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Abstract—Multi-hop is the traditional architecture for wireless
adhoc networks. In this paper, we investigate the potential gains
from more sophisticated cooperation in large wireless adhoc
networks. While the capacity of multi-hop is limited to Θ(

√

n)
due to interference, we show that a hierarchical cooperation
architecture can achieve linear capacity scaling in the number
of users n. We also characterize how the cooperation gain is
affected when the network is limited in either power or space.

I. INTRODUCTION

Multi-hop is the communication architecture of current
wireless networks such as mesh or adhoc networks. Packets
are sent from each source to its destination via multiple point-
to-point transmissions between relaying nodes. The origins of
this approach are rooted in the practice of traditional wire-line
networks. Today, the increasing need to connect a massive
number of wireless devices and to support various resource
intensive applications necessitates to discuss the large system
performance of this architecture: Can multi-hop efficiently
support communication in large wireless networks or do
we need new architectures for the rapidly growing wireless
networks of the future? In particular, can other architectures,
tailored more carefully for wireless networks, significantly
outperform multi-hop? These are important questions concern-
ing future architectures for such networks. In this paper, we
overview a theory on the capacity of large wireless networks
that is able to shed some light on these questions.

The motivation for raising the above questions comes from
the fact that signal interactions in wire-line and wireless
networks are fundamentally different. Wire-line networks are
composed of isolated point-to-point links over which sig-
nals travel independently. The signal interaction in wireless
networks, however, is complex. The signal transmitted by a
particular transmitter is not only heard by its intended receiver,
but by all receivers in the vicinity of the transmitter. This
broadcasting property can be viewed as an additional resource
to be exploited or as harmful interference to be avoided.
Starting with the objective to create isolated point-to-point
links inside the wireless network, the multi-hop architecture
is compelled to the second point of view. It designates nodes
as transmitter-receiver pairs and each receiver is to decode
the message from its designated transmitter, regarding signals
from other transmitters as interference degrading the quality
of the communication. To allow receivers to recover their mes-

sages, excessive interference between simultaneous transmis-
sions needs to be systematically avoided. In particular, direct
communication between far-away source and destination pairs
in the network is not preferable, as the interference generated
by long-distance transmission would preclude most of the
other nodes from communicating. Instead, it is more beneficial
to confine to nearest neighbor communication and maximize
the number of simultaneous point-to-point transmissions inside
the network. However, this means that each packet has to be
retransmitted many times before getting to its final destination,
bringing a relaying burden over the network.

The impact of this relaying burden over system throughput
is especially detrimental at large system size, when typically
there are many source-destination pairs inside the network
that want to communicate with each other. This impact has
been quantified by the seminal work of Gupta and Kumar
[1] in 2000. They show that in a network of n nodes, where
typically there are Θ(n) source-destination pairs, the multi-
hop architecture provides an aggregate throughput of Θ(

√
n).

This implies that the rate per source-destination pair has to
decrease to zero like Θ(1/

√
n) with increasing number of

nodes n. This limitation is essentially due to the interference
between long-distance point-to-point transmissions. Therefore,
a natural question is whether this interference limitation can
be overcome by removing the restriction to point-to-point
communication and allowing more sophisticated cooperation
between the nodes. In particular, are there cooperation archi-
tectures whose performance can scale with system size? This
is the first question we answer in this paper. We present a hi-
erarchical cooperation architecture that achieves an aggregate
throughput of Θ(n1−ǫ) for any ǫ > 0. A scaling arbitrarily
close to linear means that there is essentially no interference
limitation: The rate for each source-destination pair does not
degrade significantly, even if there are more and more users
entering the network. The performance boost comes from
cooperative MIMO transmissions between clusters of nodes.
The key ingredient is a multi-scale, hierarchical cooperation
architecture without significant overhead. This hierarchical ar-
chitecture allows to efficiently organize communication so that
each source-destination pair in the network can benefit from
high-capacity, long-distance cooperative MIMO transmissions.

The next question we investigate in this paper is whether
more sophisticated cooperation can still yield significant gain
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when the network is power-limited. This can be the case due
to a number of reasons: 1) The transmit power available at the
nodes can be small. 2) The geographical area of the network
can be large. 3) The attenuation in the environment can be
high. 4) The network can be operating on a large bandwidth.
The objective in such wireless networks is not (only) to
deal with interference but to transfer power efficiently to the
receivers. We show that by turning mutually interfering signals
into useful ones, cooperative MIMO based architectures can
exploit the broadcasting nature of the wireless media for
received power gain. This power gain, in turn, translates into
significant capacity gain in power-limited wireless network.

In the last section of this paper, we investigate the impact of
space on the maximal cooperation gain in wireless networks.
The geographical area of the network together with the carrier
wavelength determine the diversity available in the physical
wireless channel. This, in turn, determines the number of
spatial degrees of freedom available for communication. The
multi-hop architecture is able to achieve at most Θ(

√
n)

degrees of freedom. We show that the spatial degrees of
freedom available in the network can be significantly larger
than Θ(

√
n). The hierarchical cooperation architecture is able

to achieve the full degrees of freedom in the network.
This paper is an initial exploration of radically new architec-

tures for wireless networks, posing more questions than it an-
swers. The theoretical basis is an approximate characterization
of the information-theoretic capacity of wireless networks us-
ing scaling laws. There are many remaining questions related
to exact performance gains (characterization of the constants
preceding the scaling laws), optimization of the proposed
architectures for complexity and delay, extension of the results
to arbitrary topologies and traffic, the characterization of the
overhead for coordinating nodes etc. We do not address these
questions here, but rather seek to establish that the potential
benefits from more sophisticated cooperation justify further
investigation in this direction.

The current paper presents an overview mainly based on
the results published in [4], [5], [6] and [7]. The reader is
referred to these references for detailed proofs and a historical
overview of the subject.

II. INTERFERENCE

We consider the following random network model,
initially proposed in [1]: There are n wireless nodes with
transmitting and receiving capabilities, that are uniformly and
independently distributed in a square of area A. Each node
has an average power of P Watts and the network is allocated
a total bandwidth of W Hertz. The signal received by node
i at time-slot m is given by

Yi[m] =
∑

k 6=i

Hik[m]Xk[m] + Zi[m]

where Xk[m] is the signal sent by node k at time m and Zi[m]
is white circularly symmetric Gaussian noise of power spectral
density N0/2 Watts/Hz. The complex baseband-equivalent
channel gain between node i and node k at time m is given by:

Hik[m] =
√

G r
−α/2
ik ej θik[m] (1)

rs

d

Fig. 1. The Multi-hop Architecture

where rik is the distance between the nodes, θik[m] is the
random phase at time m, uniformly distributed in [0, 2π) and
i.i.d. across node pairs.1 The phases can change ergodically
over time but the distances rik are fixed over the duration of
communication. We assume that the channel gains are known
at all the nodes. The parameters G and α ≥ 2 are constants;
α is called the path loss exponent of the environment.

Every node in the network is both a source and a destination
for some traffic. The sources and destinations are randomly
paired up one-to-one without any consideration of node
locations. Each source has the same traffic rate R(n) to
send to its destination node. The aggregate throughput of the
system is T (n) = nR(n) in bits/s/Hz.We are interested in
characterizing the scaling of the aggregate throughput T (n)
with increasing number of nodes n when the other parameters
of the network A, P and W remain constant.

Gupta and Kumar showed in [1] that multi-hop achieves
an aggregate throughput Θ(

√
n) under this random network

model w.h.p.2 This result can be understood as follows: Let
us divide the network into square cells of area Ac, contain-
ing M = Ac n/A nodes on the average. In the multi-hop
scheme, the messages of a source-destination pair s-d are
relayed by hopping (decode-and-forward) from one cell to
the next. Assume we follow a simplistic path between the
source-destination pairs, first proceeding horizontally and then
vertically as shown in Fig 1. Let us assign one node in each
cell to do the relaying job. It is easy to observe that the relaying
traffic at a particular relay node r is generated by either
the source nodes located in the same horizontal slab or the
destination nodes located in the same vertical slab as r. There
are roughly

√
Mn nodes contained in a slab of area

√
AcA.

This means that the relaying rate of each relay node has to
be shared among Θ(

√
Mn) source-destination pairs, giving

Θ(1/
√

Mn) throughput per source-destination pair. Reducing
Ac to the nearest neighbor scale, which corresponds to M = 1,
maximizes this rate and yields Θ(

√
n) aggregate throughput.

We next present a hierarchical cooperation architecture that
achieves almost linear aggregate throughput scaling under the
same model.

Theorem 2.1: For any ǫ > 0, there exists a constant K0 > 0
independent of n such that w.h.p., an aggregate throughput

T (n) ≥ K0 n1−ǫ

1The random phase model is assumed for simplicity and can be replaced
by Rayleigh fading.

2with high probability: with probability approaching 1 as n increases.



is achievable in the network using hierarchical cooperation.
Using tools from information theory, it is easy to show that

one cannot get a better capacity scaling than O(n log n), so
the suggested scheme is very close to optimal [4].

The proof of Theorem 2.1 is based on the recursive appli-
cation of the following proposition.

Proposition 2.1: Assume there exists a scheme that
achieves an aggregate throughput

T (n) ≥ K1 nb

in the network of n nodes w.h.p., where K1 is a positive
constant independent of n and 0 ≤ b < 1. Then one can
construct another scheme for this network that achieves a
higher aggregate throughput

T (n) ≥ K2 n
1

2−b

w.h.p., where K2 > 0 is another constant independent of n.
Proof of Theorem 2.1: Proposition 2.1 is the key step to

build a hierarchical architecture and prove Theorem 2.1. Since
1

2−b > b for 0 ≤ b < 1, the new scheme is always better than
the old one. Therefore, as soon as we have a scheme to start
with, the proposition can be applied recursively, yielding a
scheme that achieves higher throughput at each step of the re-
cursion. Starting with a simple time-division strategy between
source-destination pairs that achieves b = 0, (alternatively
we can also start with multi-hop achieving b = 1/2) and
applying the proposition recursively h times we get a scheme
that achieves Θ(n

h

h+1 ) aggregate throughput. Choosing h large
enough proves Theorem 2.1. �

We now sketch how the new scheme is constructed given
the old scheme, and provide a back-of-the-envelope analysis
of the scaling law it achieves.

Proof of Proposition 2.1: The scheme that proves Propo-
sition 2.1 is based on clustering and long-range cooperative
MIMO transmissions between clusters. We divide the network
into clusters of M nodes. Let us focus for now on a particular
source node s and its destination node d. s sends M bits to d
in three steps:
(1) Node s distributes its M bits among the M nodes in its

cluster, one for each node;
(2) These nodes together can then form a distributed transmit

antenna array, sending the M bits simultaneously to the
destination cluster where d lies;

(3) Each node in the destination cluster gets one observation
from the cooperative MIMO transmission and it quantizes
and ships the observation to d, which can then do joint
MIMO processing of all the observations and decode the
M transmitted bits.

From the network point of view, all source-destination pairs
have to eventually accomplish these three steps. Step 2 is long-
range communication and only one source-destination pair can
operate at at a time. Steps 1 and 3 involve local communica-
tion and can be parallelized across source-destination pairs.
Combining all this leads to three phases in the operation of
the network:

Phase 1: Transmit Cooperation Clusters work in parallel.
Within a cluster, each source node has to distribute its M
bits among the other nodes, 1 bit for each node, such that at
the end of the phase, each node has 1 bit from each of the
source nodes in the same cluster. Since there are M source
nodes in each cluster, this gives a total traffic of exchanging
M(M −1) ∼ M2 bits. (Recall our assumption that each node
is a source for some communication request and a destination
for another.) The key observation is that this is similar to
the original problem of communicating between n source and
destination pairs, but on a smaller network of size M . More
precisely, this traffic demand of exchanging M2 bits can be
handled by setting up M sub-phases, and assigning M source-
destination pairs for each sub-phase to communicate their 1
bit. Since our channel model is scale invariant, the scheme
given in the hypothesis of the proposition can be used in each
sub-phase. With a scheme achieving aggregate throughput
Θ(M b), each sub-phase is completed in Θ(M1−b) time slots,
so the whole phase takes Θ(M2−b) time slots.

Phase 2: Cooperative MIMO We perform successive long-
distance cooperative MIMO transmissions between source-
destination pairs, one at a time. In each one of the MIMO
transmissions, say one between s and d, the M bits of s are
simultaneously transmitted by the M nodes in its cluster to
the M nodes in the cluster of d. The long-distance MIMO
transmissions are repeated for each source-destination pair in
the network, hence we need Θ(n) time-slots to complete the
phase.

Phase 3: Receive Cooperation Clusters work in parallel.
Since there are M destination nodes inside each cluster, each
cluster has received M MIMO transmissions in phase 2. Each
MIMO transmission is intended for a different destination
node. Thus, each node in the cluster has M received obser-
vations, one from each of the MIMO transmissions, and each
observation is to be conveyed to a different destination node in
its cluster. Nodes quantize each observation into fixed Q bits
(independent of M and n), so there are now a total of QM2

bits to exchange inside each cluster. Using exactly the same
strategy as in Phase 1, we conclude the phase in Θ(QM2−b)
time slots.

Assuming that each destination node is able to decode the
transmitted bits from its source node from the M quantized
signals it gathers by the end of Phase 3, we can calculate
the rate of the scheme as follows. Each source node is able to
transmit M bits to its destination node, hence nM bits in total
are delivered to their destinations in Θ(M2−b + n + QM2−b)
time slots, yielding an aggregate throughput of the order of

nM

M2−b + n + QM2−b
bits per time slot.

Maximizing this throughput by choosing M = n
1

2−b yields
T (n) = Θ(n

1
2−b ) for the aggregate throughput, which is the

result in Proposition 2.1. �

Proving Theorem 2.1 by recursively applying Proposi-
tion 2.1, we have built a hierarchical architecture to achieve
the desired throughput. At the lowest level of the hierarchy,



COOPERATIONCOOPERATION

MIMO MIMOCOOPERATION COOPERATION COOPERATION COOPERATION

COOPERATIVE MIMO

Fig. 2. The figure illustrates the salient features of the hierarchical cooperation architecture.

we use the simple time-division scheme to exchange bits
for cooperation among small clusters. Combining this with
longer range MIMO transmissions, we get a higher throughput
scheme for cooperation among nodes in larger clusters at the
next level of the hierarchy. Finally, at the top level of the
hierarchy, the cooperation clusters are of the order of Θ(n1−ǫ),
almost the size of the network, and the MIMO transmissions
are over the global scale, Θ(

√
A) to meet the desired traffic

demands. Figure 2 shows the resulting hierarchical scheme
with a focus on the top two levels.

It is important to understand the aspects of the channel
model which the scheme made use of in achieving the linear
capacity scaling:

• The path attenuation decay law 1/rα (α ≥ 2) ensures
that the aggregate signals from far away nodes are
much weaker than signals from close-by nodes. This
enables (a constant fraction of) the clusters to operate
simultaneously in the first and the third phases. (This is
similar to the spatial reuse in multi-hop.)

• Since received SNR between every pair of nodes in the
network is lower bounded by a constant GP

N0W (
√

2A)α
for

every n, the scheme does not suffer any power-limitation.
• The random i.i.d. channel phases enable full spatial mul-

tiplexing gain for the long-range MIMO transmissions.
In the following two sections, we will investigate optimal

cooperation in wireless networks for which the last two
conditions fail to hold.

III. POWER

In the previous section, we assumed that the parameters A,
W , P of the network remain constant as the number of users
n becomes large. This ensures that the received SNR between
the most far-away pairs in the network is lower bounded by
a constant even if n increases. This model allowed us to
concentrate solely on interference in wireless networks. We
now want to address networks which can potentially suffer
power-limitation. We model this situation by allowing the
received SNR between some pairs of nodes in the network,
most notably between far away pairs, to decrease to zero
with increasing n. We are still interested in the best scaling
achievable for the aggregate throughput T (n).

Let us start by discussing the performance of the earlier two
schemes, multi-hop and hierarchical cooperation, when the
network is power-limited. The multi-hop scheme employs only
nearest-neighbor communication. Therefore it suffers power
limitation only when the nearest neighbor transmissions inside

the network are power-limited. More precisely, let us define
the received SNR in a point-to-point transmission over the
typical nearest neighbor distance to be,

SNRs :=
GP

N0W (
√

A/n)α
. (2)

where
√

A/n is the typical nearest neighbor distance inside
the network. We refer to this quantity as the short-distance
SNR of the network. The relaying rate at each hop is given
by log(1 + SNRs). Therefore, the performance of multi-hop
is order-wise equal to

TMH =
√

n log(1 + SNRs)

=

{

Θ(
√

n) if SNRs ≫ 0 dB
Θ(

√
n SNRs) if SNRs ≪ 0 dB,

(3)

where SNRs ≪ 0 dB stands for SNRs decreasing to 0 with
increasing n. Similarly, SNRs ≫ 0 dB indicates that SNRs is
constant or increases with n. (We discard possible logarithmic
terms.)

On the other hand, the backbone of the hierarchical coopera-
tion architecture is long-distance cooperative MIMO transmis-
sion. The performance of the architecture is order-wise equal
to the capacity of the MIMO transmissions at the highest level
of the hierarchy, between clusters of size Θ(n1−ǫ) separated by
a distance Θ(

√
A). The capacity of these MIMO transmissions

is given by
THC = n1−ǫ log(1 + SNRl)

=

{

Θ(n1−ǫ) if SNRl ≫ 0 dB
Θ(n1−ǫ SNRl) if SNRl ≪ 0 dB,

(4)

where SNRl is the long-distance SNR in the network defined
as

SNRl := n
GP

N0 W (
√

A)α
. (5)

Note that SNRl is not simply the received SNR in a point-to-
point transmission over the diameter

√
A of the network, but it

is n times this quantity. This leads to the following interesting
fact: Even if the received SNR between far away pairs inside
the network, of the order of GP

N0 W (
√

A)α
, decreases to zero as

1/n with increasing number of nodes n, the network does not
suffer any power-limitation since SNRl is constant in this case.
We can still achieve linear capacity scaling with hierarchical
cooperation. This is due to the fact that cooperative MIMO
transmission not only allows to deal with interference but
converting mutually interfering signals into useful ones, it also
provides a factor of n power gain. This is also the case in



the classical MIMO setup [2], [3]. Note that to achieve linear
scaling in the number of antennas M in a MIMO channel with
M Tx and M Rx antennas, we do not require the available
power at the transmitter to scale linearly with M . A constant
total transmit power suffices for linear capacity scaling of
MIMO.

Note that the short and the long distance SNR’s in the
network are related as SNRs = nα/2−1SNRl. For α > 2,
SNRs is always larger than SNRl. The network starts to
experience power limitation when SNRl ≪ 0 dB. Considering
the performances in (3) and (4) together with the relation
SNRs = nα/2−1SNRl, we observe that hierarchical coop-
eration performs better than multi-hop when 2 ≤ α ≤ 3.
Signal power decays slowly with distance in this case and
hierarchical cooperation yields maximal received power by
collecting the received signals of a large number of nodes.
When α > 3 signal power decays fast with distance and long-
distance communication is not preferable. Multi-hop performs
better than hierarchical cooperation in this case.

Is this the best performance we can get in power-limited
wireless networks with SNRl ≪ 0 dB? We next show that a
hybrid architecture combining hierarchical cooperation with
multi-hop performs significantly better than either of the
schemes when α > 3 and SNRs ≫ 0 dB. Note that since
SNRs = nα/2−1SNRl, there is a wide range of parameters
where SNRs ≫ 0 dB while SNRl ≪ 0 dB. This corresponds
to the heterogeneous case where the short-range links in the
network are strong (of high SNR) and the long-range links are
weak (of low SNR).

Theorem 3.1: Let α > 2, SNRs ≫ 0 dB and SNRl ≪ 0
dB. For any ǫ > 0, there exists a constant K3 > 0 independent
of n such that w.h.p., an aggregate throughput

THC+MH ≥ K3

√
n SNR

1
α−2

−ǫ
s .

is achievable in the network using a hybrid architecture
combining hierarchical cooperation with multi-hop.

Combining the performances achieved by hierarchical co-
operation and multi-hop together with Theorem 3.1, we obtain
the following approximation formula for the capacity of large
wireless networks:

C ∝























n SNRl ≫ 0 dB
n SNRl SNRl ≪ 0 dB and 2 ≤ α ≤ 3√

n SNRs SNRs ≪ 0 dB and α > 3
√

n SNR
1

α−2

s SNRl ≪ 0 dB, SNRs ≫ 0 dB
and α > 3.

(6)

The schemes achieving the above performances are summa-
rized in Fig. 3. The optimality of these schemes has been
established by information theoretic arguments in [5].

Proof of Theorem 3.1: We next sketch how the hybrid
architecture operates. On the global scale, the hybrid scheme
is similar to multi-hop. The network is divided into cells and
the packets of each source-destination pair are transferred by
hopping from one cell to the next. At each hop, the associated
relay node decodes the packets from the previous cell and for-
wards them to the next. The architecture differs from multi-hop

2 3 α

Regime IV

0 dB

SNRs SNRl = 0 dB
Regime I

Regime
II

Regime III

Fig. 3. The four operating regimes of large wireless networks in (6). The
corresponding optimal schemes are I-II: Hierarchical Cooperation, III-Multi-
hop, IV- Hybrid Multi-hop + Hierarchical Cooperation.

by the fact that each hop is performed via cooperative MIMO
transmission assisted by hierarchical cooperation. Let us divide
the network into cells of area Ac, containing M = Acn/A
nodes on the average. As in the case of multi-hop, the relaying
burden imposed on a given cell is due to the Θ(

√
Mn) source-

destination paths that pass through this cell.
Note that any two neighboring cells in the network can be

viewed as a small wireless network of 2M nodes randomly
and uniformly distributed on a rectangular area 2

√
Ac ×

√
Ac.

(Consider for example the two cells highlighted in Fig. 4.)
Assume we pair the M nodes in one cell with the M nodes in
the other cell into M distinct source-destination pars. Assume
the long distance SNR in this small network SNRl(Ac) ≫ 0
dB where,

SNRl(Ac) = M
GP

N0 W (
√

Ac)α
.

From (4), using hierarchical cooperation to establish the
M communications between the two cells, we can get an
aggregate throughput Θ(M1−ǫ). This corresponds to the to-
tal outbound relaying rate of a cell. It has to be divided
among the Θ(

√
Mn) source-destination pairs for which the

cell is responsible. This yields a rate Θ(
√

MM−ǫ/
√

n) per
source-destination pair. Equivalently, the aggregate throughput
achieved by the hybrid architecture is given by

THC+MH = Θ(
√

n M1/2−ǫ). (7)

Note that combining multi-hop with hierarchical coopera-
tion provides a-

√
M -fold-gain in the aggregate throughput

as compared to pure multi-hop, which indeed corresponds to
M = 1 in the above discussion. Choosing larger M yields a
larger aggregate throughput as it increases the hop capacity.
Indeed, if we could choose M = n, we could get linear
scaling in which case the scheme reduces to pure hierarchical
cooperation. However since SNRl ≪ 0 dB, the condition
SNRl(Ac) ≫ 0 dB is not satisfied for Ac = A, so M can
not be as large as n. The largest cluster area that satisfies the
condition SNR(Ac) ≫ 0 dB is given by

Ac = (A/n) SNR1/(α/2−1)
s , M = SNR1/(α/2−1)

s . (8)

This is the largest geographical scale in the network over
which the power-limitation is not felt. Any larger cluster size
increases the relaying burden without increasing the hop ca-
pacity. Combining (8) and (7) gives the result in Theorem 3.1.

IV. SPACE

When discussing the hierarchical cooperation scheme in
Section II, we noted that the i.i.d. random phase model
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Fig. 4. Cooperate locally, multi-hop globally: A generic optimal architecture
for wireless networks. The two extremes of this architecture are precisely
traditional multi-hop, where the cluster size is 1 and the number of hops is
Θ(
√

n), and hierarchical cooperation where the cluster size is Θ(n) and the
number of hops is 1.

enables full spatial multiplexing gain for the cooperative
MIMO transmissions. This corresponds to having n degrees
of freedom for communication inside the wireless network.
When the geographical area of the network is small, the
diversity in the physical channel is limited. Using principles
from electromagnetics, Franceschetti et al. showed in [8] that
the total degrees of freedom in a wireless network are upper
bounded by

Θ
(

max
(√

n, min(n,
√

A/λ)
))

,

where λ is the carrier wavelength. This implies that the
available degrees of freedom in the network are n only if√

A/λ > n. For networks with
√

A/λ < n, this number
puts a limitation on the maximum possible cooperation gain.
In particular, if

√
A/λ <

√
n, there are only

√
n degrees of

freedom in the network which can be achieved by multi-hop.
When

√
A/λ >

√
n, we want to investigate whether the

full degrees of freedom in the network min(n,
√

A/λ) are
achievable. For this purpose, we refine our phase model in
Section II to the following physical channel model

Hik =
√

G
ej2πrik/λ

rik
. (9)

This model corresponds to free-space propagation (α = 2)
in a line-of-sight type environment, a case in which spatial
limitation is expected to be most severe.The following theorem
is refinement of Theorem 2.1 under the above physical model.

Theorem 4.1: Under the channel model in (9) and when√
A/λ >

√
n, the total throughput achieved by hierarchical

cooperation is lower bounded by,

T ≥ K4

(

min(n,
√

A/λ)
)1−ǫ

w.h.p., for any ǫ > 0 and a constant K4 > 0 independent of
the system parameters n, A and λ.

Accordingly, the optimal operation of the network falls into
three cases:

1)
√

A/λ ≤ √
n: The number of spatial degrees of freedom

is too small, sophisticated cooperation is useless and
nearest neighbor multi-hopping is optimal.

2)
√

A/λ > n: The number of spatial degrees of freedom
is n, cooperation is very useful, and the optimal perfor-
mance can be achieved by the hierarchical cooperation
scheme. Spatial degree of freedom limitation does not
come into play and the performance is as though the
phases are i.i.d. uniform across the nodes.

3)
√

n ≤
√

A/λ ≤ n: The number of degrees of freedom is
smaller than n, so the spatial limitation is felt, but larger
than what can be achieved by simple multi-hopping.
A modification of the hierarchical cooperation scheme
achieves optimal scaling in this regime.

V. CONCLUSION

Can more sophisticated cooperation techniques provide
significant capacity gains over the conventional multi-hop
architecture in large wireless networks? We showed that the
precise answer to this question depends on the operating
regime where a particular network lies. Each operating regime
corresponds to a subset of the parameter space where the
optimal cooperation architecture is different. In many regimes,
architectures better tailored for wireless networks, such as hi-
erarchical cooperation, can provide substantial capacity gains
over conventional multi-hop. In certain regimes, most notably
when the network is severely limited in either power or space,
multi-hop is fundamentally optimal. The operating regime of
a given wireless network can be determined by computing
or directly measuring certain engineering quantities that we
identified in our discussion, such as short-range SNR, long-
range SNR, area, power path loss exponent etc.

To conclude, let us apply the insights summarized in this
paper to a numerical example: Consider a large network serv-
ing n = 10, 000 users on a campus of A = 1 km2, operating
at 3 GHz (λ = 0.1 m). Note that although the network is quite
dense,

√
A/λ = 10000 so we do not expect to observe any

space limitation. Under free-space propagation and assuming
unit transmit and receive antenna gains, the attenuation G in
(1) and (9), given by the Friis formula G =

GTx·GRx·λ2
c

16π2 , is
10−6. Assuming transmit power P of 1 mW per node, thermal
noise N0 at −174 dBm, a bandwidth W of 10 MHz and noise
figure NF= 10 dB, the SNR between farthest pairs is 34 dB
and SNRl = 84 dB, very much in the high SNR regime. So
while multi-hop can achieve a total throughput of the order of
100 bits/s/Hz, hierarchical cooperation promises an aggregate
throughput of the order of 10000 bits/s/Hz.
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[4] A. Özgür, O. Lévêque, D. Tse, Hierarchical Cooperation Achieves Opti-
mal Capacity Scaling in Ad-Hoc Networks, IEEE Trans. on Information
Theory 53 (10), pp.3549-3572, 2007.
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