parameter.

2. Minor immune reactions triggered by antigens sampled in the
mucosa-associated lymphoid tissues included in the homeostasis
activity.

3. Capacity to present self-peptides is not altered with age in healthy
individuals.

4. During the fixed phase of an immune reaction, no other reactions
are allowed.

Immune
responses

5. Two-phase immune response: a first phase of fixed length and a
second phase of random length.

6. Exponential expansion/contraction of cells following immunogen
stimulation.

7. 10% of the expanded population of activated Tregs becomes long-
lived mature Tregs.

Homeostatic
activity

8. Unique source of precursors: thymus.
9. Four possible sources of mature Tregs: thymus, differentiation of

precursors, phenotype switching of effector CD4+CD25− T cells,
and homeostatic proliferation.

10. Time-dependent thymic involution (exponential decline).
11. Constant rate of generation of Tregs from rapidly proliferating

CD4+CD25− effector T cells under certain conditions.

Antigen
specificity

12. The size of the responding clone is chosen randomly (uniform
distribution).

Primary /
secondary
infections

13. The probability of primary infections is declining with age and
is such that children experience a majority of primary infections
and adults, a majority of secondary infections.

Table 2.1: Summary of all model assumptions.
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stop their intense proliferation phase (Phase 1) and start dying by activation-induced cell death
(Phase 2).

During Phase 1, precursor Tregs may divide, die, or convert into mature effector cells at
rate b. Quiescent mature Tregs activate at rate f cells per day. Effector mature Tregs may also
proliferate and die. As the first phase is an expansion phase, we only consider a net population
expansion rate, which should be interpreted as the cumulative effect of proliferation and death
in the population of precursors (resp. activated mature Tregs). Thus, for parameter identification
issues, we consider only one rate, called aP > 0 (resp. aR > 0), which is the net population
expansion rate. The following differential equations express the dynamics of the expansion
phase:

Ṗ = (aP − b)P
Q̇ = −fQ (2.1)
Ṙ = bP + fQ + aRR

During Phase 2, precursor Tregs die at rate dP per day. Activated mature Tregs die at rate
dR and convert to long-lived mature cells at rate c per day. The long-lived mature quiescent
Tregs have a slight decrease in their population size expressed by death rate dQ. The differential
equations corresponding to the contraction phase are the following:

Ṗ = −dPP
Q̇ = −dQQ + cR (2.2)
Ṙ = −(c + dR)R

b) Homeostatic activity. The biological processes included in the homeostatic activity
are the proliferation and death of cells for regulation of the population size, the death of cells
because of their limited lifespan and the input of newly produced cells from the thymus of
from another external source. We hypothesize two types of basal proliferation and death: a
constant and density-dependent one. We call d′ the constant death rate accounting for the
limited lifespan of cells. We assume that a slow and steady cell division occurs at rate a′.
Nevertheless, these constant renewal and death rates can not account for self-regulation of the
cell population size. In a homeostatic situation, cell numbers are regulated by competition for
limited resources, such as cytokines. This regulation can be achieved in three ways: density-
dependent proliferation, density-dependent death or both. The exact way in which regulatory T
cells perform their homeostatic regulation is currently unknown. It is however known that the
in vivo homeostatic proliferation of murine natural Tregs is not impaired by their anergic state
(Gavin et al., 2002) and that this proliferation is involved in a feedback regulatory loop between
dendritic cells and Tregs (Darrasse-Jeze et al., 2009).

Because the homeostatic activity is an important issue to studying the lifelong dynamics
of cells in vivo, we are considering all possible mechanisms that may have an effect on the
model’s outcome. Thus, we assume that homeostasis of precursors is achieved through density-
dependent death at rate ϕP . For mature Tregs, we consider both a density-dependent death at
rate ϕQ and a density-dependent Michaelis-Menten type proliferation at rate α, appropriate to
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make up for lymphopenic situations. Recent thymic emigrants enter both precursor and ma-
ture Tregs populations at a time-dependent rate g(t) = gP (t) + gQ(t). The constant term sQ,
added to the quiescent mature Tregs population, represents the constant generation of regula-
tory T cells from rapidly proliferating CD4+CD25− effector T cells under certain conditions
(Akbar et al., 2007; Vukmanovic-Stejic et al., 2006). Remark that we only add this term to
the quiescent mature Tregs population, because we assume that the unique source of precursor
CD4+CD25+CD45RO− T cells is the thymus. In addition, cells that are derived from rapidly
proliferating CD4+CD25− cells are antigen-experienced and thus have probably acquired the
memory phenotype CD45RO before converting to FoxP3+ regulatory cells. The differential
equations describing the homeostatic activity are the following:

Ṗ = gP (t) + (a′P − d′P )P −ϕPP
2

Q̇ = gQ(t) + sQ��������������������������������������������
External

contribution

+(a′Q − d′Q)Q�����������������������������������������������������
Density-

independent
regulation

+( α

1 +Q/QM

−ϕQQ)������������������������������������������������������������������������������������������������������������������������
Density-dependent

regulation

Q (2.3)

Ṙ = 0,

where QM is the size of the mature Tregs population for which the homeostatic renewal of cells
is half of the maximal rate α. Let hP = a′P − d′P and hQ = a′Q − d′Q be the cumulative effects of
the constant renewal/death rates, hP ∈ R and hQ ∈ R. Whenever negative, we will refer to these
parameters as lifespan of precursors and mature Tregs. The thymic involution is represented as
a decreasing exponential function of rate ν (Dutilh and De Boer, 2003; Marus̆ić et al., 1998;
Steinmann et al., 1985):

gP (t) = σP exp(−νt)
gQ(t) = σQ exp(−νt),

where σP = σ0∗%CD25thymus∗pthymus, σQ = σ0∗%CD25thymus∗(1−pthymus),%CD25thymus is the
percentage of CD25+ cells inside thymic CD4+ T cells, pthymus is the percentage of precursors
inside CD25+cells that are output from the thymus, and σ0 is the estimated thymic output of
CD4+ cells in a newborn.

c) Antigen specificity. To ease the notation in what follows, let Y = (P,Q,R)′. Antigen
specificity is implemented in the following way. Eq. (2.1) and Eq. (2.3) are applied to a propor-
tion πn of the total number of Tregs, those representing the antigen-specific clone responding to
the antigen that caused the immune reaction at time τn. We call this population Yclone(τn). The
other 1 − πn proportion of cells do not participate in the nth immune reaction and execute their
homeostatic activity (Eq. (2.3)).

d) Primary/secondary infections. We take into account the difference between primary
and secondary infections: when some antigen is encountered for the first time, no memory cells
exist, but if the exposure is secondary, the organism already has memory cells associated to it
at the time of exposure τn. We call q(t) the probability that an infection at time t is primary and
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Figure 2.2: The probability q(t) of a pri-
mary infection is decreasing with age.
An estimation of the distribution for q(t)
defined in Eq.(4) with parameters sam-
pled from the a priori distributions of Ta-
ble 2.4.

does not involve mature Tregs. Thus, with probability q(τn), the responding clone at time τn is
set to Yclone(τn) = πn(P (τn),0,0)′. Otherwise, with probability 1−q(τn), the responding clone
is set to Yclone(τn) = πn(P (τn),Q(τn),0)′. Intuitively, the unexperienced immune system of
young individuals is confronting more primary infections than adults. We therefore define the
following sigmoid function describing phenomenologically the time-dependence of parameter
q:

q(t) = K1 −K2

1 + exp(ω(t − th)) +K2 (2.4)

where K1 is the (approximate) proportion of primary infections at birth, K2 is the limit pro-
portion of primary infections at adulthood, ω is the maximum decline rate and th is the age
at which the proportion of primary infections is q(th) = (K1 + K2)/2. Note that contrary to
CD4+CD25− memory T cells, mature Tregs require additional conditions for their activation at
the time of a secondary antigen exposure. Because these cells are non-proliferating and do not
produce the growth factor IL-2 themselves, they need optimal stimulation conditions and a high
concentration of IL-2 in order to initiate a response (Hombach et al., 2007). All this is taken
into account in the above definition of q(t).

In order to eliminate as much as possible any dependence of the final results on the exact
shape of q(t), we have defined random distributions on the parameters K1, K2, ω and th (see
Table 2.4).

Model scenarios

The model scenarios are obtained from the generic model by applying a set of constraints
to the following parameters: gQ(t), sQ, ϕQ, α, aP , aR and dP . From the homeostasis dynamics
of the generic model, we define three homeostasis scenarios:

(i) No homeostatic regulation of mature Tregs: due to their anergic state, the only observed
phenomena is the slow and steady density-independent proliferation and death (gQ(t) =
sQ = ϕQ = α = 0);
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(ii) Homeostatic regulation of mature Tregs: in addition to the constant proliferation and
death rates, we allow for density-dependent regulation mechanisms of mature Tregs. As
we search for the minimal model able to explain the data, we consider two mutually
exclusive sub-settings:
(a) density-dependent death of mature Tregs (ϕQ > 0, α = 0);
(b) density-dependent proliferation of mature Tregs (ϕQ = 0, α > 0).

(iii) External input: we consider two external contributions to the mature Tregs population
(α = 0):
(a) thymic output of mature Tregs Vanhecke et al. (1995) (gQ(t) > 0);
(b) peripheral differentiation of CD4+CD25− non-regulatory cells into their regulatory

counterpart Vukmanovic-Stejic et al. (2006) (sQ > 0).

Homeostasis scenarios Parameter setting

(i) No homeostasis gQ(t) = 0, sQ = 0, ϕQ = 0, α = 0

(ii) Homeostatic regulation
(a) Density-dependent death gQ(t) = 0, sQ = 0, ϕQ > 0, α = 0
(b) Density-dependent proliferation gQ(t) = 0, sQ = 0, ϕQ = 0, α > 0

(iii) External input
(a) From thymus gQ(t) > 0, sQ = 0, ϕQ = 0, α = 0
(b) Peripheral differentiation of CD4+CD25- T cells gQ(t) = 0, sQ > 0, ϕQ = 0, α = 0

Table 2.2: Definition of the homeostasis scenarios. Parameter meanings: gQ(t), time-
dependent input of recent thymic emigrants into the peripheral mature Tregs population; sQ,
constant input of regulatory T cells from rapidly proliferating CD4+CD25+ effector T cells, ϕQ

and α are the density-dependent death and proliferation rates.

From the cell dynamics in response to self and foreign antigens, we define four proliferation
scenarios accounting for different proliferation capacities of Tregs:

1) Both precursor and activated-mature Tregs proliferate and die in response to an antigen
stimulus;

2) Neither precursor nor mature Tregs proliferate, but precursors are very resistant to apop-
tosis, so they do not die during an immune response;

3) Precursors proliferate in response to antigen, but as soon as they differentiate into CD45RO+

mature Tregs, they stop proliferating and die extensively because of the high levels of ex-
pression of the CD95 receptor Fritzsching et al. (2006) and because of the downregulation
of the anti-apoptotic protein Bcl-2 Yamaguchi et al. (2007);

4) Precursors do not proliferate when they are CD45RO−, but the proliferation starts while
they acquire the mature profile.

Table 2.2 and Table 2.3 summarize the above settings. We construct a model scenario by
choosing one homeostasis and one proliferation scenario, thus obtaining 20 model scenarios,
referred from now on as scenario 1(i), 2(i), ..., 4(i), 1(ii)a, ..., 4(ii)b, 1(iii)a, ..., 4(iii)b.
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Figure 2.3: Typical model trajectories for scenarios 1(i) and 2(i). The solid line represents
the evolution of precursors, the dashed one the dynamics of quiescent mature Tregs, and the
dash-dotted line represents the activated mature Tregs. Each spike of the activated mature Tregs

corresponds to a major immune reaction (an event of the stochastic process). The ratio inver-
sion observed in A is an example of slow accumulation of mature Tregs following an antigen
stimulation. Parameter values: average values of the distributions of Table 2.4 with the follow-
ing values for the fitted parameters: hP = −5 × 10−4, hQ = −5 × 10−5, λ = 130 for scenario 1(i),
and hP = −5 × 10−4, hQ = 0, λ = 30 for scenario 2(i).
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Proliferation
scenarios

Proliferation capacity of... Parameter setting

Precursors Mature Tregs

1 Proliferate Proliferate aP > 0, aR > 0, dP > 0
2 Do not proliferate Do not proliferate aP = 0, aR = 0, dP = 0
3 Proliferate Do not proliferate aP > 0, aR = 0, dP > 0
4 Do not proliferate Proliferate aP = 0, aR > 0, dP = 0

Table 2.3: Definition of the four proliferation scenarios. Parameter meanings: aP , antigen-
induced proliferation rate of precursors; aR, antigen-induced proliferation rate of mature Tregs;
dP , antigen-induced death rate of precursors.

The model at a glance: typical model trajectories

In order to gain some insight into the model dynamics, we present in this section an ex-
ample of execution of our model. Figure 2.3 shows the number of precursors (solid line) and
mature Tregs (resting: dashed line and activated: dash-dotted line) as function of time in human
peripheral’s blood. The zoomed sections allow a closer look at the activated Tregs population
which is mainly present during major immune reactions, events of the stochastic process.

In Figure 2.3A is depicted a typical trajectory for scenario 1(i) where the ratio between
precursors and mature Tregs is inverted in the early years of adulthood, whereas in Figure 2.3B
is shown a typical trajectory for scenario 2(i) where the ratio inversion is not observed. All
model scenarios will be evaluated based on their capacity to reproduce this ratio inversion and
on the capacity to reproduce the total amount of Tregs suggested by the data. Note that because
the thymus produces thymocytes with a constant proportion of each subtype of Tregs, there are
four means of achieving a precursor/mature Tregs ratio inversion: 1) a difference in lifespans of
precursors and mature Tregs; 2) a difference in the homeostatic proliferation rates of precursors
and mature Tregs; 3) the slow accumulation of mature Tregs following an antigen stimulation;
4) an external source of mature Tregs. The first mean is present in all model scenarios and
it acts in combination with the other three means. Thus in each model scenario, we observe
a combination of the above means and this combination can be sufficient or not to achieve
the ratio inversion. For example, in Figure 2.3 where there is no homeostatic regulation, the
lifespan of precursors is larger than the lifespan of mature Tregs (∣hP ∣ > ∣hQ∣), but this lifespan
difference is not sufficient to achieve the ratio inversion. Here, the slow accumulation of mature
Tregs, present in scenario 1(i) and not in scenario 2(i), is needed.

Parameters

In order to cope with the large number of parameters and to decrease the effect of single
values on the dynamics of the model, we split the parameters in two groups: G1, parameters for
which some a priori information is found, and G2, unknown parameters that must be fitted to
the data (see Section 2.2.2 for a detailed description of the data). The probability distribution
of parameters of group G1 is defined in the following way: we find in the literature either a
parameter together with a confidence interval accounting for the uncertainty of the estimation,
or a finite range without any preferred value specified. In the former case, we use a Gaussian
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distribution with mean and variance given by the confidence interval. In the latter case, we use
a uniform distribution over the range.

Our in vitro assays have shown that the expansion rate aP of Tregs precursors is similar
to the one of CD4+CD25− naive T cells and that the expansion rate aQ of activated mature
Tregs is 1.4 to 2 times lower than the expansion rate of precursors. To our knowledge, the in
vivo expansion rate of precursors (or even of CD4+CD25− naive T cells) in humans has not
yet been measured. The in vivo T cell responses in mice have been quantified in (De Boer
et al., 2003) which gives a first idea about the order of magnitude of parameters such as the
proliferation and death rates of CD4+ T cells, as well as the duration of a T cell response. For
aP , we find in (De Boer et al., 2003) values in the range 1 - 1.7 per day, so we are sampling
from an uniform distribution between 1 and 1.7 (day−1) (aP ∼ U(1,1.7)). We set aR = aP /K,
where K takes two different values, 1.4 and 5, the latter being an extreme value representing
the case where mature Tregs have a very limited proliferating capacity compared to precursors.
The value of the differentiation rate b of precursors into mature Tregs defines two settings: in the
first, b ∼ U(1,10) (Burroughs et al., 2006) and in the second, we apply the constraint b ≤ aP ,
thus b ∼ U(0.5,1). We will see that these settings give slightly different results. The activation
rate of quiescent mature Tregs is set to half of the differentiation rate of precursors, i.e., f = b/2,
because mature Tregs are anergic and thus slow to activate. The duration δn of the expansion
phase is drawn from a Gaussian distribution N(7.65,0.72) (in vitro assay and (De Boer et al.,
2003)). Both death rates dP and dR are considered as uniform U(1,2) because they should
have similar or higher values to the proliferation rates for system stability issues. It is known
that ∼ 5 − 10% of all effector cells become long-lived memory cells. Thus, we set c = dR/9,
which corresponds to 10% of the maximum value of the effector response. The death rate dQ
is distributed according to N(0.0013,0.0002) (De Boer et al., 2003).

The thymic input is calculated as follows. For the value of the total number of CD4+ T cells
output from the thymus of a newborn (σ0) and for the thymic involution rate (ν), we found the
following parameter settings in literature: σ0 = 1.98 × 108 cells per day and ν = 0.024 per year
(Marus̆ić et al., 1998; Steinmann et al., 1985); σ0 = 4.48 × 108 cells per day and ν = 0.05 per
year (Clark et al., 1999; Dutilh and De Boer, 2003). We therefore use an uniform distributionU(1×108,5×108) for σ0 and U(0.01,0.06) for ν to include the above settings in our simulations.
The percentage of CD25+ cells among all CD4+ thymocytes (%CD25thymus) was measured to
be 1.3% in young children (unpublished data).

The proportion πn, n ∈ N, of cells that respond to a particular antigen is drawn uniformly
between 10−7 and 10−4 cells (De Boer and Perelson, 1993). To estimate the total number of T
cells in human’s peripheral blood as a function of age, T (t), we use the fact that the mean blood
volume of a healthy 70 kg individual is 5 liters (Feldschuh and Enson, 1977) and it contains
about 1011 T cells (Clark et al., 1999). We then use a function that maps age to the mean weight
of individuals (CDC, 1988–1994; WHO, 2009).

The constant and density-dependent homeostatic proliferation and death rates (hP , hQ, ϕP ,
ϕQ, α,QM ), as well as the infections occurrence rate (λ) and the external input from the thymus
(pthymus) or from CD25− conversion (s), are fitted to the data. The time-unit of the model is 1
day. Table 2.4 summarizes all parameter values and distributions.

26



2.2 Materials and Methods

M
ea

n
in
g
(u

n
it
s)

V
a
lu
e
o
r
D
is
tr
ib
u
ti
o
n

S
o
u
rc
e

1.
E
xp

an
si
on

of
pr
ec

ur
so

rs
(1
/d
ay

)
a
P

∼
U
(1
,1
.7
)

B
io
lo
gi
ca

la
ss
um

pt
io
n,

D
e
B
oe

r
et

al
.(
20

03
)

2.
E
xp

an
si
on

of
ac

tiv
at
ed

m
at
ur
e
T
re
gs

(1
/d
ay

)
a
R

=
a
P
/1
.4

or
a
R

=
a
P
/5

In
vi
tr
o

as
sa
y,

B
ur
ro
ug

hs
et

al
.

(2
00

6)
3.

D
iff

er
en

tia
tio

n
of

pr
ec

ur
so

rs
(1
/d
ay

)
b
∼
U
(1
,1
0)

or
U
(0
.5
,1

)
B
ur
ro
ug

hs
et

al
.(
20

06
)

4.
R
es
tin

g
of

m
at
ur
e
T
re
gs

(1
/d
ay

)
c
=
d
R
/9

10
%

of
re
sp

on
se

pe
ak

5.
D
ea

th
of

pr
ec

ur
so

rs
(1
/d
ay

)
d
P

∼
U
(1
,2

)
Si
m
ila

rt
o
a
P

6.
D
ea

th
of

ac
tiv

at
ed

m
at
ur
e
T
re
gs

(1
/d
ay

)
d
R

∼
U
(1
,2

)
Si
m
ila

rt
o
a
P

7.
D
ea

th
of

qu
ie
sc
en

tm
at
ur
e
T
re
gs

(1
/d
ay

)
d
Q

∼
N

(0
.0
01

3,
0.
00

02
)

D
e
B
oe

re
ta

l.
(2
00

3)
8.

A
ct
iv
at
io
n
of

m
at
ur
e
T
re
gs

(1
/d
ay

)
f

∼
U
(0
.5
,5

)
or

f
∼
U
(0
.2
5,
0.
5)

B
io
lo
gi
ca

la
ss
um

pt
io
n

9.
D
ur
at
io
n
of

ex
pa

ns
io
n
ph

as
e
(d
ay

s)
δ
∼
N

(8
,1
.3
3)

In
vi
tr
o
as
sa
y

10
.

A
nt
ig
en

sp
ec

ifi
ci
ty

π
n
∼
U
(1
0
−
7
,1
0−

4
)

D
e
B
oe

ra
nd

Pe
re
ls
on

(1
99

3)
11

.
Pr

ob
ab

ili
ty

of
pr
im

ar
y
in
fe
ct
io
ns

at
bi
rt
h

K
1
∼
U
(0
.7
,1

)
B
io
lo
gi
ca

la
ss
um

pt
io
n

12
.

L
im

it
pr
ob

a.
of

pr
im

ar
y
in
fe
ct
io
ns

at
ad

ul
th
oo

d
K

2
∼
U
(0
,0
.4
)

B
io
lo
gi
ca

la
ss
um

pt
io
n

13
.

A
ge

at
w
hi
ch

th
e
pr
ob

a.
of

pr
im

ar
y
in
fe
ct
io
ns

is
ha

lf
(d
ay

s)
t h

∼
U
(1
0
∗
36

5,
30

∗
36

5)
B
io
lo
gi
ca

la
ss
um

pt
io
n

14
.

M
ax

im
um

de
cl
in
e
ra
te

of
q(
t)

ω
∼
U
(0
.0
1,
0.
5)

B
io
lo
gi
ca

la
ss
um

pt
io
n

15
.

M
ea
n
bl
oo

d
vo

lu
m
e
in

a
he

al
th
y
70

kg
in
di
vi
du

al
(l
ite

rs
)

5
Fe

ld
sc
hu

h
an

d
E
ns

on
(1
97

7)
16

.
N
um

be
ro

fT
ce

lls
in

5l
of

bl
oo

d
(c
el
ls
)

T
5
l
∼
U
(1

×
10

1
1
,5

×
10

1
1
)

C
la
rk

et
al
.(
19

99
)

17
.

N
um

be
r
of

C
D
4+

ce
lls

ou
tp
ut

fr
om

th
e
th
ym

us
of

a
ne

w
bo

rn
(c
el
ls
/d
ay

)
σ
0
∼
U
(1

×
10

8
,5

×
10

8
)

C
la
rk

et
al
.
(1
99

9)
;
D
ut
ilh

an
d

D
e
B
oe

r
(2
00

3)
;
M

ar
us̆

ić
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CHAPTER 2 : Lifelong Dynamics of Human CD4+CD25+ Regulatory T Cells

2.2.2 Immunological data

Biological specimens

A transversal study was performed on the peripheral blood of 120 healthy subjects con-
stituted by 60 males with a median age of 52.6 (range 20-81) and 60 females with a median
age of 49.32 (range 19-78). Samples of peripheral blood were obtained from laboratory co-
workers or from the Blood Bank of the Centre Hospitalier Universitaire Vaudois, University
of Lausanne, while the 7 samples of cord blood and the 2 thymuses were obtained from the
Department of Clinical Chemistry, Microbiology and Immunology, University Hospital, Uni-
versity of Ghent, Belgium. Cord and peripheral blood mononuclear cells were isolated using
standard Ficoll-Hypaque (Amersham Pharmacia Biotech, Piscataway, NJ) gradients centrifu-
gation. Blood specimens were collected under protocols approved by the Institutional Review
Boards of the above mentioned Institutions.

FACS analysis and sorting

Cell surface analysis and sorting were performed using a combination of a panel of sur-
face markers: PercP or PercP Cy5.5 conjugated mouse anti-human CD4 (Becton Dickinson,
Franklin, NJ), APC-conjugated mouse anti-human CD25 (BD PharMingen, San Diego, CA),
PE-conjugated mouse anti-human CD62L or PE-conjugated mouse anti-human CD71 (Becton
Dickinson, Franklin, NJ), FITC or PE-conjugated mouse anti-human CD45RO (BD PharMin-
gen, San Diego, CA) and FITC Annexin-V (Becton Dickinson, Franklin, NJ). For cell-sorting
experiments CD4+CD25+CD62L+CD45RO−, CD4+CD25+CD62L+CD45RO+, CD4+CD25−-
CD62L+CD45RO− and CD4+CD25−CD62L+CD45RO+ cell populations were isolated from
the peripheral blood. The grade of cell purity in all the sorting experiments was more than
97%. All flow cytometric analyses were performed on a FACS Calibur and cell sorting on a
FACS Aria (Becton Dickinson Systems, Franklin, NJ). For intracellular FOXP3 analysis, cell
preparations were fixed and permeabilized with fixation/permeabilization buffers (eBioscience)
after staining of cell surface markers and stained with FITC-conjugated rat antiñhuman FOXP3
(eBioscience).

Regulatory T cells have been sorted and purified from peripheral and cord blood based on
a CD4+CD25highCD62L+ gate. In order to analyze the purity of naturally occurring Tregs, the
above population has been stained for Foxp3. It is clear from Figure 2.4 that the cells sorted
with this method are in majority Foxp3 positive. CD4+CD25−CD62L+ cells have been sorted
and stained in the same way. The majority of all CD25− cells are Foxp3 negative. Naturally
occurring Tregs express CD25 constitutively and contrary to recently activated CD25− T cells,
they do not downregulate this receptor. It is not excluded that the above sorting from peripheral
blood involves some adaptive Tregs which are also included in the mathematical model presented
hereafter.

Suppression assay

Sorted purified CD4+CD25− T cells have been stimulated in vitro with anti-CD3 and anti-
CD28 antibodies for 3 days alone (positive control) or in presence of sorted purified CD4+-
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2.2 Materials and Methods

Figure 2.4: Isolation and characterization of human CD4+CD25+ Tregs from peripheral and cord
blood. A. Representative flow cytometry profiles of one peripheral blood sample (1 out of 120).
B. Representative flow cytometry profiles of one cord blood sample (1 out of 7). Regulatory
T cells have been sorted and purified from peripheral and cord blood based on the gate on
CD4+CD25highCD62L+ cells; the gate for non-regulatory T cells was on CD4+CD25negCD62L+

cells. In both peripheral and cord blood, the majority of CD4+CD25+ cells are Foxp3+ and the
majority of CD4+CD25− cells are Foxp3−.

CD25+CD62L+CD45RO+ T cells to test the suppressive function of the latter on the prolif-
eration capacity of the former population. CD4+CD25+CD62L+CD45RO+ T cells have been
added directly in the same well or in a transwell to test if their suppressive function needs cell-
to-cell contact or is mediated by cytokines. CD4+CD25+CD62L+CD45RO+ T cells were able
to strongly suppress (96%) the proliferation of CD4+CD25neg T cells when co-cultured in the
same well, but lost all suppressive activity once cultured in a transwell (Figure 2.5).

Proliferation, activation and differentiation experiments

In order to assess the proliferation capacity, peripheral blood sorted cell populations (CD4+-
CD25+CD62L+CD45RO−, CD4+CD25+CD62L+CD45RO+, CD4+CD25−CD62L+CD45RO− and
CD4+CD25−CD62L+CD45RO+) were plated at 5×103 cells per well in 96 U-bottomed plates in
RPMI 1640 plus 10% FBS in the presence of 5×104 irradiated (4000 rads) syngeneic peripheral
blood mononuclear cells. Cells were cultured in the presence of soluble anti-CD3 (OKT3) plus
soluble anti-CD28 (BD Pharmingen, San Diego, CA) with or without IL-2. The proliferation
kinetic was followed by FACS over 15 days and by [3H]-Thymidine incorporation in corre-
spondence of proliferative peaks. The activation and differentiation were monitored during 15
days by the expression of activation markers such as CD25 and CD71 (Transferrin Receptor)
and the marker of mature cells CD45RO. Cell death by apoptosis was measured in parallel for
each population by expression of Annexin-V.
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Figure 2.5: Cell-to-cell
contact is needed by the
CD4+CD25+CD62L+CD45RO+

T cells to exert their suppressive
function, while cytokines do not
seem to play any role.

Extrapolation of a mathematical model from empirical observations

Prior to formulating a mathematical model, we studied the proliferation kinetics of three
populations (CD4+CD25+CD62L+CD45RO−, CD4+CD25+CD62L+CD45RO+, and CD4+CD25−-
CD62L+CD45RO− cells) that may be involved in the maintenance of a constant pool of regula-
tory T cells. The assay was performed several times using sorted cells from different subjects
in order to extrapolate some parameter values for the model, free from the individual vices.
Each of the sorted cell populations was cultivated in presence of a polyclonal stimulus in order
to stimulate all the clones contained in a population. All the experiments were designed in such
a way that IL-2 is added at the beginning of the culture and every two days, because of the
limited proliferation capacity of mature Tregs. In fact, these cells did not show any apprecia-
ble proliferation in other parallel experiments driven in the absence of IL-2. Each experiment
lasted 15 days to permit the estimation of parameter values such as the duration of the prolif-
eration phase, the amount of cells produced, the number of cells that were activated (CD71+),
differentiated and acquired a mature phenotype (CD45RO+), the cell death (Annexin+ cells)
and the number of surviving cells. We then studied retrospectively the distribution of the above
populations in the peripheral blood of 120 healthy individuals, 7 cord blood samples and 2
thymuses, obtained from two children of 1 and 3 years old, who underwent cardiac surgery. In
this way, we obtained the distribution of the above populations as a function of age.

2.2.3 Model evaluation procedure and parameter fitting

The model assessment procedure consists in the following steps: first, we consider the
mean model dynamics and we fit the unknown parameters to the biological data using a least-
squares procedure (implemented in Matlab). The mean model is derived from the stochastic
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one by fixing the parameters of group G1 to the mean value of their a priori distribution and by
averaging over the remaining random quantities. The latter are Yclone, the size of the responding
clone, andΔn = τn+1 − τn, the time-interval between two consecutive immune reactions. Based
on this fit, we can reject some model scenarios. However, this result may depend on the mean
values of the a priori distributions. In order to eliminate this possibility, we fit the stochastic
model (in which parameters of group G1 are random variables) using a Bayesian approach.
This fit consists in maximizing the likelihood function, a measure of how good is the model
in explaining the data. It is the probability that, given the best-fit parameters and the a priori
distributions, the data is a realization of a particular model scenario. The higher this probability,
the closer the model is to the data. The likelihood of a model scenario is computed as follows.

Consequently to the fact that the parameters of group G1 are defined as random variables,{P (t)}t∈R, {Q(t)}t∈R and {R(t)}t∈R are stochastic processes. In order to fit each model sce-
nario to the biological data, we transform the above processes in the format of the data, i.e., in
terms of the ratio precursor/mature Tregs and of the percentage of CD4+CD25+ cells inside all T
cells, in logarithmic scale. Thus, we consider two other stochastic processes, namely {U(t)}t∈R
and {V (t)}t∈R, given by

U(t) ∶= log( P (t)
Q(t) +R(t))

V (t) ∶= log(P (t) +Q(t) +R(t)
T (t) ) ,

where T (t) is the total number of T cells at time t.
Let gUV (u, v; t) be the joint density ofU and V . Because it is difficult to compute gUV (u, v; t)

analytically, we estimate it using Monte Carlo simulation, as follows. The model is executed
M times for a time horizon of 85 years with parameters drawn according to the distributions of
Table 2.4. At each time, the density of trajectories in the space of U and V is estimated using
a bivariate histogram. Call ĝ(s)UV (u, v; t) the estimated density of model scenario s at time t.
Using the M model replicates, we construct a confidence interval for the bivariate histogram
Davison (2003). We then consider the relative size of the confidence interval of each bin. If the
latter is greater than 10% for some bin, the number of replicates M is increased. The density
estimation is considered satisfactory if the relative size of the confidence interval of all bins is
smaller than 10%. In the case of our model scenarios, M is taking values between 100 000 (in
most cases) and 500 000.

Each model scenario s is fitted to the data by maximizing the log-likelihood function defined
as

s(θ) = N∑
i=1

log (ĝ(s)UV (ui, vi; θ∣ti)) , θ ∈ Θs,

where N is the number of data points (N = 126) and ĝ
(s)
UV (ui, vi; θ∣ti) is regarded as a function

of θ for (ui, vi) and ti fixed. The parameter space Θs is defined by the values that can take
the free parameters θ = (hP , hQ, λ, ϕP , ϕQ, QM , α, pthymus, s). See Figure 2.6 for a visual
explanation of the likelihood computation.

The log-likelihood of is also used for objectively comparing the different model scenarios
by performing a likelihood ratio test (F-test) for nested models that formally rejects the scenar-
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Figure 2.6: Likelihood computation under model scenario s. A: at each age ti, the density
ĝ
(s)
UV (u, v; ti) of the model is estimated. u stands for the ratio precursor/mature Tregs and v, for

the percentage of CD4+CD25+ cells inside all T cells. B: the estimated density ĝUV (u, v; θ∣ti)
of the model is used to compute the likelihood of each data point. In this example, the likelihood
of the point (u, v) = (−1.21,−4.41) (age: 54 years) is equal to 0.028. C: the log-likelihood of
the entire data set is equal to the sum of the log-likelihoods of all data points.

ios that are not compatible with the data. Two models are nested if the parameter space of one
of them is a subset of the parameter space of the other. Proliferation scenarios 2, 3 and 4 (null
hypothesis) are subsets of scenario 1 and homeostasis scenario (i) (null hypothesis) is a subset
of all other homeostasis scenarios. The null hypothesis is rejected if the p-value of the test is< 0.01.
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2.3 Results

2.3.1 Properties of Tregs dynamics

The immunological data are presented in Figure 2.7, in which are plotted A: the percentage
of CD4+CD25+ cells inside all T cells, B: the ratio CD4+CD25+CD45RO− precursor / CD4+-
CD25+CD45RO+ mature Tregs as a function of age and C: the proportions of precursor and
mature Tregs inside the CD4+CD25+ compartment. A direct analysis of the above data sets
allows the identification of two properties.

%CD4+CD25+ cells inside all T cells

Age (years)

Ratio precursor / mature Tregs

Age (years)

A B

Age (years)

 
Proportion of cells inside the
CD4+CD25+ compartment
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Mature T regs

Precursor Tregs
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C

Figure 2.7: Immunological data and properties of Tregs dynamics. A. % CD4+CD25+ cells
inside all T cells; B. Ratio CD4+CD25+CD45RO− precursor / CD4+CD25+CD45RO+ mature
Tregs as a function of age; C. The ratio between precursor and mature Tregs is inverted in early
adulthood.

Homeostasis is maintained over both CD4+CD25+CD45RO− precursor and CD4+CD25+-

CD45RO+ mature Tregs populations

Consider the data of Figure 2.7(A) corresponding to adulthood, i.e., ages 19 to 81. In
order to see whether the population of CD4+CD25+ cells is in equilibrium, we need to know
if there is a significant trend in this data. The best-fit of a linear regression model results in
a 95% confidence interval of the slope that contains zero (slope = -0.0034, 95% confidence
interval: [−0.0071,0.0003]). Thus the trend is not significant, suggesting that the population of
CD4+CD25+ Tregs is in equilibrium and that there is a common homeostatic mechanism to both
CD4+CD25+CD45RO− and CD4+CD25+CD45RO+ Tregs.

The ratio between CD4+CD25+CD45RO− precursor and CD4+CD25+CD45RO+ mature

Tregs is inverted in early adulthood

By analyzing cord and peripheral blood data for precursor CD4+CD25+CD45RO− and ma-
ture CD4+CD25+CD45RO+ Tregs, we observe that their ratio is inverted before or in early adult-
hood. Indeed, in Figure 2.7(C), we see from the experimental data giving the proportions of
precursor and mature Tregs that there is a majority of precursors (∼ 80%) in the cord blood of
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newborns and a majority of mature Tregs (∼ 80%) in the peripheral blood of adult donors. This
ratio is inverted at latest in the early adulthood (20-30 years of age) and this inversion is what
we call the "development of an in vivo pool of CD4+CD25+CD45RO+ mature Tregs". The fol-
lowing results show that the ratio inversion is a critical issue that is not achieved by all model
scenarios.

2.3.2 Analysis of the mean model

In this section, we fit the mean model to the data of Figure 2.7. As a reminder, the mean
model is derived from the stochastic one by fixing the parameters of group G1 to the mean
value of their a priori distribution and by averaging over the remaining random quantities.

Figure 2.8 shows the trajectories of precursors (left subplots) and mature Tregs (right sub-
plots) under the four proliferation scenarios. Parameters hP , hQ, λ, ϕP , ϕQ, QM , α, pthymus

and s are fitted to the data using a least squares procedure (see Table 4.3 for best-fit values and
Table 2.6 for confidence intervals). The three different line types and colors in Figure 2.8 cor-
respond to the three homeostasis scenarios: solid red, scenario (i) (density-independent regula-
tion), dashed blue, scenario (ii) (density-dependent regulation) and dash-dotted green, scenario
(iii) (external contribution). The dynamics of precursors are very similar for all scenarios: we
observe an increase during the first 10 years, followed by an exponential decrease. This is not
surprising as this population is mainly influenced by the influx of recent thymic emigrants. The
major difference is in the dynamics of mature Tregs. This population increases constantly with
age, but according to the studied scenario, we observe qualitative differences in the way the
population grows.

Before assessing the proliferation scenarios, we first wanted to see whether one or the other
homeostasis scenario is better explaining the data. For this, we applied an F-test for nested
models opposing consecutively scenario 1(i) (H0) to scenarios 1(ii)a, 1(ii)b, 1(iii)a and 1(iii)b
(H1). At level 0.01, H0 was not rejected. This suggests that we do not have a strong evidence
that a density-dependent homeostatic mechanism is regulating the population of mature Tregs.

The following three subsections describe the assessment results of the four proliferation
scenarios, given either homeostasis scenario (i), (ii), or (iii).

In the case of a density-independent regulation of mature Tregs, the ratio inversion is a

critical issue if the peripheral differentiation of precursors is the only source of mature

Tregs

First note that due to the linearity of the differential equations of scenario (i), the ratio inver-
sion can be achieved either because of a lifespan difference or through the slow accumulation
of mature Tregs following an immune response. In what follows, we’ll see that the lifespan
difference alone is not sufficient to achieve the ratio inversion.

From the solid red lines of the upper plots in Figure 2.8, we see that scenario 1(i) is achiev-
ing the ratio inversion, whereas scenario 2(i) is not. The difference between these two scenarios
is easy to explain when observing the typical trajectories of P , Q and R in Figure 2.3. Indeed,
the magnitude of immune responses is very different in both scenarios (zoomed sections of Fig-
ure 2.3). In scenario 1(i), the clonal expansion goes up to 107 cells, whereas in scenario 2(i), it
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Figure 2.8: Best-fit of the mean model with parameters of group G1 set to the mean values of
their a priori distributions. Solid red: for scenario (i) (density-independent regulation); dashed
blue: scenario (ii) (density-dependent regulation) and dash-dotted green: scenario (iii) (external
contribution). Bold lines: sub-setting (a), light lines: sub-setting (b). The ratio inversion
between precursor and mature Tregs is not achieved early enough in scenarios 2(i) and 3(i). All
other scenarios are able to explain the data.

does not exceed 105 cells. This has an impact on the size of the mature Tregs pool: in the case
of scenario 2(i), the only input to the mature Tregs population are the long-lived cells that have
survived an immune reaction and they are set as 10% of the maximum effector response. As
the peak of the effector response is relatively low, caused by the non-proliferating state of Tregs

in scenario 2(i), very few cells feed the mature Tregs pool. Therefore, in scenario 2, the only
way to achieve a ratio inversion is through a difference in parameters hP and hQ because there
is a deficient accumulation of mature Tregs following an antigen response. The latter parameters
being fitted, we see that scenario 2(i), even with positive values of hQ (Table 4.3) can not reach
the plateau level of the pool of mature Tregs suggested by the data. This suggests that, in the
case of a density-independent regulation of mature Tregs, the slow accumulation observed only
when there is a sufficient population expansion during antigen-triggered immune reactions is
necessary to achieve the ratio inversion.

A similar explanation is valid for scenario 3(i) in which only precursors are endowed with
a proliferation capacity. This scenario seems to be unable to accumulate a sufficient pool of
mature Tregs (bottom left subplot of Figure 2.8). This is because for the mean values of the
parameters of group G1 (Table 2.4), the differentiation rate b is on average larger than the
proliferation rate aP , meaning that following an antigen priming, precursors have a higher
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Scenario
Best-fit Parameters

hP hQ λ ϕP ϕQ QM α pthymus s
(×10−5 (×10−5 (days) (×10−13 (×10−13 (×107 (day−1) (%) (×105

day−1) day−1) day−1cell−1) day−1cell−1) cells) cells)

1

(i) -7.83 -8.87 51.65 4.86
(ii) a -4.42 60.53 58.98 3.27 2.54
(ii) b 7.84 -18.20 99.44 4.41 7.50 0.0051
(iii) a 7.10 -8.05 92.94 3.84 83.95
(iii) b 14.35 -16.74 95.37 5.11 3.23

2

(i) -0.48 15.16 0.95 6.36
(ii) a -4.69 156.40 60.88 3.23 5.55
(ii) b 12.19 -16.61 164.80 4.87 2.04 0.0250
(iii) a 6.54 -1.78 100.95 3.63 78.87
(iii) b 12.22 -16.21 97.34 4.87 4.96

3

(i) -0.29 15.07 1.25 6.50
(ii) a -4.75 203.77 55.39 3.22 7.23
(ii) b 12.00 -17.35 168.80 4.85 6.02 0.0090
(iii) a 6.55 -1.78 101.74 3.63 78.87
(iii) b 12.52 -16.18 98.47 4.90 4.95

4

(i) -20.53 -5.97 63.57 1.48
(ii) a -13.78 64.60 55.70 2.29 2.66
(ii) b 12.15 -19.96 98.57 4.87 9.90 0.0045
(iii) a 2.29 -7.96 91.78 3.29 81.87
(iii) b 17.46 -16.98 92.24 5.42 3.43

Table 2.5: Best-fit parameters of the mean model dynamics for each model scenario.

probability of differentiating into hyporesponsive mature Tregs than to proliferate as precursors.
Thus, most cells become anergic before having divided and the mature Tregs pool is underfed.
As in scenario 2(i), a large and positive hQ (Table 4.3) is not able to make up for the lack of
accumulation of mature Tregs following antigen priming. In order to eliminate any dependence
of this result to the exact values of the parameters of group G1, we will study the behavior of
scenario 3(i) in the stochastic model (Section 3.3).

Finally, the analysis of the mean model trajectory for scenario 4(i) suggests that the ratio
can be inverted (bottom right subplot of Figure 2.8). Note that this scenario is favored by
the fact that the rate of secondary infections increases with age. Secondary responses recruit
more mature Tregs that, once activated, start proliferating intensively. Therefore, the fact that
precursors do not divide has only a minor impact on the population dynamics. However, we
will evaluate the performance of this scenario with the stochastic model in order to see how it
is affected by a change in the proliferation parameter values.
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CHAPTER 2 : Lifelong Dynamics of Human CD4+CD25+ Regulatory T Cells

In presence of a density-dependent homeostatic regulation of mature Tregs, the ratio pre-

cursor/mature Tregs is inverted without the need of peripheral proliferation in response to

antigen.

This claim is suggested by the best-fit of homeostasis scenario (ii), where the population
size is regulated either via a density-dependent death (sub-setting (a), bold dashed lines in
Figure 2.8), or via a density-dependent homeostatic proliferation (sub-setting (b), light dashed
lines in Figure 2.8). We see that both mechanisms produce different dynamics, but the lack of
data in the age-range 0-19 years does not allow us to eliminate neither of them. The sum of
squared errors indicates however that a density-dependent homeostatic renewal (scenario 1(ii)b)
fits slightly better the data. This is not surprising as this scenario has one more parameter than
scenario 1(ii)a.

It is interesting to observe that a density-dependent death is compensating for a large and
positive value of hQ (Table 4.3) meaning that the turnover rate of the mature Tregs population
is very high. Concerning the density-dependant homeostatic renewal, we see from Table 4.3
that the per cell maximal renewal rate α needs to be on average 2 times larger in the case of
hyporesponsiveness to antigen stimulation (scenario 2(ii)b) compared to the case where cells
proliferate (scenario 1(ii)b). Therefore we conclude that the density-dependent regulation is
able to explain the data as long as there are no restrictions in the parameters defining the home-
ostatic proliferation and death rates.

The ratio inversion is easy to achieve if there is an exponentially decreasing thymic output

or a constant external input to the mature Tregs population

This can be seen by analyzing the performance of homeostasis scenarios (iii)a and b. The
green dash-dotted lines in Figure 2.8 show the best-fit of these scenarios to the data (bold:
scenario (iii)a, thymic output of mature Tregs; light: scenario (iii)b, external source). The ratio
precursors/mature Tregs is inverted regardless the underlying proliferation scenario. Although
there is no density-dependent regulation here, the increase of the population of mature Tregs is
due to the thymic output of mature Tregs (sc. 1-4(iii)a) or to the external and constant input
of mature Tregs (sc. 1-4(iii)b) from a phenotype switching of CD4+CD25− T cells. Thus, we
conclude that in this case, the peripheral proliferation of precursor or mature Tregs is not required
for the development of the mature Tregs pool.

Furthermore, by analyzing the best-fit parameters of scenarios 1-4(ii)a (Table 4.3), we see
that on average, the estimated value of pthymus is about 80%. This means that the data can
be explained with 20% of all CD4+CD25+ T cells that exit the thymus having a CD45RO+

mature profile. Assuming that there are 1.3% CD4+CD25+ Tregs inside all CD4+ T cells exiting
the thymus, 20% (mature Tregs) of all Tregs is equivalent to 0.26% of all CD4+ T cells. Thus,
if as few as 0.26% of all CD4+ T cells exiting the thymus are mature Tregs, antigen-driven
proliferation in periphery is no longer necessary for the deployment of the pool.

2.3.3 Analysis of the stochastic model

The analysis of the mean model led to the rejection of model scenarios 2(i) and 3(i). How-
ever, this is true for the mean values of the a priori distributions, but it might not be true for
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all parameter values. To eliminate this possibility, we fit the stochastic model with parameters
of group G1 sampled from the distributions in Table 2.4. We apply this only to homeostasis
scenario (i), as the other homeostasis scenarios were able to explain the data already with the
mean model.

aP (day−1) aR (day−1) b (day−1)

Parameter setting 1 U(1,2) aR = aP /1.4 U(1,10)
Parameter setting 2 U(1,2) aR = aP /1.4 U(0.5,1)
Parameter setting 3 U(1,2) aR = aP /5.0 U(0.5,1)

Table 2.7: Parameter values and distributions of the three parameter settings. U(a, b) stands for
a uniform distribution on [a, b].

In order to obtain results that are robust with respect to parameter values, we define three
parameter settings (Table 2.7) that give slightly different results. These settings concern three
important parameters of the immune response: aP , the proliferation rate of precursors, aR,
the proliferation rate of activated mature Tregs and b, the differentiation rate of precursors into
mature Tregs. In the first parameter setting of Table 2.7, the average value of b is larger than
the average value of aP , in other words, precursors have a higher probability of acquiring the
mature phenotype than to proliferate as precursors in response to a foreign antigen. In settings 2
and 3, it is the opposite: precursors stay longer (and possibly proliferate) in this undifferentiated
state before acquiring the mature phenotype. In settings 1 and 2, aR takes values 1.4 times
smaller than the values of aP as measured in vitro, whereas in setting 3, we model an extreme
case where mature Tregs proliferate, but 5 times less than precursors. Note that the analysis of
the mean model in Section 3.2 was done under parameter setting 1.

To give an idea of the spread of trajectories of the stochastic model, Figure 2.9 shows the
best-fit of the stochastic model under scenarios 1-4(i) (parameter setting 1). In what follows,
we use the evaluation procedure described in the Methods to assess all proliferation scenarios
and find those that are unable to explain the biological data.

In the absence of a density-dependent homeostatic regulation, and of an external source

of CD4+CD25+CD45RO+ mature Tregs, proliferation of precursors, or of mature Tregs, is

necessary to the development of the mature Tregs pool

The result given hereafter is obtained in the case where the unique source of mature Tregs is
the peripheral differentiation of precursors without density-dependent homeostatic regulation
(scenario (i)). The results of the model evaluation procedure applied to the four proliferation
scenarios are shown in Figure 2.10A (see Table 2.8 for the best-fit parameters of the stochastic
model). Each bar of Figure 2.10 indicates the absolute value of the maximum likelihood of a
proliferation scenario. The closer this bar is to zero, the better the model is explaining the data.

We observe that scenario 2(i), i.e., the one in which neither precursors nor mature Tregs

proliferate, has a very poor performance in all three settings of Table 2.7. As stated in the
previous section, the problem with this scenario is its inability to achieve the ratio inversion.
Indeed, we found no parameter values such that this scenario is explaining the data. Scenario
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Figure 2.9: Distribution of model’s trajectories for scenarios 1(i)-4(i), parameter setting 1, fitted
to the data. As the parameters are drawn from probabilistic distributions, every execution of
the dynamical system is performed with different parameter values and the trajectories differ.
Therefore, instead of a single trajectory, we have a distribution of trajectories. Solid red line:
median. 50% of the trajectories are comprised between the 25% and 75% quantiles (dark grey
zone); 40% of all trajectories are in the light grey zone, delimited by quantiles 5-25% and
75-95%.

2(i) is therefore rejected when compared to scenario 1(i) using the F-test for nested models
(in all parameter settings). This implies that the proliferation of precursors and of mature Tregs

following a successful interaction with an antigen presenting cell is essential to the development
of a stable pool of mature Tregs in the absence of a density-dependent homeostatic regulation
and of an external source of CD4+CD25+CD45RO+ regulatory T cells.

Now, in order to test which proliferating capacity is more important, the one of precursors
or the one of mature Tregs, we fit the stochastic model scenarios 3(i) and 4(i).

The proliferation of precursors alone is sufficient if E[b] < E[aP ]
Figure 2.10A shows the results of the evaluation procedure applied to scenario 3(i) (light

grey bars) in which only precursors are endowed with a proliferation capacity. We remark that,
as suggested by the assessment of the mean model, this scenario performs poorly in parameter
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Figure 2.10: Goodness of fit of the
mathematical model in scenario (i)
(no homeostatic regulation). The bar
plot shows the absolute value of the
log-likelihood of each model sce-
nario (black bars:proliferation sce-
nario 1, dark grey: prolif. sce-
nario 2, light grey: prolif. sce-
nario 3, white: prolif. scenario 4).
The closer the bar is to zero, the
better the model fits the data. For
each homeostasis scenario, we com-
pare proliferation scenario 1 to all
the others by applying a hypothesis
test for nested models. A significant
difference indicated by ** (p-value< 0.01) means that the considered
scenario is rejected.
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Best-fit Parameters

hP (×10−5) hQ(×10−5) λ ϕP (×10−13)

(i)

1
1 -20.00 -5.00 55.22 1.97
2 -0.12 -17.00 60.90 2.65
3 -0.18 0.00 6.76 5.72

2
1 -0.50 8.00 0.67 2.60
2 -0.50 1.00 1.80 5.30
3 -0.50 1.00 1.80 5.30

3
1 -1.00 11.00 5.27 4.78
2 -1.00 5.00 5.28 4.81
3 -1.00 5.00 5.28 4.81

4
1 -9.00 -8.00 20.00 2.00
2 -0.94 -0.93 22.66 4.45
3 -0.50 1.00 0.70 4.80

Mainte-
nance
(i)

1

1

-0.45 -0.11 200.00 4.07
2 -0.43 1.00 0.53 4.00
3 -0.43 1.00 0.53 4.00
4 -0.57 -1.00 130.00 4.00

Table 2.8: Best-fit parameters of the stochastic model for scenario (i) and all parameter settings.
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setting 1. However, using the stochastic model, we have found two other parameter settings (2
and 3) for which scenario 3(i) performs similarly to scenario 1(i). Thus, the stochastic model
suggests that there exist parameter values for which the proliferation of precursors alone is suf-
ficient to the development of a viable pool of mature Tregs. As a consequence, the F-test for
nested models rejects scenario 3(i) only in parameter setting 1. The difference between param-
eter setting 1 and parameter settings 2 and 3 being in the average value of the differentiation
rate b with respect to the value of the proliferation rate of precursors aP , we conclude that in
order to validate model scenario 3(i), it must be shown that the proliferation rate aP of precur-
sor cells is significantly larger than the rate b of expression of CD45RO following an antigen
stimulus.

The proliferation of mature Tregs alone is sufficient if their division rate is not too small

compared to the division rate of precursors

The assessment of model scenario 4(i) in which only mature Tregs proliferate is illustrated in
Figure 2.10A (white bars). For settings 1 and 2, the performance of this scenario is comparable
to the one of scenario 1(i), whereas for parameter setting 3, scenario 4(i) is not able to reproduce
the dynamics of the data and the maximum likelihood is fairly low. In that case, the F-test
for nested models rejects scenario 4(i) when compared to scenario 1(i). We remark that this
happens in the extreme case where mature Tregs proliferate very little (the distribution of aR in
parameter setting 3 is U(1/5,1.7/5)). Thus, the proliferation of mature Tregs is sufficient for the
development of a peripheral pool only if the proliferation rate is not too small.

2.3.4 Maintenance of a lifelong in vivo pool of CD4+CD25+CD45RO+ ma-

ture Tregs

In order to assess the importance of antigen-driven proliferation in the lifelong maintenance
of a peripheral pool of Tregs, we examine the situation where the model is executed from the time
at which the pool is already constituted, i.e., from the age corresponding to our first adulthood
data (19 years old). We only study here homeostasis scenario (i), as it is the only one that led
to the rejection of some proliferation scenarios.

Given that at the age of 20, a peripheral pool of mature Tregs is constituted, antigen-driven

proliferation in the periphery is not necessary for the maintenance even in the absence of

other input of mature Tregs or of a density-dependent homeostasis mechanism

We assess the four proliferation scenarios of Table 2.3, in the case of homeostasis scenario
(i). The percentage of precursors inside CD4+CD25+ T cells at the age of 19 (p19) is drawn
from a Gaussian distribution with mean 0.35 and standard deviation 0.1, values obtained from
the statistics of the data points corresponding to the age range 19–24 years. The percentage
of mature Tregs at the age of 19 is set to 1 − p19. The maximum likelihood of the fit of the
stochastic model under all proliferation scenarios is in Figure 2.10B. None of the scenarios is
rejected after the likelihood ratio test. Thus, the proliferation in response to antigen stimuli is
not necessary for the lifelong maintenance of a pool of mature Tregs, once the pool is constituted.
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2.3.5 Summary

All our findings are displayed in Table 2.9.

Biological

process

Findings Found

with

Properties
of Tregs

dynamics

1. Homeostasis is maintained over both CD4+CD25+-
CD45RO− precursor and CD4+CD25+CD45RO+ mature
Tregs populations.

Data

2. The ratio between CD4+CD25+CD45RO− precursor and
CD4+CD25+CD45RO+ mature Tregs is inverted in early
adulthood.

Data

3. The inversion of the ratio precursor/mature Tregs is easy to
achieve in the presence of a density-dependent homeostatic
mechanism of the mature Tregs population. In this case,
there is no need of proliferation in response to immunogen
stimulation.

Model

4. The ratio inversion is easy to achieve if there is a thymic or
a constant external input to the mature Tregs population.

Model

Development
of the
mature
Tregs pool

5. In the absence of a density-dependent homeostatic regula-
tion and of an external source of CD4+CD25+CD45RO+

mature Tregs, proliferation of precursors or of mature Tregs

is necessary to the development of the mature Tregs pool.

Model

6. The proliferation of precursors alone is sufficient if the pro-
liferation rate of precursors is significantly larger than the
rate of acquisition of CD45RO following an immunogen
stimulus.

Model

7. The proliferation of mature Tregs alone is sufficient if their
division rate is not too small compared to the division rate
of precursors.

Model

Maintenance
of the ma-
ture Tregs

pool

8. Given that at the age of 20 a peripheral pool of mature Tregs

is constituted, antigen-driven proliferation in the periphery
is not necessary for the maintenance even in the absence of
other input of mature Tregs or of a density-dependent home-
ostasis mechanism.

Model

Table 2.9: Summary of all findings.
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2.4 Discussion

With the help of a mathematical model, we studied different developmental pathways of
regulatory T cells and established conditions in which each of them can explain the biological
data. The stochastic infection process combined with the differential equations with random
parameters and Monte Carlo simulation is a modeling methodology allowing the description of
cell dynamics on the scale of years. We believe that such a scheme is particularly appropriate
for use in human studies, where data is sparse and several sources of uncertainty and noise
have an influence on parameter values. Although still requiring the computation of confidence
intervals, using random parameters was a way of avoiding tedious high-dimensional parameter
fitting by decreasing the number of unknown parameters and instead, introducing distributions
covering an entire set of possible values. In order to keep the model tractable, we have made
several simplifying assumptions. One of them is the assumption that, except for thymic invo-
lution, parameter distributions are independent on age. This is probably a simplification, but
recent studies indicate that CD4+CD25+ Tregs in aged mice are functionally comparable to those
in young mice (Nishioka et al., 2006).

In an effort to keep the model simple, we used a two-phase model (Eq. (2.1) and Eq. (2.3))
that describes the way cells respond to antigen stimulus when only the responder cell population
is considered (Althaus et al., 2007; De Boer et al., 2003). Such a model corresponds to a view
of the immune system where the size of immune responses is proportional to the number of
pre-existing cells. However, the biological reality might be more complicated and it could be
possible that the number of cells produced at the end of an immune response is independent of
the initial number of cells.

We have observed that the number of CD4+CD25+CD45RO− precursor Tregs decreases with
age. This result confirms the findings of Valmori et al. (2005), where the authors point out a
significant negative correlation between the number of precursors and the age of donors. Then,
we have observed that the number of CD4+CD25+CD45RO+ mature Tregs increases with age.
This finding as well goes in the direction of the results of Valmori et al. (2005) and is in accor-
dance with the results of Gregg et al. (2005), where the authors observe an increased number of
peripheral CD4+CD25hi T cells. We then have shown that the ratio between precursors and ma-
ture Tregs is inverted in early adulthood. Furthermore, the model suggested the continuous-time
trajectory of Tregs. In particular, we have observed interesting cell dynamics during infancy and
puberty, time-periods for which we have not found immunological data due to ethical reasons.
As this is the period of life where the thymus functions at a maximal regime, we have observed
an important increase of thymus-derived precursor cells, peaking at 10-12 years old, age cor-
responding to the onset of puberty. Then, precursor cells start their decline, while mature Tregs

continue their progressive increase, having their most important increase rate in the age range
0-20 years. The latter is thus a critical period for the constitution of a pool of mature Tregs. This
ratio inversion was also a critical issue of the model behavior; it led to the elimination of some
model scenarios that could not reproduce it.

We have studied several pool-size regulation mechanisms of Tregs: density-independent and
density-dependent renewal/death of mature Tregs, as well as a constant or time-dependent ex-
ternal contribution. Given these distinct mechanisms, we have identified conditions in which
the antigen-driven proliferation is necessary for the creation of a viable pool of CD4+CD25+-
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CD45RO+ Tregs. It turned out that the antigen-driven proliferation is not necessary if a density-
dependent homeostatic mechanism regulates the pool of mature Tregs. In other terms, as we
found no information about the exact values of the parameters governing the homeostatic
regulation, the antigen-driven cell division could be replaced in our model by a homeostatic
(cytokine-driven) proliferation. However, the homeostatic expansion is unlikely to be the main
source of mature Tregs, because if that was the case, the diversity of the T cell receptor (TCR)
repertoire would be reduced by competitive exclusion. Indeed, if there is no external contri-
bution to this cell population, the diversity of T cell receptors would be determined by the
few cells present at birth. Yet, it is known that Tregs have an αβ TCR repertoire with size and
diversity closely similar to those of CD4+CD25- T cells (Fazilleau et al., 2007). Therefore,
we believe that in addition to a homeostatic mechanism, other sources of de novo generation
should be present.

In that perspective, we have studied other sources of mature Tregs that are able to replenish
the peripheral pool of mature CD4+CD25+CD45RO+ Tregs and enrich the TCR repertoire. One
such source is the thymus output of mature Tregs. We have established the percentage of Tregs

that should be output daily from the thymus so that the peripheral expansion of this population
is not required for a successful development of the pool. This threshold is about 20% of all
CD4+CD25+ T cells output from the thymus, or, equivalently, less than 0.3% of all CD4+ T
cells exiting the thymus. Another question arises then: are Tregs with a mature phenotype able
to exit the thymus? We found two points of view in the literature.

On the one hand, Wing et al. (Wing et al., 2003) claim that only regulatory T cells with a
naive phenotype, namely CD45RO- precursors, are released in the periphery from the thymus
(corresponding to our homeostasis scenario (i)). If this is indeed the case, then we have demon-
strated that proliferation of both CD4+CD25+CD45RO− and CD4+CD25+CD45RO+ cells is
sufficient, but not necessary for the development and maintenance of a pool of Tregs. In sce-
nario 3(i), where only precursors proliferate, we saw that if the differentiation rate of CD4+-
CD25+CD45RO− precursors into CD4+CD25+CD45RO+ mature Tregs is similar to or greater
than the proliferation rate of precursors, the model cannot explain the data. However, it is
unlikely that precursor cells stop suddenly their proliferation because of the acquisition of the
mature phenotype. Our in vitro experiments have shown that in presence of antigen with a
co-stimulatory signal, precursor CD4+CD25+CD45RO− cells proliferate intensively while ac-
quiring the memory phenotype (unpublished data). This observation suggests that either the
acquisition of CD45RO is not associated with anergy during a first priming, in which case,
instead of scenario 3(i), scenario 1(i) would be the appropriate model, or the parameters gov-
erning cell dynamics have the property that the rate of proliferation of precursors is greater
than the rate of differentiation into mature Tregs, in which case scenario 3(i) is in accordance
with the in vivo data. In scenario 4(i), where only activated recently-matured CD4+CD25+-
CD45RO+ cells proliferate, cells start their intense proliferation after a time-delay, which is
compatible with the fact that regulatory T cells activate slowly, only when there is a sufficient
amount of growth resources in the environment. The fact that the expansion of regulatory T
cells is dependent on growth factors produced by other cells was also pointed out in (Burroughs
et al., 2006; León et al., 2000) . A recent study (Lee et al., 2008) brings light to the molecular
mechanisms through which Foxp3 maintains the unresponsiveness of Tregs. The link of Foxp3
to c-Jun blocks proliferation and therefore makes it even more difficult for Tregs to activate and
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proliferate. Scenario 4 with its initial delay, attests for this difficulty.
On the other hand, it cannot be excluded that a small proportion of mature-type Tregs might

exit thymus tissues. Vanhecke et al. (1995) identify five stages of thymocyte differentiation
during which CD4+ T cells acquire and lose several surface receptors. The last two stages
define the most mature cells that consist of CD4+CD1−CD45RO+ (stage 4) and CD45RO−

(stage 5) helper T cells. As no particular sorting was applied to mark regulatory T cells in
this study, we can assume that they are comprised in the above populations. Vanhecke et al.
(1995) claim that both stage 4 and stage 5 cells emigrate from the thymus in a severe combined
immunodeficient mouse carrying a human thymus, even though they consider CD45RO- stage
5 cells as more mature. Another question arises then, which is whether these thymic emigrants
with mature profile switch back to a naive form soon after their entry in the periphery or not.
This event was not considered in our mathematical model, but it will certainly reinforce the
need of proliferating capacity of Tregs for the development of a reliable pool. However, if these
stage 4 CD45RO+ Tregs maintain the mature profile once in the periphery, their number could
be sufficient for the development of a pool of mature Tregs.

Recent studies point out the presence of an input of mature Tregs coming from non-regulatory
helper T cells (Vukmanovic-Stejic et al., 2006). This hypothesis is perfectly able to explain
the biological data, when daily there are at least 105 CD4+CD25− cells acquiring a regula-
tory profile. To our knowledge, there is no quantitative data measuring this transformation,
nonetheless, we hypothesize that this external contribution should be such that the entire pool
of CD4+CD25+FoxP3+ cells, including naturally occurring thymus-derived Tregs, is in steady
state, as suggested by our data.

At last, we have shown that although the antigen-driven proliferation of regulatory T cells
is essential for the development of a pool of mature Tregs, it is not a critical issue for the lifelong
maintenance of this compartment. This finding confirms the intuitive fact that the homeostasis-
related kinetics have more impact on the lifelong maintenance of a cell population than the
antigen-response kinetics.

An important contribution of the mathematical model described here is the suggestion of
new research directions that will deepen our knowledge about regulatory T cells. Indeed, our
results led to the identification of crucial mechanisms having an important impact on Tregs

dynamics and that could be subject to further investigations: the quantitative assessment of the
parameters governing the homeostatic maintenance of Tregs, the assessment of the quantity of
mature Tregs exiting the thymus, and the quantitative description of the phenomena transforming
a non-regulatory cell into a regulatory CD4+CD25+FoxP3+ T cell in vivo.

In conclusion, the mathematical model allowed us to have a global view on the lifelong
dynamics of Tregs. We evaluated three different homeostatic scenarios about possible sources
of mature Tregs that can explain how a stable pool of Tregs is developed and maintained through
human life. This enabled us to appreciate and estimate the different contributions of each
single path in the absence of others. Moreover, we also evaluated four different scenarios
concerning the intrinsic proliferation ability of precursors and mature Tregs. This ability has a
considerable impact on Tregs development and maintenance if precursors are the unique source
of mature Tregs. Our model is the first attempt to mathematically and computationally describe
the behavior of regulatory T cells over life. The mathematical model is able to estimate the
trend of Tregs over time when one or more sources are affected. Although it is already possible
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to have an empirical idea of the future trend of regulatory T cells from the blood of a patient,
it is not possible to predict their amount at a certain time in the future. Further developments
could allow our in silico model to virtually monitor and predict the dynamics of regulatory
T cells through an individual life. This application can be particularly useful for prospective
studies on patients that received a solid organ transplant or are suffering from an autoimmune
disease. Such patients have often decreased numbers of Tregs in their blood when compared to
healthy donors. Once the mathematical model is able to predict the amount of Tregs over time,
it would allow to individually dose the immunosuppressive drugs needed to prevent chronic
rejection episodes or disease relapses. In the perspective of introduction of regulatory T cells in
cell-therapy as a more specific and sophisticated substitute to immunosuppressive drugs (Riley
et al., 2009), our model is a first step towards the development of tools aiming the clinical
monitoring of regulatory T cell dynamics before and after their adoptive transfer.
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Chapter 3
Analysis of the Tregs Model

In this chapter are given theoretical results related to the model of regulatory T cells pre-
sented in Chapter 2. In Section 3.1, we obtain an analytical expression of the dynamical system
in question by solving the differential equations Eq. (2.1), Eq. (2.3) and Eq. (2.3) in the par-
ticular case where these are linear (in the absence of homeostasis). In the following section
(Section 3.2), we present the detailed computation of the mean dynamics, again in the absence
of homeostasis. Finally, in Section 3.3, we describe how is estimated the density of model
trajectories, needed to compute the maximum likelihood of a scenario.

3.1 Generic model solution

In this section, we consider the Tregs model under homeostasis scenario (i), i.e., where
there is no competition between cells for a common resource, nor fratricide. In this case,
gQ(t) = 0, sQ = 0, ϕQ = 0, α = 0 and the ODE system of Eq. (2.3) is linear. As the ODEs
describing immune responses are linear as well, we can easily solve the generic model. To do
that, we write the differential equations corresponding to the nth immune reaction at time τn in
matrix form:

dYclone(t)
dt

= ⎧⎪⎪⎨⎪⎪⎩A Yclone(t) if τn ≤ t ≤ δ

B Yclone(t) if δ ≤ t ≤ τn+1
, (3.1)

where

A = ⎛⎜⎝
aP − b 0 0

0 −f 0
b f aR

⎞⎟⎠ and B = ⎛⎜⎝
−dP 0 0
0 −dQ c
0 0 −(c + dR)

⎞⎟⎠
are respectively the matrices defining the expansion and contraction phases of the immune
reaction. Solving Eq. (3.1) for t ∈ [τn, τn+1] yields:

Yclone(t) = eBte−B(τn+δ) eAδ Yclone(τn), (3.2)

where the matrix exponential of a square matrix X is defined as eX = ∑∞
k=0

1
k!X

k .
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The homeostatic activity of the cells Yout(τn) that are not part of a clone at the time of
occurrence of the nth immune reaction can be written as:

dYout(t)
dt

= f(t) +CYout(t), (3.3)

where

f(t) = ⎛⎜⎝
gP (t)

gQ(t) + sQ
0

⎞⎟⎠ and C = ⎛⎜⎝
−hP 0 0
0 −hQ 0
0 0 0

⎞⎟⎠
represent respectively the thymic output and the homeostasis matrices. Solving Eq. (3.3) for
t ∈ [τn, τn+1] yields:

Yout(t) = F (t) + eC(t−τn) Yout(τn), (3.4)

where

F (t) = ⎛⎜⎜⎝
σP

hP−ν
(e−νt − e−ντn−hP (t−τn))

σQ

hQ−ν
(e−νt − e−ντn−hQ(t−τn)) + sQ

hQ
(1 − e−hQ(t−τn))

0

⎞⎟⎟⎠ .

We obtain the expression defining the generic model dynamics between two consecutive
immune reactions by evaluating Eq. (3.2) and Eq. (3.4) at time τn+1 and by using the fact that
Yout(τn) = Y (τn) − Yclone(τn):

Y (τn+1) = (eB(Δn−δ) eAδ − eCΔn) Yclone(τn) + eCΔnY (τn) + F (τn +Δn), (3.5)

whereΔn = τn+1−τn. The probability that the nth immune reaction is primary (resp. secondary)
is given by:

P(Yclone(τn) = πn(P (τn), 0, 0)′) = q(τn)
P(Yclone(τn) = πn(P (τn), Q(τn), 0)′) = 1 − q(τn).

The initial condition (at birth: t = 0) is Y (0) = (P0,Q0,0)′.
3.2 Mean model dynamics

Here, we consider again the simple case of homeostasis scenario (i), and we study the model
dynamics when all parameter values are set to their mean value. For this purpose, we assume
in this section that all parameters are fixed to their mean value, but to keep the notation simple,
we use in what follows the same symbols as previously.

The mean system dynamics are computed from Eq. (3.5) by taking the expectation over
the stochastic quantities of the model. Let ξn = (Yclone(τn),Δn, πn) be the vector of random
variables in our model. The distribution of Yclone(τn) is Bernoulli with parameter q and πn is
uniform over the range [10−7,10−4], ∀n. The distribution of Δn is the exponential distribution
shifted by the constant δ and its density is given by

φΔn(x) = ⎧⎪⎪⎨⎪⎪⎩
1
λe

−
(x−δ)

λ if x > δ

0 otherwise.
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We can write:

Eξn[Y (τn+1)] = Eξn [(eB(Δn−δ) eAδ − eCΔn) Yclone(τn)]+ Eξn [eCΔn]Y (τn) +Eξn[F (τn +Δn)]= EΔn [(eB(Δn−δ) eAδ − eCΔn)] EYclone(τn),πn[Yclone(τn)]+ Eξn [eCΔn]Y (τn) +EΔn[F (τn +Δn)],
where we have used the fact that Y (τn) is independent of ξn and that Yclone(τn) is independent
of Δn. If I is the identity matrix, we have the following results:

EΔn [eB(Δn−δ)] = (I − λB)−1
EΔn [eCΔn] = eCδ(I − λC)−1

E[Yclone(τn, πn)] = q(τn) Eπn[πn(P (τn),0,0)′]+(1 − q(τn)) Eπn[πn(P (τn),Q(τn),0)′]
= ⎛⎜⎝

π̄ 0 0
0 (1 − q(τn))π̄ 0
0 0 0

⎞⎟⎠Y (τn) = U(τn) Y (τn) (3.6)

EΔn[F (τn +Δn)] = λ

⎛⎜⎜⎝
σP e−ντn

(1+λν)(1+λhP )
σQe−ντn

(1+λν)(1+λhQ)
+ sQ

1+λhQ

0

⎞⎟⎟⎠ = F ∗(τn). (3.7)

If we let Y ∗(τn) = Eξn[Y (τn)], we can write

Y ∗(τn+1) = ⎡⎢⎢⎢⎢⎢⎢⎣[(I − λB)−1eAδ − (I − λC)−1eCδ]U(τn)�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
infection matrix: MI

+ (I − λC)−1eCδ�������������������������������������������������������������������������
pool-size control: MH

⎤⎥⎥⎥⎥⎥⎥⎦�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
J∗ =MI(τn) +MH

Y ∗(τn) + F ∗(τn)�������������������
thymus

= J∗(τn)Y ∗(τn) + F ∗(τn), (3.8)

where U(τn) is given by the square matrix in Eq. (3.6) and F (τn) is given by Eq. (3.7). The
mean model dynamics are obtained by applying the iteration of Eq. (3.8) to the initial condition
Y ∗(0) = (P̄0, Q̄0,0)′, where P̄0 and Q̄0 are the average values of P0 and Q0.

3.3 Model density estimation

In order to estimate the model density accurately, we computed confidence intervals on the
bivariate histogram depicted in Figure 2.6A of Chapter 2. In this section, we describe how this
is done. This is important because this density is used to formally reject a model scenario.

First, we introduce the necessary theoretical framework. We have a data setX = (x1, . . . , xn)
that we view as the realization of a stochastic system (the output of a simulator). We usually
assume that the model has a density of probability, and that the output (x1, . . . , xn) depends

51



CHAPTER 3 : Analysis of the Tregs Model

on a parameter θ; we denote this density by f(x1, . . . , xn∣θ). It is also called the likelihood of
the observed data. The framework of parametric estimation theory consists in assuming that
the parameter θ is fixed, but unknown. An estimator of θ is any function T (⋅) of the observed
data. The maximum likelihood estimator (MLE) is the value of θ that maximizes the likelihood
f(x1, . . . , xn∣θ); we denote it by θ̂. This definition makes sense if the maximum exists and
is unique, which is often true in practice. Definition 1 gives a formal set of conditions that
guarantee the existence and uniqueness of the MLE.

Assume that the parameter θ is multidimensional, i.e., it varies in an open subset Θ of Rk.
The observed information is defined by the symmetric matrix

[J(θ)]i,j = −∂2(θ)
∂θi∂θj

,

where (θ) is the log-likelihood defined by

(θ) = log(f(x1, . . . , xn∣θ)).
The Fisher information, or expected information is defined by the matrix

[I(θ)]i,j = −Eθ(J(θ)) = −Eθ (∂2(θ)
∂θi∂θj

) ,
where the notation Eθ means that the expectation is a function of θ.

Before stating the asymptotic result that leads to the confidence intervals of θ, we state the
regularity conditions.

Definition 1. Regularity conditions for maximum likelihood asymptotics.

1. The set Θ of values of θ is compact (closed and bounded) and the true value θ̂ is not on
the boundary.

2. For different values of θ, the densities f(X ∣θ) are different.

3. There exists a neighborhood B of θ∗ and a constant K such that for θ ∈ B and for all
i, j, k, n, we have 1

nEθ(∣∂3X(θ)/∂θi∂θj∂θk∣) ≤ K.

4. For θ ∈ B, the Fisher information has full rank.

5. For θ ∈ B, the interchanges of integration and derivation in∫ ∂f(X ∣θ)
∂θi

dx = ∂

∂θi
∫ f(X ∣θ)dx

and in ∫ ∂2f(X ∣θ)
∂θi∂θj

dx = ∂

∂θi
∫ ∂f(X ∣θ)

∂θj
dx are valid.

The following theorem is proven in Davison (2003).

Theorem 1. Under the conditions of Definition 1, the MLE θ̂ exists and converges almost
surely to the true value. Further, I(θ)1/2(θ̂ − θ) converges in distribution to a standard normal
distribution, as n goes to infinity. It follows that, asymptotically:

1. the distribution of θ̂ − θ can be approximated by N(0, I(θ̂)−1) or N(0, J(θ̂)−1);
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2. the ditribution of 2((θ̂)−(θ)) (also called the likelihood ratio statistic) can be approx-
imated by a chi-square distribution with k degrees of freedom, where k is the dimension
of Θ.

We use the following corollary to define the confidence interval on θ.

Corollary 1. (Asymptotic confidence intervals) When n is large, an approximate confidence
interval for the ith coordinate of θ is

θ̂i ± η

√[I(θ̂)−1]
i,i

or θ̂i ± η

√[J(θ̂)−1]
i,i
, (3.9)

where N0,1(η) = 1+γ
2 (for example, with γ = 0.95, η = 1.96).

We apply the above corollary to the estimation of our model’s density. The statistic that we
use is the bivariate histogram of U and V . Remind that U(t) = log(P (t)/(Q(t) +R(t))) and
V (t) = log((P (t)+Q(t)+R(t))/T (t)), where T (t) is the total number of T cells at time t. To
simplify the notation, consider for the moment a univariate histogram, built from n independent
observations that fall into categories 1, . . . , k (the bivariate case is straightforward). Let Yi

denote the number of observations in category i. If πi is the probability that a single observation
falls into category i (0 < πi < 1 and ∑k

i=1 πi = 1), the random variable Y⃗ = (Y1, . . . , Yk)′
is multinominal with probabilities (π1, . . . , πk) and denominator n. We want to estimate the
parameters θ = (π1, . . . , πk)′ of the multinomial. As πk = 1−π1−⋯−πk−1, the parameter space
is the interior of a simplex in k dimensions, that is, the set

{(π1, . . . , πk) ∶ k∑
i=1

πi = 1,0 < π1, . . . , πk < 1}
of dimension k − 1. Therefore, there are k − 1 parameters to estimate.

Given data y1, . . . , yk, the likelihood under the multinomial model is

L(θ) = n!

y1!⋯yk!
πy1
1 ×⋯× πyk

k ,
k∑
i=1

πi = 1, 0 < π1, . . . , πk < 1,

where ∑i yi = n, so the log-likelihood is

(θ) ≃ k−1∑
i=1

yi logπi + yk log(1 − π1 −⋯− πk−1).
The observed information matrix has general term

− ∂2(θ)
∂πi∂πj

= ⎧⎪⎪⎨⎪⎪⎩
yi
π2
i
+ yk

(1−π1−⋯−πk−1)2
, for i = j

yk
(1−π1−⋯−πk−1)2

for , i ≠ j,
,

where i and j run over 1, . . . , k−1. It is easy to see that the maximum likelihood estimators are
π̂i = Yi/n. The expected information matrix involves E(Yi), which is calculated by noting that
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the marginal distribution of Yi is binomial with probability πi and denominator n. The mean of
Yi is therefore nπi. Thus, the expected information matrix is:

I(θ) = n

⎛⎜⎜⎜⎝
1/π1 + 1/πk 1/πk ⋯ 1/πk

1/πk 1/π2 + 1/πk ⋯ 1/πk⋮ ⋮ ⋱ ⋮
1/πk 1/πk ⋯ 1/πk−1 + 1/πk

⎞⎟⎟⎟⎠
whose inverse is:

I(θ)−1 = 1

n

⎛⎜⎜⎜⎝
π1(1 − π1) −π1π2 ⋯ −π1πk−1−π2π1 π2(1 − π2) ⋯ −π2πk−1⋮ ⋮ ⋱ ⋮−πk−1π1 −πk−1π2 ⋯ πk−1(1 − πk−1)

⎞⎟⎟⎟⎠ . (3.10)

Provided that none of the πi equals zero or one, the regularity conditions of Definition 1 hold
and Theorem 1 applies with I(θ)−1 given by Eq. (3.10), giving us the confidence interval of π̂i:

π̂i ± η

√(1
n
πi(1 − πi)), (3.11)

where N0,1(η) = 1+γ
2 .
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Chapter 4
Mathematical Modeling of AmpliCot

4.1 Introduction

The diversity of T cell receptors (TCRs) is part of the polymorphism of our adaptive im-
mune system and is responsible for the recognition and the defense against possibly an universe
of different pathogens. The structural diversity of TCRs is achieved by somatic gene-segment
rearrangements and random nucleotide additions or deletions (Goldsby et al., 2003). The es-
timation of the effective size of the human TCR repertoire, both in health and disease, is a
fundamental question in immunology and yet, not fully addressed.

A common way to tackle this problem consists in the following two steps: (1) sampling
the repertoire of an individual to measure the sample diversity; (2) extrapolating the whole
repertoire diversity from the sample diversity. The first step of this “general approach" is often
rather experimental, whereas the second is rather theoretical, as discussed in Section 4.1.1.
The work presented in this chapter concerns the first step above and combines experiments and
mathematical modeling in order to better estimate the diversity of a sample.

Several experimental techniques aim at the measurement of the structural TCR diversity
of a repertoire sample. Immunoscope (or Spectratype) gives a qualitative insight of the reper-
toire’s shape in terms clonal sizes (Currier and Robinson, 2001; Pannetier et al., 1993); high-
throughput DNA sequencing exhaustively enumerates the clonotypes of a sample, thus provid-
ing a more detailed picture of the repertoire (Mardis, 2008; Shendure and Ji, 2008). AmpliCot
is an alternative experimental technique that allows the sample diversity measurement through
quantitation of the re-hybridization speed of denatured PCR products (Baum and McCune,
2006). This elegant approach has the advantage over the cloning and sequencing methods to
be time- and expense- effective. However, in order to obtain accurate diversity estimates, the
assay should be performed under very stringent experimental conditions.

The AmpliCot experiment is based on the so-called “Cot analysis" (Britten and Kohne,
1968), according to which the time required for a DNA sample to reanneal (expressed in terms
of the product nucleotide concentration × time, “Cot") is related to the diversity of the sample.
In short, fluorescent SYBR green dye, which binds double-stranded DNA, is added to a sample
of PCR-amplified cDNA. The sample is melted, such that the DNA becomes single-stranded,
and reannealed under very strict conditions in order to avoid heteroduplex formation and allow
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only for the association of perfectly complementary strands (homoduplexes). 1 The annealing
kinetics, measured in terms of fluorescence intensity, are a function of the diversity and of the
concentration of the sample, and have been interpreted assuming second order kinetics.

In order to read the diversity from the resulting annealing curve, Baum and McCune (2006)
propose a simple method. It consists in considering the Cot value at which 50% of the sample
is annealed (Cot1/2 value) as a function of diversity. The authors suggest that the relation be-
tween these quantities is linear. This statement presumes the validity of second order kinetics
(SOK) as a correct model for the annealing kinetics (Yguerabide and Ceballos, 1995). Accord-
ingly, only perfectly complementary pairs of DNA can associate, precluding the possibility
of heteroduplex formation. Under the “stringent" conditions defined in Baum and McCune
(2006), SOK would indeed hold. However, it is possible that a slight deviation from the “ideal"
experimental settings leads to some heteroduplex formation, which would bias the diversity
estimation.

We therefore have two motivations to define a mathematical model of AmpliCot. First,
driven by the fact that SOK might be an over-simplified model, we define a more detailed
scheme in which the formation of transient complexes and heterdoduplexes is allowed. Second,
we consider that sampling the annealing curve at a single point (the Cot1/2 value) is not taking
advantage of all the available information in the data. We believe that the diversity extrapolation
method can be improved by using the information contained in the entire annealing curve.

Thus, in this chapter, we define a mathematical model that describes the annealing kinetics
of AmpliCot and use it to propose an alternative diversity extrapolation procedure. To fit the
model parameters and to test our diversity predictions, we use “toy" data sets consisting in
templates of known diversity from a library of individually synthesized oligonucleotides.

4.1.1 TCR repertoire assessment: State of the art

In this section, we give a (non-exhaustive) overview of the recent advances in the TCR
repertoire assessment. In particular, we focus on studies using mathematical modeling or ad-
vanced statistical analysis. Although the experimental settings evoked here can be used to
measure the structural diversity of BCRs and antibodies, we consider only examples in which
they have been used to study TCRs. In addition, a large part of the existing diversity assess-
ment literature concerns the repertoire of αβ T cells. Therefore, unless explicitly stated, TCR
diversity refers in this section to the structural diversity of αβ TCRs.

The main difficulty in the estimation of TCR diversity comes from the fact that the latter
has to be extrapolated from samples containing only a small part of the entire repertoire. The
difficulty is further increased by the unknown shape of the clonal sizes distribution. A lower
bound estimate was obtained by assuming that all clonotypes are equally represented, as in
Arstila et al. (1999). Using TCR gene amplification and sequencing, the authors found that
there are about 106 different β chains in human blood and that each of these chains can bind,
on average, to at least 25 different α chains. Therefore, a lower bound on the human TCR
diversity was set to 2.5×107. A similar approach was used in Casrouge et al. (2000) to estimate

1. In the context of this chapter, a heteroduplex is a double-stranded DNA (dsDNA) molecule composed of
two imperfectly matching single strands. A homoduplex is a dsDNA molecule with perfectly matching strands.
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the size of the TCR repertoire of naive mouse splenocytes. In these early studies, the use of
mathematics was rather limited and modeling was not involved.

From a theoretical point of view, De Boer and Perelson (1993) developed a probability-
based model in order to answer the question “How diverse should the immune system be?"
Interestingly, the authors find that it is not the large number of foreign antigens that induces an
enormous repertoire diversity, but rather the number of self antigens the immune system needs
to avoid reactivity with. Later, Borghans et al. (1999) adopt a similar methodology to address
the specificity of immunological memory. One of the conclusions of the authors is that memory
lymphocytes should be more specific than the naive ones.

In the last decade, important advances in terms of experimental techniques have been
achieved and with them, statistical and computational methods specifically applied to these
techniques have started developing. Hitherto, the main data source seems to be the so-called
high-throughput DNA sequencing (Mardis, 2008; Shendure and Ji, 2008). The latter is an
optimized and more efficient version of the capillary-based sequencing used in the above-
mentioned early studies (Arstila et al., 1999; Casrouge et al., 2000). T cells are sampled from
the blood and are possibly sorted according to a surface receptor in order to isolate functional
subsets, such as naive or memory cells (Wang et al., 2010). The DNA (or mRNA) coding for
the complementarity determining region 3 (CDR3) of the TCR is then amplified and sequenced.
The resulting data set contains the number of different DNA sequences and their frequency in
the sample, i.e., all the information about the sample distribution. It is therefore straightfor-
ward to put the information in the desired form and, for example, estimate the clonotype or the
clonal size distribution. An example of data representation can be found in Robins et al. (2009,
Fig.6B), where the authors display a histogram of CDR3 sequences with certain length that use
a certain gene segment. The availability of such detailed data sets made urgent the development
of statistical estimators of the whole-repertoire diversity.

Estimating the diversity of TCRs is in fact a particular instance of a classical problem in
statistics. The general setting is that of a population (TCRs) partitioned into a number of classes
(clonotypes), each class corresponding to a distinct species. The goal is to estimate the number
of different classes. Applications of that problem are found in numerous fields: in ecology for
estimating the biodiversity of plants or animals, in computer sciences for database or social
network searches, in linguistics for estimating the size of an author’s vocabulary (Efron and
Thisted, 1976), and many others. Theoretically, there are several ways to tackle the problem,
according to whether the population size is finite or infinite (see Bunge and Fitzpatrick (1993)
for a review). In the context of TCR diversity estimation, the most common approach is to
consider the “species sampling" process. The latter can be viewed as a stochastic process where
new species “arrive" in a sample according to a Poisson process with a rate, itself varying
according to a parametric (mixing) distribution. This approach (or other approximations of
it) has been recently adopted by numerous groups (Rempala et al., 2010; Robins et al., 2009;
Sepúlveda et al., 2010). Although the full TCR repertoire assessment remains an open question,
using the above-mentioned statistical tools has led to refined diversity estimations. The latest of
these (Robins et al., 2009) evokes a TCRβ receptor diversity at least 4-fold higher than previous
estimates and 10-fold higher in the subset of antigen-experienced T cells.

Data output from other experimental techniques aiming the diversity assessment appear in
other forms. For example, Immunoscope/Spectratype produces a histogram of CDR3 lengths,
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but gives no information about the diversity or the clonal size distribution. In AmpliCot, the
distributional information is inherent to the data, but not directly available. Expanded clones
are therefore more difficult to detect. This is why an additional modeling step is necessary to
access all the information contained in the experimental data before extrapolating the whole
repertoire diversity from a data sample.

4.1.2 Our Contributions

As mentioned earlier, the work presented here aims at the correct diversity estimation of
a given repertoire sample. In the literature overviewed in the previous section, most of the
theoretical and computational efforts focused on addressing the second step of the “general ap-
proach", namely inferring the whole-repertoire diversity from the measured sample diversity.
The measurement technique was mainly DNA sequencing. Alternatives to high-throughput se-
quencing, such as AmpliCot, have not been widely used, partly due to the lack of methods for
data analysis or to other experimental issues (Schütze et al., 2010). The main contribution of
this chapter is the improvement of the interpretation of AmpliCot’s experimental data. To our
knowledge, this is the first time that a mathematical model is used to describe this particular ex-
perimental technique. As a result to our modeling, we show that the underlying model assumed
in the original paper by (Baum and McCune, 2006) is insufficient to explain AmpliCot experi-
mental data. A more detailed model, assuming heteroduplex- and transient duplexes formation,
leads to significantly better data fits and accounts for the fluorescence loss observed in (Schütze
et al., 2010). As a consequence, we show that the Cot-based method for interpreting the results
of AmpliCot suggested in (Baum and McCune, 2006) should be applied with caution. Finally,
we suggest alternative methods for sample diversity extrapolation.

4.1.3 Chapter Outline

This chapter is organized as follows. In the next section, among other methodological de-
tails, are presented the AmpliCot assay (Section 4.2.1), the DNA annealing kinetics models
(Section 4.2.3) and the diversity extrapolation methods (Section 4.2.10). The results (Sec-
tion 4.3) are then followed by a discussion (Section 4.4).
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4.2 Materials and Methods

4.2.1 AmpliCot Assay

Samples containing PCR-amplified TCR genes of lymphocytes (or artificially synthesized
oligonucleotides) were mixed with SYBR green fluorescent dye, which binds to double-stranded
DNA. Aliquots of this mixture were placed in the upper and lower rows of a 96-well plate as
the annealing sample and the reference (Figure 4.1A). A replicate (if any) was placed one row
below the original sample. The pre-anneal step consists of measuring the baseline fluorescence
of the samples and of the reference at annealing temperature (Figure 4.1B). Then, the temper-
ature is increased for 2 minutes and the samples melt, whereas the reference stays at annealing
temperature (melting step). Note that there is approximately a one-degree difference in the
temperatures at which two replicates are melted, caused by the temperature gradient feature
of PCR machines. The fluorescence intensity of the samples is strongly decreased during the
melting step, as double-stranded DNA de-hybridizes. During the annealing step, the tempera-
ture of the samples was set back to annealing temperature and the fluorescence intensity as a
function of time was measured every 5-20 seconds (Figure 4.1B). At equal concentrations, the
re-annealing rate is dependent on the diversity of the sample.

4.2.2 Experimental data

Templates of known diversity were created from a library of individually synthesized oligonu-
cleotides and are composed of 64 base pairs, out of which a maximum of 16 can differ. Ampli-
Cot was performed on samples where all sequences are present in equimolar ratio. We had at
our disposal three data sets: the original oligonucleotide data set of Baum & McCune (Baum
and McCune, 2006, Fig.2a) and two other data sets obtained at the University Medical Center
Utrecht (UMCU). To slow down the annealing kinetics, low diversity samples of UMCU data
set 1 were diluted. The inverse of the dilution factor was used as a sample’s concentration.
For the other two data sets, the dilution (and therefore the concentration) was the same for all
diversities. Table 4.1 summarizes the three data sets.

Data set Diversities Nb. of replicates Dilution factor

Baum &
McCune

n = 1,2,5,10,30,48,96 1 Same for all n

UMCU1
n =
1,4,8,16,32,48

2 (n = 1,4,8,16) 1:4 (n = 1,4)
1 (n = 32,48) 1:2 (n = 8,16,32,48)

UMCU2 n = 10,20,30,40 2 Same for all n

Table 4.1: The three data sets of known diversity templates at our disposal.
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4.2.3 Modeling the DNA Annealing Kinetics

Second Order Kinetics (SOK)

Second order kinetics is the minimal model that describes the annealing phase of AmpliCot.
It expresses the fact that two complementary single strands of DNA anneal and form a homo-
duplex. Consider a DNA sample of diversity n. Let Si be the concentration of single-stranded
DNA (ssDNA) molecules of type i, and Dii be the concentration of homoduplexes of type i,
i = 1, . . . , n. We call a the rate of association of two single-stranded molecules. Assuming
a well mixed solution and a large number of molecules, the following differential equations
describe the second order kinetics model (Figure 4.1C):

dSi

dt
= −2aS2

i

dDii

dt
= aS2

i . (4.1)

Let t0 = 0 be the beginning of the annealing phase of AmpliCot and let T be the total concen-
tration of ssDNA molecules inside a sample. Let fi be the proportion of ssDNA of species i at
the beginning of the annealing phase. Assuming that there is no loss of matter, if all dsDNA is
denatured after the melting phase of AmpliCot, there would be fiT single-stranded molecules
of type i at the beginning of the annealing phase and no dsDNA. However, as the fluorescence
level at melting temperature is not exactly 0, some molecules are possibly in double-stranded
form. We call α the proportion of melted molecules at t0 (α ∈ [0,1]). The initial conditions are
thus Si(0) = αfiT and 2Dii(0) = (1 − α)fiT , i = 1, . . . , n. Let F (t) be the concentration of
fluorescent molecules at time t. In the case of second order kinetics,

F (t) = 2
n∑
i=1

Dii(t) = T − n∑
i=1

Si(t).

Complete Model (CM)

This model describes in further detail the biochemical reaction of AmpliCot. We consider
the fact that the hybridization involves two steps and it might result in heteroduplex formation
because of erroneous associations (Figure 4.1C). Encounters of two single DNA strands oc-
cur at rate a. Two strands form either a partially hybridized homoduplex Cii if they are both
perfectly complementary, or a partially hybridized heteroduplex Cij otherwise. Partially hy-
bridized homoduplexes (resp. heteroduplexes) can dissociate at rate d1 (resp. d2), or hybridize
completely at rate z1 (resp. z2) to form the final product Dii (resp. Dij). The differential
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equations describing the change in time of the above-mentioned concentrations are:

dSi

dt
= −2aS2

i − aSi

n∑
j=i+1

Sj + 2d1Cii + d2
n∑

j=i+1

Cij

dCii

dt
= aS2

i − (d1 + z1)Cii

dCij

dt
= aSiSj − (d2 + z2)Cij (4.2)

dDii

dt
= z1Cii

dDij

dt
= z2Cij,

where i = 1, . . . , n and j = i+1, . . . , n. We assume that that the melting process is fast compared
to the re-annealing, and that the melting temperature is so high that no re-hybridization is oc-
curring during the melting phase. Under these hypotheses, the sample contains only ssDNA or
unmelted dsDNA homoduplexes at the beginning of the annealing phase. The initial conditions
for the above system are thus Si(0) = αfiT ,Dii(0) = (1−α)fiT , Cii(0) = Cij(0) = Dij(0) = 0,
i = 1, . . . , n, j = i+1, . . . , n, α ∈ [0,1]. We assume that heteroduplexes have a decreased fluores-
cence intensity compared to homoduplexes and we model this by weighting their fluorescence
by a factor ϕ ∈ [0,1]. The concentration of fluorescent molecules is therefore defined as

F (t) = 2( n∑
i=1

Dii(t) +ϕ
n∑
i=1

n∑
j=i+1

Dij(t)) .
4.2.4 Mean Field Models

An analytic solution for second order kinetics is easy to find, but this is not the case for
the complete model. Solving numerically the above differential equations is computationally
expensive because the size of the system grows with the diversity n. However, when the DNA
particles of each species are in equimolar concentrations in the annealing buffer, the above
differential equations can be simplified by using the fact that if fi = 1/n, the dynamics of the
whole system are proportional to the dynamics of the individual species. In other words, the
dynamics of one specie are equal to the mean of all species. Using this property allows a
reduction of the number of variables from O(n) (in the case of second order kinetics) or O(n2)
(in the case of the complete model) to O(1) (2 or 5 variables). This simplification is thus
removing the dependence of the system size on the diversity. Hence, solving the differential
equations numerically is no longer a hurdle because the computational cost of the numeric
solution is constant. This is very important when dealing with samples of diversity in the
orders of millions, such as, for example, DNA from human naive T cells. The derivation of the
mean field equations are given in the following two sections.

Mean Field Second Order Kinetics

Let S(t) = ∑n
i=1 Si(t) andD(t) = ∑n

i=1Dii(t). If all species are in equimolar concentrations
in the mixture, we have Si(t) = Sj(t), i ≠ j, ∀t. Therefore, S(t) = nS1(t), D(t) = nD11(t)
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and the differential equations Eq. (4.1) become

dS

dt
= −2aS2

n
(4.3)

dD

dt
= a

S2

n
,

where we have used the fact that nS2
1 = S2/n. The solution of this system with initial conditions

S(0) = αT and 2D(0) = (1 − α)T is:

S(t) = αT

1 + 2 a
nαTt

2D(t) = T − S(t),
and the fluorescent molecules

F (t) = 2D(t). (4.4)

Mean Field Complete Model

Assuming equimolar concentrations of each species, we define the following quantities:

S(t) = n∑
i=1

Si(t) = nS1(t)
C(t) = n∑

i=1

Cii(t) = nC11(t)
H(t) = n∑

i=1

n∑
j=i+1

Cij(t) = n(n − 1)
2

C12(t) (4.5)

J(t) = n∑
i=1

n∑
j=i+1

Dij(t) = n(n − 1)
2

D12(t)
D(t) = n∑

i=1

Dii(t) = nD11(t),
where indices 1 and 2 have been chosen arbitrarily to design one species. S(t) denotes ssDNA,
C(t), partially hybridized homoduplexes, H(t), partially hybridized heteroduplexes, J(t), fi-
nal product heteroduplexes and D(t), the final homoduplexes. The differential equations of
Eq. (4.2) can be written in terms of the above variables as follows:

dS

dt
= −a(n + 1)S2

n
+ 2d1C + 2d2H

dC

dt
= a

S2

n
− (d1 + z1)C

dH

dt
= a(n − 1

2
) S2

n
− (d2 + z2)H (4.6)

dJ

dt
= z2H

dD

dt
= z1C,
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with initial conditions S(0) = αT , 2D(0) = (1−α)T , C(0) = H(0) = J(0) = 0, and fluorescent
molecules

F (t) = 2(D(t) +ϕJ(t)). (4.7)

This system of differential equations is solved numerically.

4.2.5 Modeling the AmpliCot Assay

Let R(t) and Araw(t) be respectively the fluorescence intensity of the reference and of the
sample at time t (in minutes). Let tm be the start of the melting step and t0 > tm be the start of
the annealing step (Figure 4.1B). We adopt the following convention: t0 = 0, which implies that
tm < 0. Let Ab be the baseline fluorescence of the sample, which we define as the fluorescence
intensity at time 0 (Figure 4.1B). Similarly, let Rb be the baseline fluorescence of the reference.
The following equations describe the pre-annealing and the annealing step of AmpliCot (we do
not model the melting step, as it does not contain any pertinent information about diversity):

R(t) = Rbh(t) (4.8)

Araw(t) = ⎧⎪⎪⎨⎪⎪⎩Abh(t) for t < tm

AbF (t;Θ, α)h(t) for t ≥ t0,
(4.9)

where F (t;Θ, α) ∈ [1 − α,1] is the concentration of fluorescent molecules determined by the
biochemical reaction model (SOK (Eq. (4.4)), or CM (Eq. (4.7))), with reaction rates Θ, total
concentration T = 1 and proportion α of melted molecules at time 0. The function h(t) de-
scribes phenomenologically the slow fluorescence decay due to degradation of the SYBR green
die (Baum and McCune, 2006). It has the following expression:

h(t) = (K1e
−δ1t +K2e

−δ2t + (1 −K1 −K2)) , (4.10)

where K1,K2 ∈ [0,1] and δ1, δ2 > 0.

4.2.6 Model Fitting to Experimental Data

In order to determine which of the above models of DNA annealing kinetics describes the
experimental data best, we fitted each model to the three data sets. The mean field versions of
the differential equations were solved numerically (except for the second order kinetics model,
where an analytical solution is available) using a Runge-Kutta algorithm written in C. The
parameters were fitted using a least squares procedure (implemented in Matlab) applied to the
log-transformed raw annealing curves.

We assume that some parameters are common to all samples on the samples plate, whereas
others are specific to each sample. We therefore splited the parameters in two groups: the
common parameters Θ, and the sample-specific parameters Ω. The biochemical reaction rates
and the fluorescence of heteroduplexes are common to all samples, whereas the fluorescence
decay parameters (Eq. (4.10)) and the baseline fluorescence are specific to each sample. The
proportion α of DNA molecules that are in single-stranded form at the beginning of the an-
nealing phase is assumed to be common to all samples placed on the same row of the plate.

65



CHAPTER 4 : Mathematical Modeling of AmpliCot

The replicates (if any) placed on another row were allowed to have a different α value, because
the temperature at which samples are melted varies from one row to another 2 and therefore
the amount of melted material observed after the same melting period can be slightly differ-
ent. To simplify notations, we consider α as a common parameter and we make the distinction
whenever unclear. To summarize, we have

Θ = (a, d1, d2, z1, z2, ϕ,αj) (4.11)

Ωi = (δ(i)1 , δ
(i)
2 ,K

(i)
1 ,K

(i)
2 ,R

(i)
b ,A

(i)
b ), (4.12)

where i denotes the ith sample in a given experiment, i = 1, . . . ,N , and j denotes the replicate
index (if any), j = 1 or 2. The reference of each sample is used to fit δ1, δ2, K1, K2 and Rb.
Note that if the pre-anneal measurements are long enough, they can be used as an alternative
to fit the fluorescence decline parameters. The baseline fluorescence intensity of the sample
(Ab) was estimated using the last 10 measurements of the pre-anneal step and corrected for the
fluorescence decline during the melting step obtained from the reference. The annealing curves
of all diversities were used to fit the common reaction rates Θ (Eq. (4.11)).

To slow down the annealing kinetics of samples with low diversities, some samples were
diluted (cf. Table 4.1). The inverse of the dilution factor was used as an indicator of the
concentration. Theorem 2 in Chapter 5 shows how dilution of a sample affects the reaction
rates.

4.2.7 Confidence Intervals on Parameter Values

The 95% confidence intervals on parameter values were computed using 999 bootstrap
replicates of each original data set. The bootstrap was done by sampling with replacement pairs
of points (ti,Araw(ti)) from pre-anneal and annealing curves. The bootstrap replicates where
fitted in the same way as the original data set (see Section 4.2.6). To avoid that the optimization
procedure gets trapped in the same local minimum when applied to bootstrap replicates, the
initial point of the fitting procedure was randomized. The confidence intervals are computed
using order statistics of the bootstrap distribution (Le Boudec, 2010).

4.2.8 Computing the Annealing Percentage (or Data Normalization)

In order to compute the percentage of annealed material, the raw sample was normalized.
This was done by correcting for the baseline fluorescence discrepancies of the reference and
the sample and by correcting for the time-dependent fluorescence decline. In addition, in order
to obtain a percentage of annealed material in the range 0–1, the fluorescence of the sample at
melting temperature (rescaled to the reference baseline, i.e., α in the notation of the model) was
subtracted from the corrected annealing curve. Note that the latter transformation is only valid
under the assumption that the fluorescence at melting temperature is due to measurement noise
and is not an indication of annealed material. Let A(t) be the resulting normalized annealing

2. There is approximately one-degree difference in the in the temperatures at which two replicates are melted,
caused by the temperature gradient feature of PCR machines.
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curve expressed in "percentage annealed". We obtain A(t) from the raw data for t ≥ t0 by
applying the above transformations:

A(t) = Araw(t)
R(t) − Am

Rb

Ab

Rb
− Am

Rb

= Rb

Ab −Am

(Araw(t)
R(t) − Am

Rb

) . (4.13)

The above equation was used to normalize the data, where Ab and Rb were estimated by the
mean of the last 10 measurements of the pre-anneal phase and Am was estimated by the mean
of the measurements during the melting step. If these measurements were not available, Am

was set to the first measurement of the annealing step. According to Baum andMcCune (2006),
the normalized data should be considered in concentration × time (Cot) units to account for the
effect of the concentration differences in the annealing speed of samples. We have used the
inverse of the dilution factor (whenever known) as an indicator of the concentration.

If the model is fitted on the raw data and then needs to be transformed in normalized form,
the above equation can be further developed and simplified in order to be expressed in terms of
the model parameters. Indeed, the fluorescence Am of the sample after the melting reflects the
concentration of unmelted material, which is expressed as F (0) = 2(D(0)+ϕJ(0)) = 2D(0) =(1 − α)T . A fluorescence intensity of Ab is associated to the total concentration T , therefore
the fluorescence at melting temperature can be written as Am = f(F (0)) = (1 − α)Ab. Thus,
following the definition of Araw(t) (Eq. (4.9)) and of R(t) (Eq. (4.8)), one can write:

A(t) = Rb

Ab −Am

(AbF (t;Θ, α)h(t)
Rbh(t) − Am

Rb

) (4.14)

= 1

αAb

(AbF (t;Θ, α) − (1 − α)Ab))
= 1

α
(F (t;Θ, α) − (1 − α))

Th.1= F (t;αθ1, θ2,1),
where the last equality holds following Theorem 2 of the Appendix. F (t) is defined in Eq. (4.4)
or Eq. (4.7), depending on the model.

4.2.9 Cotp and tp Values Estimation

In the original AmpliCot paper (Baum and McCune, 2006), to correct for concentration
differences, time is multiplied by the nucleotide concentration of a sample (Cot = Concentration× time). From the normalized data, one can estimate the Cot value at which a proportion p of
the sample has annealed (p ∈ [0,1]). This is what we call a Cotp value (equivalently, a "Cot
X%" value). A tp value is simply the time at which a proportion p of the sample has annealed
(p ∈ [0,1).

To estimate a tp value from noisy data, we defined a precision interval around p, say [p −
ε/2, p + ε/2], where ε is the precision level. We considered the data points that fall inside the
above interval. Let t̃ be the set of time coordinates of these points. As the annealing curve is
monotonous and the measurement error small, it can be assumed that the search tp value, say
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t∗p , is in t̃. If ε is small enough, the annealing curve is locally approximately linear. Therefore,
taking simply t∗p ≈ (min(t̃) + max(t̃))/2 is approximately correct. Of course, this simple
approximation is sensitive to aberrant values, but since the data is rather smooth and does not
present big deviations from its mean value, this approximation should yield correct results. The
same procedure was applied to Cotp values.

4.2.10 Diversity Prediction Methods

A diversity prediction consists of analysis of samples of oligonucleotides with known di-
versity as a training set for calibration, then predicting the diversity of a sample with unknown
diversity. We consider three different methods of prediction. The first method is the one sug-
gested in Baum and McCune (2006), which we call the “Cot-based" prediction method. In
short, the normalized annealing curves are considered at a single point (the Cot point at which
X% of the material has annealed) and one assumes a linear relation between Cot X% and di-
versity n (Eq. (4.15)), as predicted by second order kinetics. The slope of the latter relation
is estimated using a linear regression and the unknown diversity is predicted from the inverse
relation evaluated at the Cot X% point of the unknown sample.

We propose two alternative methods. The "model-based" method intends to use not only
the information of the annealing curves sampled at one point as in the previous procedure, but
the information contained in the entire annealing curve. It also has the advantage of having the
choice of using the raw or the normalized data. The "model-based" prediction uses the samples
of known diversity to fit the parameters of the underlying annealing kinetics model (second
order kinetics or the complete model). The biochemical reaction rates are then fixed to their
best-fit values and a range of possible values of the diversity n is determined. For each value
of this pre-determined set, the remaining parameters are estimated by fitting the model to the
sample with unknown diversity by minimizing the least-squared errors of the log-transformed
data and model. The log-likelihood of the resulting fit is calculated. The unknown diversity is
estimated as the value of n that maximizes the log-likelihood.

The third method, called "tp-based", is an improved version of the above Cot-based method.
It uses tp values, but instead of assuming a linear relation between tp and n, it uses the best-fit
of the model to infer the (possibly nonlinear) relation. The unknown diversity is read from the
inverse relation. Table 4.2 summarizes the three prediction methods.

Note that the Cot-based method is assuming second order kinetics as the underlying model
for the annealing kinetics. The other two methods can be applied assuming one or the other
underlying models, i.e., second order kinetics or the complete model. However, for the rest of
the manuscript, we will apply both the model- and the tp-based methods assuming the complete
model.

4.2.11 Confidence Intervals on Predictions

In order to test the accuracy of the above prediction methods, we used the low diversity
samples to execute the calibration step of the procedures and we predicted one of the high
diversity samples (n = 48 or 96, depending on the data set). A confidence interval on the
prediction was computed by bootstrapping the diversities on which the model was calibrated
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Method Calibration Prediction

Cot-based 1. Normalize the data. 1. Estimate the Cotp of the un-
known diversity sample.

2. Choose a value of p ∈ [0,1]. 2. Return the value n∗ at
which the linear
regression is equal to the
estimated Cot.

3. Estimate Cotp values for each
known diversity.
4. Do a linear regression on the
Cotp values as function of n.

Model-

based

1. Fit the common parameters Θ
(Eq. (4.11)) of the model (sec-
ond order kinetics or the com-
plete model) to the raw data of
the known diversity samples.

1. Given a value of n ∈
Ñ and the best-fitting com-
mon parameters Θ (Eq. (4.11)),
fit the remaining parameters Ω
(Eq. (4.12)) to the raw data of the
unknown diversity sample and
compute the likelihood of the re-
sulting fit.

2. Define a large set Ñ of pos-
sible diversities susceptible to
contain the unknown diversity.

2. Repeat step 1. for all n ∈ Ñ .

3. Return the diversity n∗ with
the highest likelihood.

tp-based 1. Fit the common parameters Θ
(Eq. (4.11)) of the model (sec-
ond order kinetics or the com-
plete model) to the raw or nor-
malized known diversity sam-
ples.

1. Estimate the value t̃p of
the unknown diversity sample by
normalizing it.

2. Normalize the data and the
model (if not fitted on normal-
ized data).

2. Return the value n∗ at which
the (nonlinear) inferred tp(n) re-
lation is equal to t̃p.

3. Choose a value of p ∈ [0,1].
4. Based on the best-fit param-
eters, infer the relation tp(n) for
large n.

Table 4.2: Prediction methods. The Cot-based method is the one suggested in (Baum and
McCune, 2006) and is based on the assumption that second order kinetics is the correct under-
lying model to describe AmpliCot experiments. The Model-based method uses any underlying
model that is fitted to the full data set; the best-fit parameters are then used to extrapolate an
unknown diversity using the entire annealing curve (not only sampled at one point as in the
Cot-based method). The tp-based method is a hybrid of the other two: it considers Cot values,
but does not assume a linear relation between Cot and n.
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(at least 500 bootstrap replicates). The diversity of the unknown sample was estimated for each
set of bootstrapped calibration curves and statistics were performed on the resulting bootstrap
prediction distribution.
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4.3 Results

4.3.1 Two Models Describing AmpliCot

The aim of AmpliCot is to measure the diversity of a pool of DNA sequences and has
been applied to measure TCR diversity (Baum and McCune, 2006). Samples containing PCR-
amplified products (be it from TCR or BCR genes of lymphocytes or artificially synthesized
oligonucleotides) are mixed with SYBR green fluorescent dye, which binds double-stranded
DNA (dsDNA). Aliquots of this mixture are placed in the upper and lower rows of a 96-well
plate as the annealing sample and the reference (Figure 4.1A). A replicate (if any) is placed one
row below the original sample. The AmpliCot procedure is comprised of three steps: the pre-
anneal, melting and annealing step (Figure 4.1B). The pre-anneal step is intended to measure
the baseline fluorescence of samples and references at annealing temperature. Preliminary
experiments are performed in order to determine the optimal annealing temperature. In many
cases, it is set to three degrees less than the melting temperature Tm. During the melting step,
the temperature is increased to Tm for two minutes, which leads to the dissociation of dsDNA.
By breaking its hydrogen bonds, dsDNA falls apart into two single-stranded DNA molecules.
As a consequence, the fluorescence intensity of the sample strongly decreases. During the
annealing step, samples are put back at annealing temperature and their fluorescence slowly
increases as ssDNA molecules re-associate. Fluorescence readings are performed every 5–
20 seconds, depending on the experiment. At equal concentrations, the re-annealing rate is
dependent on the diversity of the sample.

We consider two models describing the biochemical reaction of the annealing step of Am-
pliCot: second order kinetics (SOK) and the complete model (CM) (Figure 4.1C). We assume
that samples contain a large amount of DNA and that the material is well-mixed, so both mod-
els are defined using ordinary differential equations. The main difference between the models
is the level of detail incorporated in the description of the underlying biochemical reaction.

Second order kinetics is the simplest model that allows the description of AmpliCot. It re-
lates the association of two perfectly complementary single DNA strands under the assumption
that the encounter of two strands is the rate limiting step and that the subsequent polymeriza-
tion is fast compared to the former process. Under these assumptions, the hybridization of DNA
is indeed a second order reaction. The differential equations describing SOK can be found in
Eq. (4.1). This model was proposed in the original AmpliCot paper (Baum andMcCune, 2006).

The complete model takes into account the fact that hybridization involves two distinct
processes: the association of short, homologous sites on two single strands, followed by a re-
versible polymerization (Wetmur and Davidson, 1968). The partially associated complexes can
either fall apart or definitely associate. The model also accounts for the possibility of heterodu-
plex formation which happens in two steps, similarly to homoduplex formation. A detailed
description of the complete model and the differential equations describing it (Eq. (4.2)) can be
found in the Materials and Methods (Section 4.2.3).
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Figure 4.1: The AmpliCot assay and model. A: Samples containing PCR-amplified TCR genes
or oligonucleotides are placed on both extremities of a 96-well plate as the samples and the
reference. B: Data collection in a real-time PCR machine. The baseline fluorescence intensity
of samples and reference is measured at annealing temperature (pre-anneal step). The sample
is then melted at 95○C and its fluorescence drops (melting step). After 2 min. of melting, the
temperature of the sample is quickly set back to annealing temperature to allow for re-annealing
of DNA strands (annealing step). C: Two possible models of the biochemical reactions occur-
ring during the annealing step of AmpliCot. Second order kinetics (top line) is the minimal
model in which only homoduplexes are formed. The complete model (bottom line) considers
the reaction in more details. The association occurs in two steps, a first encounter, followed by
a zippering reaction. It also includes the possibility of heteroduplex formation.

4.3.2 The SOK model gives a good description of Baum&McCune’s data

In order to evaluate which model best reflects the experimental reality, we have fitted both
models to the raw data of Baum and McCune (2006). For details on the fitting procedure, we
refer the reader to Section 4.2.6 of the Materials and Methods.

Figure 4.2 illustrates the experimental data of the pre-anneal (t < 0) and the anneal (t ≥ 0)
steps of AmpliCot, together with the best-fit of both models (green: SOK, red: CM). Each panel
corresponds to a sample of one particular diversity. Visually, both models fit the data reasonably
well and the maximum likelihoods of both fits are rather similar (Table 4.3). Although the
complete model gives a significantly better fit to the data compared to second order kinetics
(according to the F-test for nested models, p-value < 10−3), the latter, which has 6 parameters
less, is producing a fairly good description of the data. In addition, the best-fit parameters of
the complete model (Table 4.3) suggest that the rate limiting step of the reaction is the first
association and not the subsequent polymerization (z1 is large compared to a). Since the best-
fit parameters suggest that homoduplex formation does not necessitate transient complexes
(d1 ≈ 0 and z1 large), we tested whether the complete model can be simplified in that direction
by fixing d1 to 0 and z1 to a very large value (1000). It resulted in a model version where only
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Figure 4.2: Best-fit of Baum&McCune’s raw data for known diversity templates (each panel).
Solid blue: data sample (t < 0: pre-anneal phase, t ≥ 0: annealing kinetics). Dashed blue lines:
the inferred kinetics of the "unmelted" sample, as predicted by the model. Black: reference.
Solid green: best-fit of second order kinetics. Solid red: best-fit of the complete model. The
fit of Eq. (4.8) to the reference is not visible, because it perfectly overlays the data. For color
references, please consult the online electronic version of the thesis.
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Model Param.
Data set

Baum UMCU1 UMCU2
Value 95% CI Value 95% CI Value 95% CI

SOK

ML 35 663 11 241 6 888
a 2.45 [2.42, 2.47] 13.36 [13.26, 13.41] 7.59 [7.5695, 7.6097]
α1 0.5522 [0.5513, 0.5530] 0.7334 [0.7327, 0.7340] 0.8048 [0.8043, 0.8051]
α2 - - 0.8110 [0.8103, 0.8115] 0.7948 [0.7941, 0.7951]

CM

ML 39 444 14 532 13 987
a 2.06 [1.81, 7.38] 509.66 [454.1, 920.84] 38.77 [34.54, 47.84]
d1 0.0058 [0.00, 90.09] 73.2 [66.2, 134.4] 952.88 [640.04, 1500.00]
d2 7.14 [5.55, 656.91] 925.5 [821.2, 1767.7] 59.68 [53.32, 73.63]
z1 27.5 [21.1, 132.9] 2.67 [2.64, 2.73] 161.30 [122.64, 216.22]
z2 0.099 [0.079, 8.079] 1.69 [1.63, 1.79] 1.60 [1.58, 1.62]
ϕ 0.9921 [0.9773, 0.9999] 0.8195 [0.8142, 0.8243] 0.8762 [0.8752, 0.8770]
α1 0.5514 [0.5496, 0.5639] 0.7598 [0.7592, 0.7603] 0.8698 [0.8696, 0.8702]
α2 - - 0.7679 [0.7672, 0.7686] 0.8629 [0.8626, 0.8633]

d1
(d1+z1)

0.0002 [≈ 0, 0.7086] 0.9648 [0.9608, 0.9803] 0.8552 [0.8383, 0.8822]
d2

(d2+z2)
0.9863 [0.9851, 0.9961] 0.9982 [0.9979, 0.9990] 0.9739 [0.9707, 0.9788]

Table 4.3: Best-fit reaction rates and 95% confidence intervals (CI). Each model was fitted to
the data by minimizing the sum of squared errors (on log scale). ML is the maximum likelihood
of the best-fit. The CI (in parenthesis next to the parameter value) were computed using 999
bootstrap replicates (Carpenter and Bithell, 2000). Because there is a tradeoff between the
values of d1 and z1 (resp. d2 and z2), the fractions d1

(d1+z1)
and d2

(d2+z2)
are shown for easier

comparison of the three data sets.

heteroduplexes are formed in a two-step process (via transient complexes). The quality of the
fit of the simplified model with respect to the complete model was not altered (p-value ≈ 1).
Thus, for Baum’s data set, the complete model is not minimal. Furthermore, only ∼ 1% of
the formed complexes end up in heteroduplex form and the fluorescence of the latter is only
slightly lower than that of homoduplexes (ϕ = 0.99). We therefore conclude that second order
kinetics is good enough to describe this data set.

Note furthermore that the confidence intervals of the bio-chemical rates of the complete
model are fairly large (Table 4.3), indicating that several combinations of parameters produce
good fits for this model. As the largest variability is noted for parameters d1, d2, z2 and z2,
we believe that the values of these parameters are correlated (any possibly not identifiable
separately). We therefore provided the values and confidence intervals for d1

(d1+z1)
and d2

(d2+z2)
,

which are more robust. The latter quantities confirm that d2 is always large compared to z2 (CI
for d2

(d2+z2)
does not include 0.5). However, d1 is not always smaller than z1, as the confidence

interval for d1
(d1+z1)

includes 0.5. This indicates that the complete model is still an option to be
preferred over the simplified version of the previous paragraph.

So, if second order kinetics are a good approximation, the Cot-based prediction procedure
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(which assumes the validity of SOK) should yield reasonable results, at least when applied to
the extrapolation of an unknown diversity close to the diversities of the calibration set. In order
to make predictions using the Cot-based method suggested in Baum and McCune (2006), the
raw data were normalized by applying the transformation of Eq. (4.13) and the value of Cot0.5
was estimated from the data and plotted as a function of the diversity n. The resulting plot
(Figure 4.3) is a reproduction of Figure 2c of (Baum and McCune, 2006). The low diversity
samples (n = 1,2,5,10,30,48) are used to make a linear regression. The Cot 50% value of the
sample with "unknown" diversity (n = 96) is then read on the y-axis of the plot and the value of
n at the intercept with the regression line is returned as the searched diversity. The confidence
interval on the prediction is computed here from the confidence limits of the regression. When
the method is calibrated on the samples with diversities 1-48 (Figure 4.3A), the result of the
Cot-based prediction is n = 77, which is a ∼ 20% underestimation of the true diversity. The
confidence interval ([69,87]) is rather large and it is not far from containing the true value.
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Figure 4.3: Cot-based prediction using Cot 50% of Baum&McCune’s data. The raw data has
been normalized using Eq. (4.13) and the value of Cot 50% is plotted as function of diversity.
A linear regression (red solid line) is performed using the calibration set (○) and the intercept of
Cot 50% of the "unknown" sample (●) with the regression line is used to make a diversity ex-
trapolation (prediction). Dashed red lines: confidence interval of the regression. A: Calibration
on n = 1,2,5,10,30,48 gives a prediction of n = 77 (instead of 96), -20% error. B: Calibration
on n = 1,2,5,10,30 gives a prediction of n = 71, -26% error.

Nevertheless, the practical application of AmpliCot is to measure the diversity of T- or B-
cell receptors, ranging in millions, by calibrating on a library of known diversities, orders of
magnitude smaller. We are therefore interested in assessing the performance of the prediction
methods in conditions as close as possible to AmpliCot’s practical application. Hence, as a toy
example, we apply the Cot-based method to predict the highest diversity (n = 96) by calibrating
on samples with diversities 1-30, thus omitting n = 48 (Figure 4.3B). The error of the resulting
prediction has increased to 26% below the true value, while the confidence interval has shrunk
([69,73]). Thus, the Cot-based method leads to underestimating the unknown diversity and the
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error is increasing with the gap between the most diverse calibration sample and the unknown
diversity. This questions the linearity of Cot values as function of n and consequently, the use
of the Cot-based prediction method in practical situations.

4.3.3 The bias introduced by the use of SOK instead of CM has an im-

portant effect on predicting large diversities

We saw in the previous section that even though second order kinetics yielded a reason-
able description of the data, the Cot-based prediction method, which is based on SOK, failed
to provide correct diversity extrapolations. The systematic underestimation of the true diver-
sity questioned the linearity of Cot vs n values. Intuitively, the underestimation suggests that
the relationship is concave. If this is indeed the case, even a slight deviation from linearity
on the scale of 1–100 diversities could introduce an important bias when extrapolating large
diversities.

Having in mind that the CM gave a significantly better fit of the data, we investigated the
shape of the tp(n) function under this model 3. To this end, we applied the transformation
of Eq. (4.14) to the best-fit of the complete model, we estimated t0.5 and plotted it against n
(Figure 4.4A, ●). For comparison, we also plotted on the same figure t0.5 of the data (◆) and of
the SOK model (◾). As expected from theory, SOK exhibited a linear tp(n) relation, whereas
linearity was lost under the CM. Note that the deviation from linearity is small on the scale of
diversities included in Baum’s data set (n ∈ [1,100]).

The initially small bias is however strongly amplified when considering large diversities.
Figure 4.4B reveals that using one model, instead of the other, results in completely different
functions. In other words, the same t0.5 value has a completely different diversity-response
of the inverse t0.5(n) curve. Thus, this confirms the intuition that if the annealing kinetics
are better approximated by the complete model, using the linear relation of second order ki-
netics would largely underestimate the searched diversity. The next two sections describe the
consequences of the validity of the complete model.

4.3.4 Under the complete model, Cot scaling does not correct for concen-

tration differences

We address here the issue of concentration differences between samples. To understand the
problem, consider two samples of same diversity, say n = 1 for simplicity. Imagine that one
of them is twice the concentration of the other. Intuitively, in the more concentrated sample,
molecules need to cover a smaller distance before meeting another molecule, so we expect that
a higher concentration would result in a faster annealing.

Mathematically, the expression defining the annealing curve (Eq. (4.4)) under second order
kinetics contains the product Tt, i.e., the total concentration of DNA × time. This implies that
for a given diversity, the same experiment performed with two different concentrations will
result in different annealing curves. In other words, two identical annealing curves plotted in

3. Note that we consider tp and not Cot values here, because Cot scaling can not be applied to the CM, as
shown in Section 4.3.4.
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Figure 4.4: Using the Cot-based prediction method that assumes SOK when reality is better ap-
proximated by the complete model leads to underestimating large diversities. A: The behavior
of Cot 50% as function of n is computed using both models: second order kinetics (◾ solid) and
the complete model (● dashed). The parameters of the best-fit of Baum’s raw data have been
used. Cot 50% values estimated from the normalized data are also plotted (◆ dash-dotted). For
small diversities, the deviation from linearity is small. B: For larger diversities, the small bias
between both models is amplified, leading to possibly wrong diversity predictions. Connecting
lines are shown to help the visualization of the trend.

time scale do not necessarily imply the same sample diversity. This is a serious problem when
one wants to predict the diversity of a sample out of its annealing kinetics. The Cot scaling used
in (Baum and McCune, 2006) is a solution to this problem in the case of SOK, but it does not
apply under the complete model (see Section 5.2 of Chapter 5 for a mathematical justification).

To illustrate the effect of a concentration change and Cot re-scaling, we have performed in
silico experiments using both models. Figure 4.5A depicts the annealing kinetics of two virtual
samples, one having total nucleotide concentration of T1 = 1 (solid) and the other, concentration
T2 = 2 (dashed). The sample with highest concentration anneals faster, because molecule
encounters occur more frequently. The annealing curve of sample 2 (in time scale) is therefore
increasing faster than the one of sample 1 (Figure 4.5A) although both samples have the same
diversity (n = 40). In order to recover the same annealing curve for both samples, the annealing
kinetics of sample 2 should be slowed down by multiplying time with the concentration. The
result of Cot re-scaling is shown in Figure 4.5B, where both curves overlay perfectly.

In the case of the complete model, a Cot re-scaling can not compensate for concentration
differences, because the functions defining the ODE system of this model are not homoge-
neous 4. A numerical example is shown in Figure 4.5C and D where the in silico experiment
was performed under the complete model. The Cot-scaled curves of Figure 4.5D do not overlay

4. A homogeneous function is a function with multiplicative scaling behavior: if the argument is multiplied by
a factor, then the result is multiplied by some power of this factor. See Section 5.2 of Chapter 5 for a mathematical
illustration.
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Figure 4.5: Cot scaling is valid under second order kinetics, but can not correct for differences
in concentrations under the complete model. Annealing curves for two in silico experiments
having different concentrations (T1 = 1 and T2 = 2). Top two panels: second order kinetics
plotted on a time scale (A) and on a Cot scale (B). The curves in B overlay perfectly, showing
that the Cot scale corrects for the concentration differences. Bottom two panels: heteroduplex
model on a time scale (C) and on a Cot scale (D). In this case, Cot scaling does not lead to
an overlapping of the two curves. Parameters: best-fit parameters of Baum’s data (Table 4.3),
n = 40.

perfectly as was the case under SOK. This is due to the fact that time does not appear solely in
a product with the concentration in the solution of the complete model.

The correct way to handle concentration differences that is valid under both models, is by
rescaling the association rates, as shown in Theorem 2 of Chapter 5.

4.3.5 Under the complete model, the function tp(n) is not linear

Here, we formalize mathematically the intuition of Section 4.3.3. The result presented here
applies also to Cot values under second order kinetics, but because Cot scaling is not valid
under the complete model, we derive it for tp values. Consider tp, p ∈ [0,1], the time point at
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which a proportion p of the sample has annealed. From the definition of the annealing curve
(Eq. (4.14)), the latter is expressed as A(tp) = p. In the case of second order kinetics, tp is a
linear function of diversity, as stated in Baum and McCune (2006). Indeed,

tp(n) = 1

2aα
( p

1 − p
)n, n ∈ N. (4.15)

This above expression was plotted in Figure 4.4 (p = 0.5).
The linear relationship is lost under the complete model, as we saw in Figure 4.4 using the

numerical solution of the ODEs (Eq. (4.6)). An analytical expression of tp(n) under the CM
is available in the particular case of a quasi-steady state (QSS) assumption. If the values of the
reaction rates are such that the transient complexes C and H can be assumed in steady state,
the ODE system is then easily solved (see Section 5.3.4 of Chapter 5 for a solution). From the
resulting solution, one can derive the following expression:

tp(n) = pn

K1 +K2(n − 1) , n ∈ N,
where

K1 = 2αa( z1
d1 + z1

)(1 − p), K1 > 0

K2 = αa( z2
d2 + z2

)(ϕ − p), K2 ∈ R.

Note that tp(n) is a rational (non-linear) function of n, except when p = ϕ. In that particular
case, K2 = 0 and tp(n) = pn/K1 is again linear, but this is not generally true.

4.3.6 Fitting other data sets suggests that SOK is not valid

In order to verify the validity of both models on other data sets, additional experiments were
performed. We present two data sets, one containing diversities n = 1,4,8,16,32,48 and the
second, n = 10,20,30,40. The fits of both models to these data sets are depicted in Figure 4.6
(data set 1) and Figure 4.7 (data set 2). The improvement brought by the complete model was
significant (p-value < 10−3) and this is especially clear when looking at the best-fit of the higher
diversity samples. We could clearly distinguish the time course of both models for n = 32 and
n = 48 of data set 1, where SOK was unable to reproduce the correct curvature and the apparent
“limit" value of the data. Moreover, SOK failed to give the correct asymptote value in the fit of
UMCU data set 2.

The best-fit parameters of the CM (Table 4.3) are very different from those of Baum’s data.
For UMCU data set 1, the association and dissociation rates (a, d1, d2) of transient complexes
are large compared to the polymerization rates z1 and z2. This suggests that a quasi-steady state
assumption for variables C and H can be applied to this data set. In this case, an analytical
solution of the CM is available (see Section 5.3 of Chapter 5 for its derivation). For UMCU
data set 2, the QSS assumption can be valid too, but it seems less obvious in that case. In order
to verify if the assumption is applicable, one should compute and formally compare the two
time scales of the model, as done in Borghans et al. (1996).
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Figure 4.6: Best-fit of UMCU data set 1 for known diversity templates (each panel). Solid
blue: data sample (t < 0: pre-anneal phase, t ≥ 0: annealing phase). Dashed blue: the inferred
kinetics of the "unmelted" sample, as predicted by the model. Black: reference. Solid green:
best-fit of SOK. Solid red: best-fit of the CM. For color references, please consult the online
electronic version of the thesis.
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Figure 4.7: Best-fit of UMCU data set 2 for known diversity templates (each panel). Solid
blue: data sample (t < 0: pre-anneal phase, t ≥ 0: annealing phase). Dashed blue: the inferred
kinetics of the "unmelted" sample, as predicted by the model. Black: reference. Solid green:
best-fit of SOK. Solid red: best-fit of the CM. For color references, please consult the online
electronic version of the thesis.

Similarly to Baum’s data, we remark that the confidence intervals of the composite param-
eter d2

(d2+z2)
are very tight around 0.99 for UMCU1 and around 0.97 for UMCU2. Hence, d2 is

always large with respect to z2, indicating that a large proportion of complexes fall apart before
definitely associating. Contrary to Baum’s data, the same is true for d1 and z1 of UMCU data
sets (d1 is always large with respect to z1).

Note that we have fitted two values for the proportion of single-stranded material at the start
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of the annealing (α1 and α2), each corresponding to samples of the same row. α1 corresponds
to the samples placed on the extremity of the plate, i.e., those that were melted at the highest
temperature. We therefore expect that in these samples, the material melts somewhat faster,
which would lead to a higher α value (α1 > α2). This is indeed the case for UMCU2 data
set, but not for UMCU1. In fact, even though both best-fit values are very close to each other
(α1 = 0.7598, α2 = 0.7679), their confidence intervals do not overlap which indicates that both
values are significantly different. This counter-intuitive result, together with the fact that the
best-fit values of α1 and α2 are very close to each other, suggests that the model can be further
simplified by imposing one single α parameter for all replicates.

Finally, the best-fit parameters indicate that the fluorescence of heteroduplexes was esti-
mated to be only 80-90% of that of homoduplexes (ϕ = 0.82 for data set 1, ϕ = 0.89 for data
set 2), which contrasts with Baum’s data where the few heteroduplexes could have almost the
same fluorescence as homoduplexes.

4.3.7 Diversity-dependent fluorescence loss

We discuss here a phenomena that is typically observed in AmpliCot assays. Once the
annealing has been completed, it has been often remarked that samples do not reach their pre-
anneal values (even after correction for the slow fluorescence decay). This leads to a gap as
shown in the example of Figure 4.8A. We define the gap as the difference between the inferred
unmelted sample and the "limit" values of the annealing samples, predicted by the model. By
“limit" values, we mean that the model is executed for a long time-period (for example 10
hours) with the best-fit parameters of the corresponding data set. Thus, the model is used to
simulate a very long experiment in which all the material re-anneals (t → ∞). A diversity-
dependent gap is then observed in the three data sets (Figure 4.8B and C).
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Figure 4.8: Diversity-dependent fluorescence loss. A: The fluorescence gap is defined as the
difference between the inferred unmelted sample (dashed lines) and the "limit" measured values
of the annealing samples (solid lines) (in this example: n = 40 of UMCU data set 2, both
replicates). The gap increases with diversity. B: Baum & McCune’s data, C: UMCU data sets
1 and 2 (●: replicate 1, ◾: replicate 2). The correlation coefficients and their p-values are in the
legends.
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The same property was observed to a greater extent in Schütze et al. (2010). The authors
of this study constructed samples with very large and known diversities (up to 1012 different
sequences). When they applied the AmpliCot protocol to their oligonucleotide library, despite
the prolonged annealing times (up to 6h.), the fluorescence of samples with diversity 106 and
above stayed well below 50% of its initial value. The authors were therefore unable to mea-
sure the Cot 50% value necessary for applying the Cot-based prediction method. Hence, as
suggested by their Figure 2(a), high diversities seem to be associated with a systematic loss of
fluorescence.

Contrary to second order kinetics, which implies that a sample should always reach its pre-
anneal fluorescence level after re-annealing, the complete model is compatible with the above
observations. We hypothesize that the diversity-dependent fluorescence loss is caused by the
presence of heteroduplexes, which have a decreased fluorescence intensity.

4.3.8 Fluorescence Intensity for Very Large n

In the previous section, we saw that the fluorescence gap is increasing with diversity. In
other terms, the limit fluorescence intensity is inversely correlated with diversity. Here, we
investigate the lower bound of the fluorescence, i.e., we study the fluorescence intensity for
very large diversities. The question that we want to answer is "Would the samples with very
large diversity loose all their fluorescence?" This is of interest, because AmpliCot is designed
to estimate the diversity of TCRs that is orders of magnitude larger than the “toy" data sets of
our study.

By using the analytical solution of the CM under a quasi-steady state assumption (Sec-
tion 5.3), we can derive the time-limit fluorescence intensity F ∗(n) as a function of diversity:

F ∗(n) ∶= lim
t→∞

F (t) = 2(D∗(n) +ϕJ∗(n)),
where D∗(n) and J∗(n) are given by Eq. (5.21) and Eq. (5.20) of Chapter 5.

As n increases, the fluorescence level is decreasing and has limit value

F̃ ∶= lim
n→∞

F ∗(n) = 1 − (1 −ϕ)α. (4.16)

(See also Eq. (5.24) of Chapter 5 for derivation details.) The expression of F̃ (Eq. (4.16))
contains parameters ϕ and α, i.e., the fluorescence intensity of heteroduplexes and the initial
proportion of melted material, respectively. Let us examine the values of these parameters
in order to determine the lower bound of the fluorescence intensity for very diverse samples.
There are four extreme cases of ϕ and α, which lead to three distinct values of F̃ :

(i) ϕ = 1 or α = 0 ⇒ F̃ = 1
(ii) ϕ = 0 ⇒ F̃ = 1 − α
(iii) α = 1 ⇒ F̃ = ϕ
Point (i) is trivial: if heteroduplexes fluoresce as much as homoduplexes (ϕ = 1), the CM

is reduced to a variant of SOK where the DNA association occurs in two steps (heteroduplexes
are not distinguished from homoduplexes) and hence the fluorescence level after re-annealing
would reach its pre-anneal initial value (F̃ = 1); the case α = 0 means that none of the material
has melted, which is unrealistic.
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Point (ii) means that if heteroduplexes do not fluoresce (ϕ = 0), very diverse samples would
loose most of their fluorescence and the only remaining fluorescent material, if any, would be
the proportion 1 − α of unmelted homoduplexes. This can also be seen from the individual
contributions of homo- and hetero- duplexes (see Figure 5.2 of Chapter 5). As n increases, the
proportion of heteroduplexes reaches the limit value α (Eq. (5.23)), whereas the only remaining
homoduplexes are those that have not dissociated during the melting step. Hence, if heterodu-
plexes do not fluoresce, an "ideal" experiment in which the all the material melts (α = 1) would
result in the quasi-total loss of fluorescence in very diverse samples (F̃ → 0).

Symmetrically, point (iii) indicates that in an "ideal" experiment where the all the material
melts (α = 1), there would be only heteroduplexes at the end of the annealing and the maximal
fluorescence would be given by their fluorescence (F̃ = ϕ).

4.3.9 Diversity Predictions

In order to improve the diversity extrapolations of AmpliCot, we propose here two alter-
natives to the Cot-based prediction method: the model-based and the tp-based methods. Both
procedures take advantage of the following results of our modeling:

– The CM is a better description of AmpliCot than SOK;
– Cot scaling does not correct for concentration differences;
– The relation tp vs n is not linear.

The model-based method is based on the first result above. It uses not only the information
of the annealing curves sampled at one point as in the Cot-based procedure, but the information
contained in the entire annealing curve. It also has the advantage of using directly the raw data,
which avoids the introduction of bias and the loss of information due to normalization. The
model-based method uses the samples of known diversity to fit the parameters of the underlying
annealing kinetics model. The biochemical reaction rates are then fixed to their best-fit values
and a range of possible values for the unknown diversity is determined. For each value of n
in this pre-determined set, the remaining parameters (Ωi, Eq. (4.12)) are fitted to the sample
with unknown diversity by minimizing the squared errors. The log-likelihood of the resulting
fit is calculated. The unknown diversity is estimated as the value of n that maximizes the
log-likelihood (see Table 4.2 for a summary of all prediction methods).

The tp-based method is a modified version of the Cot-based one. It uses the second and
third results above. Similarly to the Cot-based procedure, it samples the data at a single point
(which has to be chosen a priori), but instead of assuming a linear relation between tp and n, it
uses the best-fit of the complete model to infer the (possibly nonlinear) relation. The unknown
diversity is read from the relation t−1p (t). The advantage of this method with respect to the
model-based one is to ignore the regions of the annealing curve where the model does not fit
the data well. The drawback is that one has to choose a “good" tp value (we discuss this topic
in Section 4.3.10).

In order to compare their performance, we have applied the three prediction methods to
Baum’s data and to UMCU data set 1. All but the two largest diversity samples were used for
calibration (n = 1,2,5,10,30 for Baum’s data, n = 1,4,8,16 for UMCU data) and the goal
was to predict the largest diversity (n = 96 for Baum’s data, n = 48 for UMCU data). UMCU
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data set 2 was left out, because it contained too few diversities for the calibration set. Table 4.4
displays the results of the prediction experiments. The confidence intervals were computed by
bootstrapping the calibration sets, as explained in Section 4.2.11.

Method Data set Prediction Error 80% CI

Cot-based (50%)
Baum 71 -26.04% [71, 75]
UMCU 1 36 -25.00% [31, 38]

Cot-based (80%)
Baum 86 -10.42% −∗
UMCU 1 62 +29.17% [59, 73]

Model-based
Baum 94 -2.00% [61, 135]
UMCU 1 53 +10.00% [39, 53]

tp-based (85%)
Baum 97 +1.04% [73, 129]
UMCU 1 45 -6.25% −∗

Table 4.4: Prediction results. The three methods are described in Table 4.2. All methods were
calibrated on all but the two largest diversity samples. The diversity to predict was n = 96
for Baum’s data and n = 48 for UMCU data. The confidence intervals (CI) were computed
by bootstrapping the calibration data sets (see Section 4.2.11). The error is expressed as the
percentage from the true diversity. ∗The CI could not be computed because the distribution of
bootstrap replicates exhibited a bi-modal shape (see Figure 4.9).

When comparing the predictions obtained by the Cot-based method with those of the model-
based one, we observe an impressive improvement in the case of Baum’s data, although this
data set was nicely explained with SOK. Indeed, the error in the estimation of the diversity
is reduced more than 10 times, passing from 26% to 2% underestimation. The improvement
is more moderate in the case of the UMCU data: the error is reduced a bit more than twice,
passing from 25% underestimation to 10% overestimation. Using the 80% annealing point
instead of 50% in the Cot-based method improves the predictions of Baum’s data, but not of
the UMCU data. For the tp-based method, we show here the results with the highest possible
annealing percentage (85%). It turns out that this method gives the smallest prediction error
for both data sets. The prediction is now within 10% from the true value and the improvement
from the initial Cot 50% method is about 5-fold. Thus, the new prediction methods seem to
yield good results. This was indeed expected, as these methods use more data information than
the Cot-based method.

However, the confidence intervals of the predictions reveal a very large variability around
the values predicted by the model-based and tp-based methods. Nevertheless, these confidence
intervals contain the true diversity, which is not the case for the Cot-based method. To further
analyze the performance of the prediction methods, we have plotted the histograms of boot-
strapped predictions (Figure 4.9). Each prediction method was applied toR bootstrap replicates
and the histogram of resulting diversity estimations is shown (these distributions were used for
the confidence intervals estimations). The true diversity values are indicated by a dashed verti-
cal line. We note that the density of predictions of the Cot-based method (both for p = 0.5 and
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Figure 4.9: Bootstrap distributions. The Cot-based (first and second row of panels), model-
based (third row of panels) and the tp-based method (last row of panels) were executed on
bootstrap replicates of the calibration sets of Baum’s data set (panels A-D) and UMCU data
set 1 (panels E-F). The histograms of the resulting predictions are plotted. The search diversity
is indicated by the red dashed vertical line. The effective number of bootstrap replicates R is
indicated in the upper left corner of each plot. Although the new methods are very sensitive,
their distribution is centered around the true diversity.
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0.8, panels A,B,E,F) are far from the true diversity. Remark moreover the bimodal distribu-
tion of panel B, which indicates that the Cot-based method applied on Baum’s data can yield a
reasonable diversity prediction. The model-based and the tp-based methods have densities cen-
tered around the true value. Again, a bimodal distribution is revealed by the tp-based method
applied on UMCU data set 1 (panel H), which prevented us from computing a confidence in-
terval. Note that predicting a diversity from a bootstrap replicate is rather challenging because
with high probability, the calibration set contains less diversities than the original calibration
set. This can explain why the methods that involve more parameters (the model- and tp-based)
exhibit distributions with larger variance.

4.3.10 Criteria for Choosing a Correct Annealing Percentage

The Cot- and the tp-based prediction methods have one parameter, the annealing percentage
p, that needs to be set before applying the procedure. A last question remains: how to choose
an annealing percentage such that the prediction errors are minimized? Here, we investigate the
dependence of the prediction on the chosen value of p. Figure 4.10 shows this dependence for
both data sets (Baum: A, UMCU: B) and for both prediction methods. Note that the Cot-based
method assumes second order kinetics, whereas the tp-based method is based on the complete
model.
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Figure 4.10: Prediction error as function of the annealing percentage. The Cot- (resp. tp-)
based method was executed with different values of p and the prediction error was computed.
A: Baum’s data, calibration on n = 1,2,5,10,30, predicting n = 96, B: UMCU data set 1,
calibration on n = 1,4,8,16, predicting n = 48.

For Baum’s data, the tp-based method is in general producing a smaller error than the Cot-
based version (except for values of p below 40%). In general, for both methods, it seems that
the prediction is improving as the annealing percentage is increasing. In fact, both methods
give similar predictions for Cot values above 80%. This is not the case for UMCU data (Fig-
ure 4.10B). For this data set, the tp-based method has a more "chaotic" behavior, but it still
seems that higher annealing percentages result in better predictions.
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We searched for criteria that would guide the choice of annealing percentage from the cali-
bration set, before making a diversity extrapolation. In other words, we aimed to find the region
of the data that contains most information about the diversity and that can be inferred from the
calibration data set.

For the tp-based method, a possible candidate would be the quality of the fit. As we saw
in Figure 4.2, the complete model fits some parts of the annealing curve better than others.
For example, the first 10 minutes of Baum’s experiment are not very well explained with our
model, thus we would like to avoid the annealing percentages corresponding to that region.
To see whether there is a positive correlation between the sum of squared errors (SSE) around
an annealing percentage p and the prediction error, we have plotted the latter quantities (Fig-
ure 4.11). There is clearly a positive correlation between both variables (corr. coeff. = 0.83 for
Baum’s data, 0.67 for UMCU data), thus confirming that in general, a good fit implies a good
prediction. However, the relation is not really linear (especially for Baum’s data) and very good
predictions can be obtained with not-so-good fits. Nevertheless, if we use the annealing point
at which the SSE is minimal (p = 0.85 for Baum’s data, and p = 0.47 for UMCU data, figure
not shown), we obtain a reasonably low error in the estimate of the diversity (+1.05% for Baum
and +12.5% for UMCU).
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Figure 4.11: Mean sum of squared errors (SSE) vs prediction error. The tp-based method was
executed with different values of p. The quality of fit at the value of p, in terms of the mean SSE,
is plotted horizontally; the absolute value of the relative prediction error is plotted vertically.
A: Baum’s data, B: UMCU data set 1. A significant positive correlation is observed.

For the Cot-based method, a possible rule could be the quality of the linear regression (in
terms of theR2 statistic). However, we did not find a positive correlation between the latter and
the prediction error. Therefore, we recommend to try the Cot-based method with several Cot
values in order to test the sensitivity of the technique to these values. A higher Cot value can
give better results, but according to our analysis, it is not guaranteed.
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4.4 Discussion

By means of a mathematical model, we analyzed and improved the interpretation of Am-
pliCot (Baum and McCune, 2006). We showed that the initially assumed underlying model,
second order kinetics, is not always the best to describe the annealing dynamics. We propose
an alternative, the complete model, which considers the biochemical reaction in further detail.
The consequences of using this alternative model are twofold: the Cot scaling that was applied
under SOK to account for concentration differences between samples is no longer applicable,
and the relation between tp values and diversity is no longer linear. These facts have casted
doubt on the accuracy of the diversity extrapolation approach based on second order kinetics.
As a solution, we have proposed two alternative prediction methods that take into account the
findings of our modeling.

Our model-based prediction method has several advantages over the Cot-based one. It is
independent on a single annealing percentage, because it considers the entire annealing curve in
order to extrapolate the necessary information. Thus, it uses the full data set, not only a subset
of it. It also yielded good prediction results when applied to the extrapolation of a sample with
diversity at least 3 times larger than the diversities of the calibration set.

A possible drawback of our approach would be its sensitivity to the correct estimation of
the bio-chemical reaction rates. As we saw, the confidence limits of the parameter estimates
are sometimes large (Table 4.3), suggesting that some parameters might not be separately iden-
tifiable. A solution to that problem could be to fit directly the combined parameters d1

(d1+z1)
and

d2
(d2+z2)

.
Another source of inaccuracy might appear on the level of the “diversity fitting" itself. Once

the best-fit reaction rates are found, the diversity extrapolation procedure consists in iterating
over a pre-determined range of diversities n ∈ N̄ and fitting the remaining curve-specific pa-
rameters (see Table 4.2 for a summary of the procedure). The value of n that maximizes the
likelihood of the unknown diversity sample is chosen as the searched diversity n∗. A legiti-
mate question is whether the optimal value n∗ is a global maximum of the likelihood function?
In other words, can we identify n given the best-fit values of the reaction rates? To address
this issue, we have artificially generated data according to both models (SOK and the CM) by
adding random noise to the numeric solution of the ODEs of Eq. (4.3) or Eq. (4.5) (data not
shown). The artificial data was then used to perform the prediction experiments in the same
way it was performed with the real data. When the same model was used to generate and to
fit the artificial data, the resulting predictions were 100% accurate. This indicates that once the
parameter values are found by the fitting procedure, there is an unique value of n for which
the likelihood of the data set with unknown diversity is maximal. Note that this is true for an
uniform species distribution, but it might not be true in presence of expanded clones.

A parameter that strongly influences the output of the model is the baseline fluorescence
of a sample (Ab). This parameter determines the post-annealing fluorescence level, which,
in turn, determines the value of ϕ, the fluorescence intensity of heteroduplexes (and maybe
even the reaction rates determining the fraction of heteroduplexes). In order to obtain the best
possible estimates of Ab, our approach requires long enough pre-anneal measurements. This
was not the case with Baum & McCune’s raw data, where the pre-anneal values lasted for
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only 10 minutes. The problem with such short measurements is the possible instability of
the fluorescence intensity, as seen in this data set. A clear example of this instability can be
seen in the sample of diversity n = 1 (Figure 4.2). Indeed, the fluorescence intensity clearly
increases during the pre-anneal measurements, whereas a slow decline is expected due to dye
degradation. These transient instabilities are influencing the estimation of Ab and thus adding
noise to the rest of the parameter estimates. Good estimates of Ab are needed as well for the
normalization transformation (Eq. (4.13)), hence we recommend that pre-anneal measurements
should last long enough (at least 20-30 minutes).

Another issue related to the estimation of Ab, but also to other parameters, is the time
interval between the true beginning of the annealing and the first measurement (we call this
time interval Δ). We assume that we know the initial conditions of the ODE system at the
beginning of the annealing phase, but the first available measurement is some time after the
start of the annealing. If this time lapse (Δ) is large, it might influence the estimation of the
reaction rates. Parameter Δ also influences the value of the limit fluorescence ϕ, because Ab,
which is determined by the last pre-anneal measurements, is corrected for the time-dependent
fluorescence decay between the last pre-anneal point and the first annealing measurement. It
is therefore important to have a precise knowledge of this time gap. In order to obtain the
best-possible parameter estimates, we tried adding Δ to both models as an unknown parameter
to be fitted. However, as the resulting best-fit values of Δ turned out to be small (less than
a minute for all data sets), for simplification, we have removed this parameter from our main
model description.

The complete model was able to explain the fact that the re-annealed samples do not reach
their pre-anneal fluorescence intensity, even after correction for the fluorescence decline due
to dye degradation, as was noted in Schütze et al. (2010). We suggest that this is due to the
presence of heteroduplexes which have a lower fluorescence than homoduplexes. An alterna-
tive explanation of this phenomena would be that as the annealing temperature is very close to
the melting one, the formed homoduplexes dissociate and re-associate again. We have fitted
such a model to the data and although it accounted for the above-mentioned fluorescence gap,
this model did not explain the beginning of the annealing curves and therefore yielded a signif-
icantly lower quality of the fit with respect to the complete model. An alternative explanation
of the fluorescence gap could be a diminished efficiency of the SYBR green die after melting.
However, this would not explain the diversity-dependence of the gap.

An important issue that was not addressed at this stage is the effect of expanded clones. We
studied here only the case of an uniform distribution of species, which allowed us to reduce
the dimension of the ODE systems. This resulted in a computationally efficient definition of
the models, independent of the number of species. The equimolarity assumption is probably
valid for naive T cells, but its validity is lost in the case of antigen-primed T cell populations
(Naumov et al., 2003), although it was recently shown that the human memory repertoire is
composed of a majority of low frequency clones (Klarenbeek et al., 2010). Nevertheless, the
use of AmpliCot in the presence of even one expanded clone becomes more tricky. If a sample
contains one or several expanded clones, the annealing kinetics of this sample would behave
as if its diversity is lower. Fitting the complete model might become very complex in that
situation and further analysis is needed in order to make a conclusion. In such cases, reading
the annealing curves at a single point as close to completion as possible, as suggested in Baum
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and McCune (2006), would be the best solution at this moment.
Finally, in addition to the development of methods dealing with non-equimolar samples, it

would be of interest to validate our current results with samples of diversity higher than 100
species.
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Chapter 5
Analysis of the AmpliCot Model

In Chapter 4, we defined two models describing the annealing kinetics of AmpliCot, namely
second order kinetics (SOK) and the complete model (CM) (Section 4.2.3). In this chapter, we
derive the theoretical results necessary for the analysis of these models. In Section 5.1, we
formally expose the correct way of handling concentration differences under the CM. We then
rigorously show why Cot scaling is not valid under the CM (Section 5.2). Finally, we present
in Section 5.3 an analytic solution of the CM, valid in the particular case of a quasi-steady state
assumption (QSS).

5.1 Handling Concentration Differences

The theorem exposed in this section shows that comparing samples with different concen-
trations affects the association rates. In fact, correcting the association rates is an alternative to
Cot scaling in accounting for the concentration differences between samples. The advantage is
that this correction can be used with both models, not only with second order kinetics.

Before giving the theorem, we introduce a general framework for describing the models.
The differential equations can be written as:

dx(t;Θ, T )
dt

= F (x,Θ), (5.1)

x(0;Θ, T ) = T ∗ (f , 0⃗m−n)′
where f = (f1, f2, . . . , fn) is the vector giving the proportion of each DNA type inside the
sample (∑n

i=1 fi = 1), 0⃗m−n = (0,0, . . . ,0) is the zero vector of dimension 1 × (m − n), m is the
number of state variables, n is the sample diversity, and x, Θ and F (⋅) are defined differently
according to the model.

We split the parameters in two groups, Θ ∶= (θ1, θ2), in order to distinguish the parameters
that have units depending on the concentration (θ1 = a) from those having time-dependent units
(θ2 = (d1, d2, z1, z2)).
Theorem 2. The normalized dynamics of a sample with total concentration of ssDNA S0 =
γ ≠ 1 and reaction rates Θ = (θ1, θ2) are equivalent to the dynamics of a sample with total

93



CHAPTER 5 : Analysis of the AmpliCot Model

concentration of ssDNA S0 = 1 and reaction rates Θ = (γθ1, θ2). Mathematically,

x(t; θ1, θ2, γ)
γ

= x(t;γθ1, θ2,1).
Proof. Let

y(t; θ1, θ2, γ) ∶= γx(t;γθ1, θ2,1). (5.2)

We will show that y satisfies the same differential equation as x(t; θ1, θ2, γ), which is

d

dt
x(t; θ1, θ2, γ) = F (x(t; θ1, θ2, γ), θ1, θ2) (5.3)

x(0; θ1, θ2, γ) = γ(f , 0⃗m−n) (5.4)

For the initial conditions, we have by definition:

y(0; θ1, θ2, γ) = γx(0;γθ1, θ2,1)= γ(f , 0⃗m−n)′= x(0; θ1, θ2, γ).
Then, using the definition of y(⋅),

d

dt
y(t; θ1, θ2, γ) = γ

d

dt
x(t;γθ1, θ2,1)= γF (x(t;γθ1, θ2,1), γθ1, θ2)

Eq. (5.2)= γF (1
γ
y(t; θ1, θ2, γ), γθ1, θ2)= F (y(t; θ1, θ2, γ), θ1, θ2),

where the last equality holds for both models. Indeed, we show below that it is true for the
function F in the case of the complete model and therefore, it is also true for SOK, as it is a
subset of the former. Let F (⋅) = (F1(⋅), . . . , F1(⋅)), where F1(⋅), . . . , F1(⋅) are the right-hand
sides of the system of Eq. (4.2). We have

γF1 (1
γ
y(t; θ1, θ2, γ), γθ1, θ2) = γ (−2aγS2

i

γ2
− aγ

Si

γ
∑
j≠i

Sj

γ
+ 2d1

Cii

γ
+ d2 ∑

j≠i

Cij

γ
)

= −2aS2
i − aSi ∑

j≠i

Sj + 2d1Cii + d2 ∑
j≠i

Cij

= F1(y(t; θ1, θ2, γ), θ1, θ2)
and similarly for F2, F3 and F4.

The function F (y,Θ) being continuous in y and having continuous first partial derivatives
with respect to y, there is a unique solution to the initial value problem of Eq. (5.3). There-
fore, as y(⋅) is a solution of the differential equation Eq. (5.3), we must have y(⋅) ≡ x(⋅), i.e.,
x(t; θ1, θ2, γ) = γx(t;γθ1, θ2,1), which proves the theorem.

Theorem 2 means that normalized data should not be fitted with unique association rates θ1
for all diversity samples, but sample i should have association rate γiθ1, where γi is an estimate
of the total concentration of sample i.
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5.2 Cot Scaling is Only Valid under Second Order Kinetics

Consider the differential equations defining second order kinetics:

dSi

dt
= −2aS2

i (5.5)

dDii

dt
= aS2

i ,

i = 1, . . . , n. In compact form, these can be written as

dx

dt
= F (x(t)), (5.6)

where x = (S1, . . . , Sn,D11, . . . ,Dnn)′ is a solution of Eq. (5.6). Let

y(t) ∶= Tx(Tt), (5.7)

i.e., a Cot re-scaled system with total concentration T . Differentiating Eq. (5.7) with respect to
t yields

dy

dt
= T 2dx

dt
(Tt) = T 2F (x(Tt)) (5.8)

In the case of second order kinetics (Eq. (5.5)), F is a homogeneous function, i.e., F (Tt) =
T 2F (Tt). Indeed, we have

F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1(t)⋮
Sn(t)
D11(t)⋮
Dnn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2aS1(t)2⋮−2aSn(t)2
aS1(t)2⋮
aSn(t)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

TS1(Tt)⋮
TSn(Tt)
TD11(Tt)⋮
TDnn(Tt)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2aT 2S1(t)2⋮−2aT 2Sn(t)2
aT 2S1(t)2⋮
aT 2Sn(t)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= T 2F (x(Tt)).

Therefore,
dy

dt
= T 2F (x(Tt)) = F (Tx(Tt)) = F (y(t)),

meaning that y(t) is also a solution of Eq. (5.6). Thus, Cot scaling is correcting for concentra-
tion differences under second order kinetics.

Cot scaling is not valid for the complete model, because the function F defining the system
is not homogeneous.
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5.3 Analysis of the CM under a QSS Assumption

We present an analytical solution of the complete model in the particular case of a quasi-
steady state (QSS) assumption. Such an assumption is valid if the association and dissociation
rates (a, d1, d2) of transient complexes are large compared to the polymerization rates z1 and z2
(alternatively, if there are two time scales in the dynamics (Borghans et al., 1999)). By applying
the QSS assumption, we can solve the ODE system (Section 5.3.1) and find equilibrium points
(Section 5.3.2). The solution is further used to the fluorescence intensity for large diversity
samples (Section 5.3.3) and to derive an analytical expression of tp(n) (Section 5.3.4).

5.3.1 Complete Model Solution

The following system of differential equations defines the complete model (assuming equimo-
lar distribution of species):

dS

dt
= −a(n + 1)S2

n
+ 2d1C + 2d2H (5.9)

dC

dt
= a

S2

n
− (d1 + z1)C (5.10)

dH

dt
= a(n − 1

2
) S2

n
− (d2 + z2)H (5.11)

dJ

dt
= z2H (5.12)

dD

dt
= z1C, (5.13)

with initial conditions S(0) = αT , 2D(0) = (1 − α)T , C(0) = H(0) = J(0) = 0, and conserva-
tion law

S(t) + 2(C(t) +H(t) +D(t) + J(t)) = T. (5.14)

If the association/dissociation rates a, d1, d2 of transient complexes C(t) andH(t) are large
compare to the final duplex formation rates z1 and z2, we can assume that the transient com-
plexes reach quickly a steady-state. By setting their corresponding time-derivatives (Eq. (5.10)
and Eq. (5.11)) to 0, we get:

C = a

n(d1 + z1)S2 (5.15)

H = a

n(d2 + z2) (n − 1

2
)S2 (5.16)

By inserting Eq. (5.15) and Eq. (5.16) in the initial system, we get:

dS

dt
= −2K(n)S2

dJ

dt
= a

n
( z2
d2 + z2

)(n − 1

2
)S2 (5.17)

dD

dt
= a

n
( z1
d1 + z1

)S2,
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where

K(n) = a

n
( z1
d1 + z1

+ z2
d2 + z2

(n − 1

2
)) . (5.18)

By using the initial conditions, we obtain the following solution of Eq. (5.17):

S(t;n) = αT

1 + 2K(n)αTt
J(t;n) = a

n
( z2
d2 + z2

)(n − 1

2
) 1

2K(n)(αT − S(t)) (5.19)

D(t;n) = a

n
( z1
d1 + z1

) 1

2K(n)(αT − S(t)) + (1 − α

2
)T,

where we have stressed the dependance on the diversity by putting n in argument.
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(b) n = 100
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(c) n = 1000

Figure 5.1: Dynamics of the complete model under a quasi-steady state assumption for three
different diversities. Eq. (5.19) has been simulated with parameter values from Table 4.3,
UMCU data set 1, total concentration T = 1 in all panels. Fluorescent material (cf. Eq. (5.22)):
solid black. Proportion of heteroduplexes: dashed blue. Proportion of homoduplexes: dot-
dashed red. ssDNA: solid green.

To gain some insight of the above dynamics, Figure 5.1 depicts the three functions of
Eq. (5.19) with parameter values from the best-fit of UMCU data set 1 (Table 4.3) and three
different values of n (n = 10,100,1000). Note that the total ssDNA concentration was set
to T = 1 for each n. As diversity increases, the overall annealing speed, given by the sum
2(D(t;n) +ϕJ(t;n)), is slowing down. Moreover, the proportion of heteroduplexes increases
with diversity, whereas the proportion of homoduplexes decreases. This is intuitive since the
probability for a single-stranded DNA to find its perfectly matching mate in the same number
of encounters is smaller when the total number of species is large.
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5.3.2 Time Limit

An equilibrium point of the system under the quasi-steady state assumption is obtained by
taking the time limit in Eq. (5.19):

S∗(n) ∶= lim
t→∞

S(t;n) = 0

J∗(n) ∶= lim
t→∞

J(t;n) = a

n
( z2
d2 + z2

)(n − 1

2
) αT

2K(n) (5.20)

D∗(n) ∶= lim
t→∞

D(t;n) = (a
n

( z1
d1 + z1

) α

2K(n) + 1 − α

2
)T, (5.21)

where K(n) is defined by Eq. (5.18). The limit values of C and H are 0. The time-limit of the
fluorescence intensity is then

F ∗(n) ∶= lim
t→∞

F (t) = 2(D∗(n) +ϕJ∗(n)). (5.22)

These limit values are illustrated in Figure 5.1.

5.3.3 Diversity Limit

We now consider the equilibrium points of Eq. (5.20) and Eq. (5.21). We want to compute
the limit n → ∞ of J∗(n) and D∗(n). By replacing the expression of K(n) (Eq. (5.18)) back
in Eq. (5.20) and Eq. (5.21), we get after some algebraic manipulations:

lim
n→∞

2J∗(n) = αT (5.23)

lim
n→∞

2D∗(n) = (1 − α)T.
Interestingly, Eq. (5.23) means that for very large diversities, the only material that is found in
homoduplex form is the one that did not initially melt ((1 − α)T ). In other words, if n is large
enough, all the single strands that re-anneal would form heteroduplexes.

From Eq. (5.23), we can write the expression of the fluorescence intensity for large diversi-
ties:

lim
n→∞

F ∗(n) = 2( lim
n→∞

D∗(n) +ϕ lim
n→∞

J∗(n))= (1 − (1 −ϕ)α)T (5.24)

The dynamics of 2D∗(n), 2J∗(n) and F ∗(n) with the best-fit parameters of UMCU data set 1
are shown in Figure 5.2.

5.3.4 Analytical Expression of tp(n)
By using the normalization transformation of Eq. (4.14) and the analytical solution Eq. (5.19)

of the CM under the QSS assumption, we can write the expression of the annealing kinetics:

A(t) = 2(D(t;αθ1, θ2,1) +ϕJ(t;αθ1, θ2,1))= a

nK(n) ( z1
d1 + z1

+ϕ
z2

d2 + z2
(n − 1

2
))(1 − S(t;αθ1, θ2,1)).
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We are now searching for the time tp at which a proportion p of the sample has annealed,
i.e., A(tp) = p. After some algebraic manipulations, we find the following expression of tp as
function of n (n ≥ 1):

tp(n) = pn

2αa (( z1
d1+z1

) (1 − p) + ( z2
d2+z2

) (n−1
2

) (ϕ − p)) .
The above expression can be written as

tp(n) = pn

K1 +K2(n − 1) , (5.25)

where

K1 = 2αa( z1
d1 + z1

)(1 − p), K1 > 0 (5.26)

K2 = αa( z2
d2 + z2

)(ϕ − p), K2 ∈ R. (5.27)

It is valid for n ≠ 1 − K1/K2. Note that for p = ϕ, tp(n) = pn/K1 is a linear function of
n. In order to guarantee the monotonicity of tp(n), p should be smaller than ϕ, which pre-
vents from using very large annealing percentages. Finally, note that tp(n) is bounded above
(limn→∞ tp(n) = p/K2), which might be a problem when applying the modified Cot-based
prediction method to large diversities. When the QSS assumption is valid, Eq. (5.25) can be
inverted and used in the modified Cot-based prediction method for diversity extrapolations.

Figure 5.2: The maximal fluorescence
level (solid line) is bounded below by the
fluorescence of heteroduplexes (here:
ϕ = 0.82). The proportions of homo-
and hetero-duplexes (resp. dashed and
dotted-dashed lines) as function of n.
Parameter values: best-fit parameters of
UMCU data set 1 (see Table 4.3), α =
0.76 and T = 1.
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Chapter 6
Concluding Remarks

In this thesis, we have addressed through mathematical modeling two immunological ques-
tions: the lifelong dynamics of regulatory T cells and the measurement of T cell receptor di-
versity. Our approach was embedded into experimental reality and the developed models were
fitted to biological data.

6.1 Lifelong dynamics of regulatory T cells

6.1.1 The questions we addressed

Using a mathematical model, we studied the effect of different sources and division capac-
ities on the lifelong dynamics of the in vivo pool of Tregs. We identified two properties of the
dynamics: a common equilibrium mechanism operating over precursor and mature Tregs pop-
ulations and a ratio inversion in the early years of adulthood. We identified several biological
scenarios that reproduce the above properties. Studying the lifelong in vivo dynamics of reg-
ulatory T cells is an essential step in the elaboration of a tool able to predict Tregs population
size as a function of time. This tool could be used in the fine-tuning of future treatments of
pathologies such as transplanted organ rejection or auto-immune diseases.

6.1.2 Recent Advances and Open Questions

Recent experimental investigations have confirmed some of our findings and have further
suggested possible modifications to our Tregs model. Here, we cover some of the latest studies
that are related to ours.

In our Tregs model, we considered structural subsets of Tregs. Precursor Tregs were first
identified in 2005 (Fritzsching et al. (2006); Seddiki et al. (2006b); Valmori et al. (2005) and
unpublished data by L. Codarri), shortly before the conception of our model. However, their
proliferation and suppression capacity was not unanimous at that time, and the differentiation of
precursors into mature Tregs was observed only in vitro. Furthermore, the phenotypical distinc-
tion between activated (R) and quiescent (Q) mature Tregs was not evidenced experimentally.
This is why in our model, we considered the dynamics of the sum of both populations.
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Recently, Miyara et al. (2009b) have performed a longitudinal study, experimentally ad-
dressing part of the questions addressed in our model. Based on the expression level of FoxP3
and CD45RO, Miyara et al. (2009b) identified three phenotypically and functionally distinct
subpopulations. The first one, which the authors characterize as CD45RO−FoxP3low, are rest-
ing Tregs that have “never" experienced antigen, as suggests the name “naive" they are given
in Sakaguchi et al. (2010). These cells correspond to the “precursors" of our model. Miyara
et al. (2009b) have confirmed the in vivo differentiation pathway suggested in our scheme (and
previously observed in vitro), in which precursors start proliferating upon TCR stimulation and
convert into the mature phenotype, thus expressing CD45RO. Hence, the human in vivo trans-
formation from compartments P toR, together with the proliferation capacities of both of these
populations, has been experimentally confirmed. However, it seems that the conversion fromR
to Q and inversely, i.e., the transitions between activated mature Tregs and resting mature Tregs,
is still an open question (see Sakaguchi et al. (2010) and the “Cell Fate" pictogram of Battaglia
and Roncarolo (2009)).

Miyara et al. (2009b) further confirmed the inversion of the ratio precursor/mature Tregs,
although these authors didn’t study a detailed time-course of both cell sub-populations and
therefore could not make a quantitative statement about the age at which the ratio is inverted.

There is a difference, on the level of mature Tregs, between our cell sorting and the one ofMi-
yara et al. (2009b). In our case, we have considered mature Tregs as being CD45RO+CD25+FoxP3+.
On the other hand, Miyara et al. (2009b) have found that inside CD45RO+CD25+FoxP3+ cells,
two populations can be further distinguished: a suppressive and proliferative population of
CD45RO+FoxP3hi cells (which corresponds to our activated mature Tregs) and a non-regulatory
CD45RO+FoxP3low population. This therefore suggests that our mature Tregs staining may con-
tain some non-regulatory (or unstable regulatory) T cells.

An aspect that was not included in our model is the recently discovered suppressive action
of activated mature Tregs on precursors’ proliferation (Miyara et al., 2009b). As a first approx-
imation to the suggested negative feedback loop, one could assume that stimulated precursors
do not proliferate as such, but do so once they have acquired the mature phenotype. This sce-
nario was in fact considered among our possible scenarios (proliferation scenario 4) and it was
able to explain the data given some parameter constraints. However, a more detailed interac-
tion between these Tregs subsets, in particular the proliferation of precursors dependent on the
number of activated mature Tregs of the same clone, could be an interesting future research line.
Furthermore, concerning cell-interactions, it would be interesting to include in our model the
dependence of the antigen-induced proliferation of Tregs on conventional (non-regulatory) T
cells, as suggested by the Crossregulation model (Carneiro et al., 2007).

Finally, let us mention the recently-discovered instability of FoxP3 expression, which may
lead to a conversion of Tregs into effector memory T cells (Zhou et al., 2009). This conversion
suggests a migration out of the compartment of mature Tregs (maybe even of precursors?), which
can also be included in future developments of our model.
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6.2 Mathematical modeling of AmpliCot

6.2.1 The questions we addressed

Using a detailed mathematical model, we have attempted to improve the interpretation of
AmpliCot’s experimental data. We have demonstrated that the complete model, which accounts
for heteroduplex- and transient duplex- formation, fits the data significantly better than the
simple second order kinetics model. The complete model also provided an explanation for
the diversity-dependent fluorescence loss that was hitherto imputed to experimental failures.
Moreover, the validity of the complete model necessitated some adjustments in terms of the
method for diversity extrapolation. We proposed two new prediction methods (model- or tp-
based) as alternatives to the currently used Cot-based method. Table 6.1 provides a summarized
comparison between the methods.

Old method (Cot-
based)

New methods (model-
or tp-based)

Underlying
model

Second order kinetics Complete model

Dealing with con-
centration differ-
ences

Cot scaling Correcting the associa-
tion rates (cf. Theo-
rem 2, Chapter 5)

Reading the an-
nealing curve

At a single point The entire curve

Information used
for diversity ex-
trapolations

At a single point (Cot-
based method)

The entire curve
(model-based) or at a
single point (tp-based)

Table 6.1: Diversity extrapolation methods for data samples generated with the AmpliCot tech-
nique: results summary. Comparison of the “old" methodology versus the one that we proposed
as a result of our mathematical modeling.

The new prediction methods, in particular the model-based one, provide more flexibility and
above all, exploit more extensively the available information in the data. This resulted in more
accurate diversity estimations, at least on the “toy" data sets that we analyzed. However, these
methods are more complex and involve more parameters than the old one. This complexity was
reflected in the size of the prediction’s confidence intervals. Hence, there is a tradeoff between
simplicity and accuracy. Further experiments, with more “realistic" data sets, would be needed
in order to confirm whether the new methodology is worth the effort.

6.2.2 Open questions

The main open question regarding AmpliCot is dealing with expanded clones. Treating
the problem of species diversity when the species distribution is unknown is a great challenge.
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Addressing this question would certainly be of theoretical and computational interest.
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