
Likelihood-Based Inference for Max-Stable Processes
S. A. PADOAN, M. RIBATET, and S. A. SISSON

The last decade has seen max-stable processes emerge as a common tool for the statistical modeling of spatial extremes. However, their
application is complicated due to the unavailability of the multivariate density function, and so likelihood-based methods remain far from
providing a complete and flexible framework for inference. In this article we develop inferentially practical, likelihood-based methods for
fitting max-stable processes derived from a composite-likelihood approach. The procedure is sufficiently reliable and versatile to permit the
simultaneous modeling of marginal and dependence parameters in the spatial context at a moderate computational cost. The utility of this
methodology is examined via simulation, and illustrated by the analysis of United States precipitation extremes.
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1. INTRODUCTION

A common objective of spatial analysis is to quantify and
characterize the behavior of environmental phenomena such as
precipitation levels, wind speed, or daily temperatures. A num-
ber of generic approaches to spatial modeling have been devel-
oped (e.g., Cressie 1993; Barndorff-Nielsen et al. 1998; Ripley
2004), but these are not necessarily ideal for handling extremal
aspects given their focus on mean process levels. Analyses of
spatial extremes are useful devices for understanding and pre-
dicting extreme events such as hurricanes, storms, and floods.
In light of recent concerns over climate change, the use of ro-
bust mathematical and statistical methods for such analyses has
grown in importance.

While the theory and statistical practice of univariate ex-
tremes is well developed, there is much less guidance for the
modeling of spatial extremes. This is problematic as many en-
vironmental processes have a natural spatial domain. We con-
sider a temporal series of componentwise maxima of process
measurements recorded at k = 1, . . . ,K locations, within a con-
tinuous region. Observations {ym,k} each denote the maximum
of s samples over m = 1, . . . ,M temporal blocks. For exam-
ple, for daily observations, s = 366 implies the {ym,k} describe
process annual maxima.

The spatial analogue of multivariate extreme value models
is the class of max-stable processes (de Haan 1984; de Haan
and Pickands 1986; Resnick 1987). Max-stable processes have
a similar asymptotic motivation to the univariate Generalized
Extreme Value (GEV) distribution (von Mises 1954; Jenkinson
1955), providing a general approach to modeling process ex-
tremes incorporating temporal or spatial dependence. Statistical
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methods for max-stable processes and data analyses of prac-
tical problems are discussed by Smith (1990), Coles (1993),
Coles and Walshaw (1994), and Coles and Tawn (1996). Stan-
dard likelihood methods for such models are complicated by
the intractability of the multivariate density function in all but
the most trivial cases. This presents an obstacle in the use of
max-stable processes for spatial extremes.

There is a lack of a proper inferential framework for the
analysis of spatial extremes (although de Haan and Pereira 2006
describe some nonparametric estimators). In this article we de-
velop flexible and inferentially practical methods for the fitting
of max-stable processes to spatial data based on nonstandard,
composite likelihood-based methods (Lindsay 1988). An ap-
pealing feature of this approach is that the estimation of GEV
marginal parameters can be performed jointly with the depen-
dence parameters in a unified framework. Accordingly, there is
no need for separate estimation procedures. With highly struc-
tured problems such as max-stable processes, this approach
produces flexible and reliable results at a moderate computa-
tional cost.

The article is organized as follows: Section 2 reviews the
theory of max-stable processes and its relationship to spatial
extremes. Our composite likelihood approach is developed in
Section 3, and Section 4 evaluates the method’s performance
through a number of simulation studies. We conclude with an
illustration of a real extremal data analysis of United States pre-
cipitation levels.

2. MAX–STABLE PROCESSES AND
SPATIAL EXTREMES

2.1 Max-Stable Processes

Max-stable processes provide a natural generalization of ex-
tremal dependence structures in continuous spaces. From this,
closed-form bivariate distributions can be derived.

Definition. Let T be an index set and {Ỹi(t)}t∈T , i = 1, . . . ,n,
be n independent replications of a continuous stochastic pro-
cess. Assume that there are sequences of continuous functions
an(t) > 0 and bn(t) ∈ R such that

Y(t) = lim
n→∞

maxn
i=1 Ỹi(t) − bn(t)

an(t)
, t ∈ T.
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If this limit exists, the limit process Y(t) is a max-stable process
(de Haan 1984).

Two properties follow from the above definition (de Haan
and Resnick 1977). First, the one-dimensional marginal distri-
butions belong to the class of generalized extreme value distri-
butions, Y ∼ GEV(μ,λ, ξ) with distribution function

F(y;μ,λ, ξ) = exp

[
−

{
1 + ξ(y − μ)

λ

}−1/ξ

+

]
,

−∞ < μ,ξ < ∞, λ > 0,

where a+ = max(0;a) and μ, λ, and ξ are, respectively, lo-
cation, scale, and shape parameters (Fisher and Tippett 1928).
Secondly, for any K = 2,3, . . . , the K-dimensional marginal
distribution belongs to the class of multivariate extreme value
distributions.

Without loss of generality, if an(t) = n, bn(t) = 0, then
the corresponding process, {Z(t)}t∈T , has unit Fréchet mar-
gins, with distribution function F(z) = exp(−1/z), z > 0. This
process is obtainable as standardization of {Y(t)}t∈T through

{Z(t)}t∈T ≡
[{

1 + ξ(t)(Y(t) − μ(t))

λ(t)

}1/ξ(t)

+

]
t∈T

,

where μ(t), ξ(t), and λ(t) > 0 are now continuous functions.
The process Z is still a max-stable process. If Z is also station-
ary, the process may be expressed through its spectral represen-
tation (de Haan and Pickands 1986).

In detail, let {Xj,Uj}j≥1 be a Poisson process, �, on R
d ×R+,

with counting measure �(·) := ∑
j I(Xj,Uj)(·) and intensity mea-

sure ν(dx) × u−2 du, where I(Xj,Uj)(A) is the indicator func-
tion of the random number of points falling in a bounded set
A ⊂ R

d × R+ and ν is a positive measure. For a nonnega-
tive measurable function f (x − t) (for fixed t ∈ T) such that∫

Rd f (x − t)ν(dx) = 1,∀t ∈ T the stochastic process

Z(t) := max
j=1,2,...

{Ujf (Xj − t)}, t ∈ T, (1)

is a stationary max-stable process (de Haan 1984). Smith (1990)
reinterprets this process in terms of environmental episodes
such as storm phenomena, in which U, X, and f represent re-
spectively storm magnitude, center, and shape. Schlather and
Tawn (2003) term this the storm profile model.

For a finite set of indexes t1, . . . , tK ∈ T and positive thresh-
olds z1, . . . , zK for K ∈ N, the distribution of the random vector
Z(t1), . . . ,Z(tK) is (de Haan 1984)

Pr{Z(tk) ≤ zk, k = 1, . . . ,K}

= exp

[
−

∫
Rd

max
1≤k≤K

{
f (x − tk)

zk

}
ν(dx)

]
. (2)

It then follows that the marginal distributions are unit Fréchet:

Pr{Z(t) ≤ z} = exp

(
−z−1

∫
Rd

f (x − t)ν(dx)

)
= exp(−1/z).

Alternative spectral representations of max-stable processes ex-
ist (Schlather 2002).

2.2 Extremal Coefficients

Given n independent replications Y(1), . . . ,Y(n), of the ran-
dom vector Y = (Y1, . . . ,YK) ∈ R

K with unit Fréchet margins
for each Yk, then the joint distribution of componentwise max-
ima satisfies (de Haan and Resnick 1977; Resnick 1987)

Pr
{

max
k

max
j=1,...,n

Y(j)
k /n ≤ z

}
= Pr

{
max

j=1,...,n
Y(j)

1 /n ≤ z
}θ

= exp(−θ/z), z > 0,

for k = 1,2, . . . ,K and common threshold z, where the right-
most term, obtained in the limit as n → ∞, is a Fréchet(θ) dis-
tribution. The parameter 1 ≤ θ ≤ K is the extremal coefficient
and it measures the extremal dependence between the margins,
an important practical quantity in applications (Smith 1990).
The information in the extremal coefficient reflects the practi-
cal number of independent variables. If K is finite then θ = 1
indicates complete dependence, whereas θ = K corresponds to
full independence.

The extremal dependence of stochastic processes can be ex-
tended in a similar way. The stationary max-stable process Z(t)
given by (1) is the limiting process of n iid copies of the stan-
dardized maxima of a stationary stochastic process Ỹ(t), where
an(t) = n and bn(t) = 0. From (2), for all z > 0, the asymptotic
distribution of Z(t) at K sites can be written as

Pr{Z(tk) ≤ z, k = 1, . . . ,K} = exp(−θ/z),

under weak conditions (de Haan 1984), and so

θ =
∫

Rd
max

1≤k≤K
{f (x − tk)}ν(dx),

where θ ∈ R again represents the effective number of indepen-
dent variables. Schlather and Tawn (2003) discuss the extremal
coefficient within the context of max-stable processes.

2.3 Spatial Models

Suppose now that T ⊆ R
2 and that {Xj}j≥1 are random points

in R
2. While for K > 2, the general K-dimensional distribution

function under the max-stable process representation (1) per-
mits no analytically tractable form, a class of bivariate spatial
models is available when the storm profile model, f , is a bivari-
ate Gaussian density and μ is a Lebesgue measure (Smith 1990;
de Haan and Pereira 2006). In this case, for locations ti and tj

the bivariate distribution function of {Z(0),Z(h)} is

Pr{Z(0) ≤ zi,Z(h) ≤ zj}

= exp

[
− 1

zi
�

(
a(h)

2
+ 1

a(h)
log

zj

zi

)
− 1

zj
�

(
a(h)

2
+ 1

a(h)
log

zi

zj

)]
, (3)

where h = (tj − ti)
�, 0 is the origin, � is the standard Gaussian

distribution function, a(h) = (h��−1h)1/2 and � is the covari-
ance matrix of f , with covariance σ12 and standard deviations
σ1, σ2 > 0. A derivation of (3) is provided in Appendix A.3.
A general max-stable process with a Gaussian storm profile
model, f , is termed a Gaussian extreme value process (Smith
1990), whereas the specific model (3) is the Gaussian extreme
value model (Coles 1993).
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Second-order partial derivatives of (3) yield the two-dimen-
sional density function

f (zi, zj) = exp

{
−�(w(h))

zi
− �(v(h))

zj

}
×

{(
�(w(h))

z2
i

+ ϕ(w(h))

a(h)z2
i

− ϕ(v(h))

a(h)zizj

)

×
(

�(v(h))

z2
j

+ ϕ(v(h))

a(h)z2
j

− ϕ(w(h))

a(h)zizj

)

+
(

v(h)ϕ(w(h))

a(h)2z2
i zj

+ w(h)ϕ(v(h))

a(h)2ziz2
j

)}
, (4)

where ϕ is the standard Gaussian density function, w(h) =
a(h)/2 + log(zj/zi)/a(h), and v(h) = a(h) − w(h). The deriva-
tion of (4) is in Appendix A.4.

Observe that a(h) measures the strength of extremal depen-
dence: a(h) → 0 represents complete dependence, and (in the
limit) a(h) → ∞ indicates complete independence. In accor-
dance with spatial models, the extreme dependence between
Z(0) and Z(h) decreases monotonically and continuously with
h = ‖tj − ti‖ (de Haan and Pereira 2006), and for fixed h the de-
pendence decreases monotonically as a(h) increases. Accord-
ingly, characterization of extremal dependence is determined
by the covariance matrix, �, which is therefore of interest for
inference.

Due to high-dimensional distributional complexity the study
of extremal dependence is commonly limited to pairwise com-
ponents through the extremal coefficients

θ(h) =
∫

R2
max{f (x), f (x − h)}dx, 1 ≤ θ(h) ≤ 2.

The dependence on h is explicit. Specifically for the Gaussian
extreme value model, θ(h) = 2�(a(h)/2), following an argu-
ment along the lines of Appendix A.3. Alternative models result
by considering, for example, exponential or t storm profile mod-
els (de Haan and Pereira 2006), or stationary Gaussian process
profile models (Schlather 2002).

3. LIKELIHOOD–BASED INFERENCE

The analysis of spatial extremes is concerned with the joint
modeling of a spatial process at large numbers of data-recording
stations in a fixed region. As discussed in Section 2, the lack
of closed-form distribution for max-stable processes in greater
than K = 2 dimensions precludes straightforward use of stan-
dard maximum likelihood methods for this class of models. We
now develop inferentially practical, likelihood-based classes of
max-stable processes derived from a composite-likelihood ap-
proximation (Lindsay 1988; Varin 2008). The procedure is suf-
ficiently reliable and versatile to permit the simultaneous and
consistent modeling of joint and marginal parameters in the spa-
tial context at a moderate computational cost.

3.1 Composite Likelihoods

For a parametric statistical model F with density function
family F = {f (y;ψ),y ∈ Y ⊆ R

K,ψ ∈ 
 ⊆ R
q} satisfying the

usual regularity conditions (e.g., Davison 2003, p. 118), and
assuming a set of measurable marginal or conditional events

{Ik : k ∈ K} (for some K ⊆ N) as a subset of some sigma alge-
bra on Y , then the composite log-likelihood contribution for the
random vector Y may be defined by

�C (ψ;y) =
∑
k∈K

wk log f (y ∈ Ik;ψ), (5)

where f (y ∈ Ik;ψ) = f ({yi : yi ∈ Ik};ψ), with y = (y1,

. . . , yK), is the likelihood associated with event Ik and {wk}k∈K
are appropriate nonnegative weights. First-order partial deriv-
atives of �C (ψ;y) with respect to ψ yield the composite score
function Dψ�C (ψ;y), from which the maximum composite
likelihood estimator (MCLE) of ψ , if unique, is obtained by
solving the composite score equation: Dψ�C (ψ̂MCLE;y) = 0.
Similarly, second-order partial derivatives of �C (ψ;y) yield the
Hessian matrix Hψ�C (ψ;y) (Appendix A.1).

The key utility of the composite log-likelihood is its ability,
under the usual regularity conditions, to provide asymptotically
unbiased parameter estimates when standard likelihood estima-
tors are not available. Specifically, the composite score equation
is an unbiased estimating equation, as it is a linear combination
of individual likelihood components, each of which is an unbi-
ased estimating equation. Accordingly, if the regulatory condi-
tions in Appendix A.2 hold, similarly to the derivation of the or-
dinary MLE asymptotics (Huber 1967; Davison 2003, p. 147),
the MCLE is consistent and asymptotically distributed as

ψ̂MCLE ∼̇ N(ψ, Ĩ(ψ)−1) with

Ĩ(ψ) = H(ψ)J(ψ)−1H(ψ),

where Ĩ(ψ) is the sandwich information matrix stemming from
unbiased estimating function arguments (Godambe 1960), and
H(ψ) = E{−Hψ�C (ψ;Y)} and J(ψ) = V{Dψ�C (ψ;Y)} are
analogues of the expected information matrix and the covari-
ance matrix of the score vector. Under ordinary maximum like-
lihood, H(ψ) = J(ψ) are equal. Note that although the MCLE
is asymptotically unbiased, it is not asymptotically efficient in
that Ĩ(ψ)−1, the inverse of the sandwich information matrix,
does not attain the Cramér–Rao lower bound. Hence estima-
tion using the composite likelihood results in a loss of effi-
ciency over ordinary maximum likelihood. In addition, consis-
tency and asymptotic normality of the MCLE may not always
be satisfied (Cox and Reid 2004).

3.2 The Pairwise Setting for Spatial Extremes

Within the spatial setting we have observations {ym,k}, that
are the maximum of s samples over m = 1, . . . ,M blocks and
for k = 1, . . . ,K locations in a continuous region. For exam-
ple, for daily observations, s = 366 implies the ym,k describe
annual maxima. Accordingly, the K univariate marginals are
approximately GEV distributed. Assume that {ym}M

m=1, are M
iid realizations from the Gaussian extreme value process with
GEV margins denoted by Y1, . . . ,YK . Despite the intractability
of the multivariate max-stable process, availability of the bivari-
ate marginal form (4) implies the definition of a pairwise com-
posite log-likelihood as a sum of log-likelihoods corresponding
to each potential bivariate contribution. Specifically from (5),
for each m of the M iid data replications, by defining the events
Ik = {(ym,i, ym,j)} as the sets of bivariate subvectors of y taken
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over all K(K − 1)/2 distinct location pairs i and j, the pairwise
composite log-likelihood function is given by

�P (ψ;y) =
M∑

m=1

K−1∑
i=1

K∑
j=i+1

wij�ij(ψ), (6)

where each �ij(ψ) = log f (ym,i, ym,j;ψ) is the bivariate mar-
ginal log-likelihood based on data at locations i and j, and wij

is its respective weight. Setting all weights wij > 0,
∑

ij wij = 1
induces a pairwise log-likelihood constructed from all obser-
vational pairs. However, computational requirements and sta-
tistical efficiency may be improved by alternative specifica-
tions. For instance, as in the case of spatial–temporal processes
(Bevilacqua et al. 2007), one may set wij = 1 if ‖tj − ti‖ ≤ δ and
wij = 0 if ‖tj − ti‖ > δ, where δ is a parameter that can be used
to improve the performance of the procedure. For instance, it
might be chosen as the value that minimizes the total amount of
variation of the asymptotic variance, tr(Ĩ(ψ)−1) (Heyde 1997,
pp. 19–21), when this minimum exists. In Section 4, we show
empirically that including only closely located pairs in the con-
struction of the composite likelihood improves the statistical
efficiency of the maximum composite likelihood estimator for
the max-stable process.

In order to characterize limiting behavior by a max-stable
process (1) we require unit Fréchet marginal distributions. Ac-
cordingly, we consider the bijection (Yi,Yj) = g(Zi,Zj) with in-
verse function given by

Zi =
(

1 + ξi(Yi − μi)

λi

)1/ξi

+
,

(7)

Zj =
(

1 + ξj(Yj − μj)

λj

)1/ξj

+
,

where Zi ≡ Z(ti) and Yj ≡ Y(tj), and for each marginal Y , the
constants μ, ξ , and λ > 0 ensure that Z is unit Fréchet distrib-
uted. The resulting bivariate density is

fYi,Yj(yi, yj) = fZi,Zj [g−1(yi, yj)]|J(yi, yj)|,
where fZi,Zj(zi, zj) denotes the density of the Gaussian extreme
value model (4), and

|J(yi, yj)| = 1

λiλj

(
1 + ξi(yi − μi)

λi

)1/ξi−1

+

×
(

1 + ξj(yj − μj)

λj

)1/ξj−1

+
.

This change of variable permits the use of GEV marginals (over
unit Fréchet) without reforming the problem definition. Hence,
the pairwise log-likelihood (6) allows simultaneous assessment
of the tail dependence parameters (3) between pairs of sites and
also the location, scale, and shape parameters of the marginal
distribution at each location. The parameters cannot be esti-
mated as an analytical solution of the composite score equa-
tion. Nonetheless quasi-Newton numerical maximization rou-
tines (e.g., Broyden 1967) can be applied in order to obtain
maximum likelihood estimates.

Variances of parameter estimates are provided through the
inverse of the sandwich information matrix, with estimates of
the matrices H(ψ) and J(ψ) given by

Ĥ(ψ̂MCLE) = −
M∑

m=1

K−1∑
i=1

K∑
j=i+1

wijHψ�ij(ψ̂MCLE)

and

Ĵ(ψ̂MCLE) =
M∑

m=1

{
K−1∑
i=1

K∑
j=i+1

wijDψ�ij(ψ̂MCLE)

}

×
{

K−1∑
i=1

K∑
j=i+1

wijDψ�ij(ψ̂MCLE)

}�
,

each evaluated at the composite maximum likelihood value. In
practice the matrix Ĥ is obtained straightforwardly with the nu-
merical maximization routine employed for likelihood maxi-
mization. An explicit expression for Ĵ is derived in Appen-
dix A.5.

In principle, estimating unique marginal parameters for each
location ensures correct model application by respecting mar-
ginal constraints, although computational issues arise for large
numbers of parameters. Alternatively, as is common in the mod-
eling of univariate extremes, we may describe the GEV para-
meters through parsimonious regression models, which may be
functions of space, environmental, and other covariates and ran-
dom effects. Specifically, we may express each parameter as

η(xk) ≡ h{p(xk)} = [Xβ]k (8)

for k = 1, . . . ,K, where p(·) represents the parameters μ(·),
λ(·), or ξ(·), h is a link function, xk = (xk1, . . . , xkI) is a vec-
tor of predictors, X is a K × I design matrix, and β is an I × 1
vector of unknown parameters. The link function may differ ac-
cording to the parameter being modeled.

For further flexibility, a nonparametric approach may provide
a useful alternative. Nonparametric modeling of univariate ex-
treme value responses has been recently proposed by Chavez-
Demoulin and Davison (2005), Yee and Stephenson (2007), and
Padoan and Wand (2008). For example, a nonparametric model
extending (8) is the spline model

η(xk) ≡ h{p(xk)} = β0 +
I∑

i=2

β1ixki +
I∑

i=2

J∑
j=1

uijbij(xki),

with an intercept given by xk1 = 1, and where for the covari-
ate xki, for i ≥ 2, bi1, . . . ,biJ is a set of spline basis func-
tions [e.g., bij(xki) = (xki − κij)+ for a set of knots, κi1, . . . , κiJ ,
within the range of the xki’s] and uij are the associated coef-
ficients. The work of Kammann and Wand (2003), who de-
veloped a nonparametric spatial regression with Gaussian re-
sponse, may be similarly extended to the current spatial ex-
tremes setting. Spline-based, nonparametric regression, such as
penalized splines, employs penalized likelihoods for parame-
ter estimation to avoid over-fitting (e.g., Green and Silverman
1994). Model fitting therefore requires the definition of a penal-
ized composite likelihood for parameter estimation.
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3.3 Model Selection

There are two model selection approaches under the com-
posite likelihood framework. For nested models (Varin 2008)
the q-dimensional parameter, ψ is partitioned as ψ = (ψ ′,ψ ′′),
where ψ ′ is r-dimensional, and testing ψ ′ = ψ0 versus a two-
sided alternative hypothesis proceeds via the composite likeli-
hood ratio test (CLRT) statistic

W(ψ0) = 2
{
�C (ψ̂) − �C (ψ0, ψ̂

′′(ψ0))
}
.

Under the null (Kent 1982)

W ∼̇
r∑

j=1

νiχ
2
i , (9)

where χ2
i are independent χ2

1 random variables, and ν1 ≥
· · · ≥ νr are the eigenvalues of (Hψ ′ψ ′

)−1Ĩψ ′ψ ′ . Here, Hψ ′ψ ′

and Ĩψ ′ψ ′ respectively denote the information matrix and the
sandwich information matrix, each restricted to those elements
associated with parameter ψ ′. (Dependence on ψ under the
null is omitted for brevity.) Hypothesis testing via (9) either
approximates the null distribution using estimates of the eigen-
values νi (Rotnitzky and Jewell 1990), or adjusts the composite
likelihood such that the usual asymptotic χ2

r null is preserved
(Chandler and Bate 2007).

The composite likelihood information criterion (CLIC)
(Varin and Vidoni 2005), useful in the case of nonnested
models, performs model selection on the basis of expected
Kullback–Leibler divergence between the true unknown model
and the adopted model (e.g., Davison 2003, p. 123). In the com-
posite likelihood context, this is the AIC under model misspec-
ification (Takeuchi 1976; Davison 2003, pp. 150–152). Model
selection is based on the model minimizing

−2
{
�C (ψ̂MCLE;Y) − tr[̂J(ψ̂MCLE)Ĥ(ψ̂MCLE)−1]},

where the second term is the composite log-likelihood penalty
term.

4. SIMULATION STUDY

We now evaluate the utility of the composite likelihood in
the spatial extremes context. We examine various forms of ex-
tremal dependence with the Gaussian storm profile (4) charac-
terized through the covariance matrix, �, including directional
and strength of dependence variations (Table 1 and Figure 1).
The covariance has direct meteorological interpretation and de-
fines the extremal dependence directly. The K site locations are
uniformly generated over a 40 × 40 region. Given the moder-
ately large computational demand for large site numbers, likeli-
hood maximization (and other) routines have been implemented
in C and collected in the R package SpatialExtremes.

Table 1. Extremal dependence configurations

Spatial dependence structure σ 2
1 σ 2

2 σ12

�1: Same strength in both directions 300 300 0
�2: Different strength in both directions 200 300 0
�3: Spatial correlation 200 300 150
�4: Strong dependence 2000 3000 1500
�5: Weak dependence 20 30 15

Table 2 summarizes covariance (�) estimator performance
based on moderately sized datasets: K = 50 sites and N =
100 observations. Estimated means and standard errors of the
MCLE based on 500 data replications are reported for each
spatial dependence structure. Good correspondence with true
values is achieved. There is no evidence of bias, even in cases
where poorer performance may be expected, such as very strong
or weak dependence, and the sandwich standard errors and sam-
ple standard deviations are consistent.

We note that in situations where the conditions of Appen-
dix A.2 are not satisfied, the asymptotic distribution of the
MCLE can be far from normal. Specifically, as the spatial ex-
tremes become increasingly dependent, the true parameter ψ0
approaches the boundary of the parameter space, 
 , threaten-
ing the viability of condition C.1 (ψ0 is an interior point of 
).
As a consequence, estimation of the Hessian matrix can become
problematic and so the Gaussian asymptotics of the MCLE may
fail.

For the Gaussian storm profile (4) we require that the co-
variance � (or equivalently its inverse) is positive-semidefinite,
with nonnegative eigenvalues. In the case of strong dependence
in Table 2, the eigenvalues of �−1

4 are (5 ± √
10)/7500 and

so ψ0 is near the parameter space boundary. For a few of the
500 replications, numerical estimates of the Hessian matrix
were unstable. In this case, stable estimates were obtained by
using a slightly larger than the default relative step-size parame-
ter when estimating the Hessian using finite-difference meth-
ods. Performance of the MCLE in Table 2 under strong depen-
dence is otherwise good.

The performance of the estimation of the extremal coefficient
function, θ(h), can be assessed by computing the mean inte-
grated squared error (MISE) and the mean integrated absolute
error (MIAE), between the true and estimated extremal coeffi-
cients. Table 3 depicts MISE and MIAE for three different esti-
mators of the extremal coefficient functions: the MCLE derived
from the Gaussian extreme value model, and those proposed by
Smith (1990) and Schlather and Tawn (2003). From Table 3, in
general it is clear that the composite likelihood estimator is the
most accurate.

Covariance (�) estimator performance for a range of dataset
sizes (N = 10,50,100,500) and site numbers (K = 10,50,100)
is listed in Table 4, under 500 data replications of spatial de-
pendence model �3. As expected, the simulations indicate that
there is some bias and large variance for small N, and negligi-
ble bias and small variance for large N. Observe that, for fixed
sample size, the number of sites does not impact the estimation
results. This behavior is illustrated in Figure 2, highlighting,
in particular, good estimator performance with increasing N.
Estimator performance for the marginal parameters μ(·), λ(·),
and ξ(·) is also examined, under assumed quadratic spatial
surfaces for the GEV parameters, and the spatial dependence
model �3. Figure 3 (top panels) compares the true quadratic
surfaces (black lines) with the mean of the trend surface es-
timates (grey lines). Under this model, the integrated absolute
error is computed for each of 500 data replications (bottom pan-
els). The correspondence of the marginal parameter estimates
appears to be reasonable.
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Figure 1. A Gaussian extreme value process realization for �1, . . . ,�5. Max-stable process simulation routines are available in the Ran-
domFields package in R (Schlather 2002). A color version of this figure is available in the electronic version of this article.

We consider now model selection under misspecification.
Figure 4 illustrates power curves (CLRTs) and rejection rates
(CLIC) for two hypotheses, each versus their complement.
Namely, H0 :σ 2

1 = 200 fixing σ 2
2 = 300 and σ12 = 150 (top

plots), and H0 :σ 2
1 = σ 2

2 = 200 fixing σ12 = 0 (bottom plots).
All resulting curves are near-quadratic and, for the pairwise
likelihood ratio based tests, rejection rates are close to the sig-
nificance level α = 0.05 when the null hypothesis is true. In
this study, contrary to the results derived by Chandler and Bate
(2007), the adjustment of the W statistic (9) (Rotnitzky and Jew-
ell 1990) appears to have slightly more power—even when test-
ing multiple parameters. In contrast the CLIC statistic demon-
strates poor performance, with the rejection rate under the true
model reaching only 20%. However, despite this underperfor-
mance, the CLIC statistic may be implemented in the case of
nonnested models, where the CLRT is unavailable. Accord-
ingly, it may have utility as a model selection tool when search-
ing through large numbers of models.

Finally, we consider MCLE efficiency under composite like-
lihoods constructed only using neighboring sites. We follow
the weighting scheme of Bevilacqua et al. (2007) as described
in Section 3.2, for a range of distances, δ. Data are generated
under spatial dependence (using �3) for both uniformly and
regularly distributed grid site locations over a [0,40]2 region
(Figure 5, top). For the uniform sites (left panels), the trace
of the asymptotic covariance, tr(Ĩ(ψ)−1), decreases with de-
creasing distance, δ, and then increases for small distances.
The minimum, obtained at δ = 12, corresponds to a compos-
ite log-likelihood formed by only 290 (out of 1225) pairs of
observations (Figure 5, bottom left). For the regular grid site
locations (right panels), the trace decreases monotonically with
decreasing δ, with a minimum obtained at δ = 6 (using 112
out of 2016 pairs of observations). In conclusion, utilizing only

neighboring rather than all distinct observational pairs produces
gains in computation efficiency, and statistical efficiency of
the MCLE.

5. APPLICATION TO U.S. PRECIPITATION DATA

We illustrate the developed methodology in an analysis of
U.S. precipitation data. These data consist of 46 gauging sta-
tions with daily rainfall records over a period of 91 years (Fig-
ure 6). We express the model GEV parameters as simple lin-
ear functions of longitude, latitude and altitude. Further model
variations, including additional environmental covariates, and
regressions of the covariance � on these covariates to examine
spatial variations in extremal dependence were not considered.

Exploratory analysis of the model complexity of the GEV pa-
rameters was performed by fitting independent GEV models to
the data from each station and evaluating appropriate surface re-
sponses using standard techniques (e.g. ANOVA, Fisher tests).
No explanatory variables were found relevant for the shape pa-
rameter, whereas first-order terms for location and scale para-
meters were sufficient. Consequently, based on this linear upper
limit to model complexity, we perform model selection on the
pairwise composite likelihood of the Gaussian extreme value
process using the methodologies outlined in Section 3.3.

Table 5 summarizes some of the different models investi-
gated. According to the CLIC criterion, model M5 (in bold)
is the preferred choice, although models M2 and M1 also ap-
pear competitive. Given the relatively poor performance of the
CLIC criterion for model selection (see Section 4), a compos-
ite likelihood ratio test is performed to check if M5 is indeed
our best model against the alternatives M1 and M2. The same
conclusions are obtained from the deviance based tests, with
p-values around 0.9. For model M5, the covariance � is esti-
mated as σ̂ 2

1 = 0.06026 (0.0096), σ̂12 = 0.01420 (0.0058), and

Table 2. Means and standard errors of the MCLE based on 500 spatial extreme data simulations (K = 50 sites and N = 100 observations) with
the Gaussian extreme value model. True values are in [brackets]. Standard errors are obtained through sandwich estimates and sample standard
deviation (in parentheses). Computations using �4 were performed using a larger than default relative step-size parameter when estimating the

Hessian matrix using finite-difference methods

σ̂ 2
1 / s.e. σ̂ 2

2 / s.e. σ̂ 2
12 / s.e.

�1: 306 [300] / 40.6 (44.7) 306 [300] / 39.8 (41.5) 1 [0] / 27.9 (27.7)
�2: 204 [200] / 26.7 (28.5) 305 [300] / 39.6 (39.7) 1 [0] / 21.9 (21.2)
�3: 202 [200] / 25.1 (26.1) 300 [300] / 37.3 (37.9) 150 [150] / 25.5 (26.1)
�4: 2043 [2000] / 286.2 (314.3) 3033 [3000] / 417.6 (455.4) 1522 [1500] / 287.5 (308.7)
�5: 20 [20] / 1.5 (1.6) 30 [30] / 2.3 (2.3) 15[15] / 1.6 (1.6)
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Table 3. MISE and MIAE of extremal coefficient estimates based on 500 data simulations with K = 50 sites and N = 100 observations.
Estimators are the MCLE and those proposed by Smith (1990) and Schlather and Tawn (2003). Standard deviations are reported in parentheses

MCLE Smith Schlather and Tawn

MISE MIAE MISE MIAE MISE MIAE

�1: 0.86 (0.92) 24.09 (12.66) 5.14 (3.18) 60.09 (17.45) 4.96 (2.70) 58.83 (16.25)
�2: 0.85 (0.83) 24.50 (11.92) 5.63 (3.02) 63.15 (15.78) 5.74 (2.96) 63.57 (16.28)
�3: 0.76 (0.87) 22.94 (12.25) 7.17 (3.99) 70.64 (18.07) 7.04 (3.78) 70.22 (18.15)
�4: 0.36 (0.53) 14.53 (9.09) 2.15 (2.04) 40.04 (18.21) 1.45 (1.24) 30.42 (12.30)
�5: 0.10 (0.10) 6.20 (3.04) 13.77 (1.83) 102.13 (6.73) 11.46 (2.42) 85.29 (10.97)

Table 4. Means and standard deviations (in parantheses) of the MCLE for a varying number of sites (K) and observations (N), based on 500
simulations of spatial extreme data using the Gaussian extreme value model with covariance �3

K N = 10 N = 50 N = 100 N = 500 True

σ̂ 2
1 10 245 (120.2) 207 (43.8) 205 (31.7) 199 (13.3) 200

50 244 (90.4) 208 (37.5) 200 (28.3) 199 (11.4)
100 239 (94.3) 205 (37.8) 202 (30.4) 199 (11.5)

σ̂ 2
2 10 353 (159.1) 305 (63.9) 301 (44.8) 298 (19.5) 300

50 353 (131.6) 309 (56.6) 303 (44.3) 298 (16.9)
100 361 (143.4) 307 (59.5) 301 (44.8) 299 (16.7)

σ̂12 10 174 (108.9) 153 (41.8) 151 (31.9) 149 (13.4) 150
50 179 (91.2) 156 (38.8) 149 (28.6) 149 (11.4)

100 181 (100.9) 154 (39.2) 150 (29.7) 150 (11.2)

Figure 2. MCLE distribution estimates for N = 50 (grey line), N = 100 (dotted line), and N = 1000 (solid line) observations over K = 10
(top row), K = 50 (center row), and K = 100 (bottom row) sites. Contours correspond to 0.25, 0.5, and 0.75 percentiles.
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Figure 3. Quadratic spatial surface for location, μ (top left panel), scale, λ (top center), and shape, ξ (top right). Black lines denote true
quadratic surfaces. Grey lines display the estimated surfaces corresponding to the mean of the replication-wise simulation. Bottom panels show
the respective integrated absolute errors.

σ̂ 2
2 = 0.02849 (0.0072), where the numbers in parentheses de-

note standard errors.
Figure 7 illustrates the spatial variation of pointwise 50-year

return level estimates. Comparison to the regional elevation
map (Figure 6) indicates that the most extreme precipitation
events occur in mountainous regions.

Figure 8 (left plot) depicts the strength of spatial dependence
through the extremal coefficient function θ(h). There is clear
evidence of anisotropy, with stronger dependence in the north-
east/southwest direction. Interestingly, this axis corresponds to
the shape of the Appalachian Mountains as well as the coast-
line. Accordingly, this directional extremal dependence may be

Figure 4. Left panels: Power curves for the CLRTs; RJ (Rotnitzki and Jewell 1990), and CBchol and CBsvd (Chandler and Bate 2007) using
Cholesky and singular value decompositions. Right panels: CLIC rejection rates. Hypotheses are (top panels): H0 :σ 2

1 = 200 fixing σ 2
2 = 300

and σ12 = 150; (bottom panels) H0 :σ 2
1 = σ 2

2 = 200 fixing σ12 = 0. Test levels are α = 0.05. Point estimates are based on 1000 data replications.
A color version of this figure is available in the electronic version of this article.
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Figure 5. Top panels: Simulated site locations (open circles) over a [0,40]2 region using both random uniformly (right panel) and regularly
(left panel) distributed sites, for which artificial data are generated under spatial dependence. Lines connect site-pairs used to construct the
composite log-likelihood with minimum asymptotic covariance trace. Bottom panels: Trace of the asymptotic variance, tr(Ĩ(ψ)−1), obtained by
using neighboring sites only in computation of the MCLE. Neighboring sites are site pairs which are located within distance δ of each other.
A color version of this figure is available in the electronic version of this article.

the consequence of storms following either the coastline or the
massif. Moreover, we note that conditional predictive inference
is available via the pairwise conditional distribution. Figure 8
(right plot) illustrates the spatial variation of pointwise 50-year

return level estimates, conditional on observing an event of
magnitude 13 cm at the site indicated by the star.

Finally, we consider model goodness of fit based on re-
peated simulation under the fitted model. From the observed

Figure 6. Locations of the 46 gauging stations (crosses) on the east coast of the U.S., with superimposed elevation map (meters) highlighting
the shape of the Appalachian Mountains.
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Table 5. Some Gaussian extreme value processes and their corresponding maximized negative composite log-likelihood,
degrees of freedom, and the CLIC score

Model −�P (ψ̂MCLE;y) df CLIC

M0: μ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,110.5 12 825,679
λ(x) = β0 + β1(lat) + β2(alt) + β2(lon)

ξ(x) = γ0
M1: μ(x) = α0 + α1(lat) + α2(alt) 412,111.7 11 825,526

λ(x) = β0 + β1(lat) + β2(alt) + β3(lon)

ξ(x) = γ0
M2: μ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,113.6 11 825,459

λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M3: μ(x) = α0 + α1(lat) + α3(lon) 412,234.4 11 825,840
λ(x) = β0 + β1(lat) + β2(alt) + β3(lon)

ξ(x) = γ0
M4: μ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,380.9 11 826,177

λ(x) = β0 + β1(lat) + β3(lon)

ξ(x) = γ0
M5: μ(x) = α0 + α1(lat) + α2(alt) 412,113.9 10 825,327

λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M6: μ(x) = α0 + α1(lat) 412,314.4 9 825,684
λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

data {ym,k}, we compute ỹm = maxk∈K′ {ym,k} for each block
m = 1, . . . ,M, where the set K′ ⊆ {1, . . . ,K} is formed by some
subset of sites. The model-based distribution of each ỹm is esti-
mated based on 10,000 simulated datasets generated under the
fitted model. Figure 9 illustrates in quantile-plot style the ith
order-statistic ỹm(i) versus the mean of its distribution under
the fitted model, in close analogy with diagnostic plots for uni-
variate extremes (e.g., Coles 2001). Dashed lines correspond
to 95% confidence envelopes (e.g., Davison and Hinkley 1997,
p. 153).

Specifically, Figure 9 considers [top plots, (a)–(c)] three dif-
ferent pairs of locations, representing sites separated by short,
medium, and long distances, and [bottom plots, (d)–(f)] the 10
lowest, the 10 highest, and all K = 46 sites. The displayed
plots are typical of the many examined for these data and

Figure 7. Pointwise 50-year return level map (cm) estimated from
the fitted Gaussian extreme value process, model M5.

model. Overall, the diagnostics suggest that the observed ex-
treme precipitation data for this region is consistent with the
fitted Gaussian extreme value model.

6. CONCLUSION

As a natural generalization of extremal dependence struc-
tures, max-stable processes are a powerful tool for the modeling
of multivariate extremes. Unfortunately, the intractability of the
multivariate density function precludes inference except in triv-
ial cases (e.g., bivariate), or requires additional approximations
and immense computational overheads (e.g., Jiang and Turnbull
2004; Bortot, Coles, and Sisson 2007; Sisson, Fan, and Tanaka
2007).

This article has developed composite likelihood-based infer-
ential methods for general max-stable processes. Our results
demonstrate good applicability in the spatial context. The bene-
fits of this likelihood-based approach are the flexible joint mod-
eling of marginal and dependence parameters, coupled with
good estimator behavior with finite samples, all at moderate
computational cost.

Modifications of the model formulation would draw alterna-
tive representations of extremal modeling into the composite-
likelihood based framework, given the known links between
these and block maxima (GEV) approaches (e.g., Coles 2001).
These include threshold excess models for marginals (Davison
and Smith 1990), and the limiting Poisson characterization of
extremes. The obvious practical benefit from these extensions
would be the incorporation of more data into the modeling
process.

APPENDIX

We present conditions for the asymptotic normality and consistency
of the MCLE, explicit expressions for the distribution function (3),
the density function (4), and the derivatives required for the estimated
covariance matrix in Section 3.2.
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Figure 8. Left: Contour plot of the fitted extremal coefficient θ(h) = 2�(a(h)/2); Right: Pointwise 50-year, conditional return level map
(cm) estimated from the fitted Gaussian extreme value process. Estimates are conditioned on observing an event of magnitude 13 cm at the site
indicated by a star.

A.1 Vector Notation

Let f be a real-valued function in the d × 1 vector x = (x1, . . . , xd).

Then the 1 × d derivative vector, Dxf (x), has ith element ∂f (x)/∂xi.

The corresponding Hessian matrix is given by Hxf (x) = Dx{Dxf (x)}�.

A.2 Conditions for the Consistency and Asymptotic
Normality of the MCLE

We provide conditions under which the MCLE (Section 3.1) is con-
sistent and asymptotically normal. While in this article we consider
the specific case of the marginal pairwise composite log-likelihood (6),

Figure 9. Goodness-of-fit diagnostics for the fitted model for various subsets of site locations, K′ ∈ {1, . . . ,K}. Panels display quantile plots
of observed block-maxima ỹm = maxk∈K′ {ym,k} versus means of their respective distributions, obtained by simulation, under the fitted model
(10,000 replications). Dashed lines indicate simulation-based 95% confidence envelopes. Top panels: K′ consisting of three pairs of locations
separated by (a) short (≈ 20 km), (b) medium (≈ 350 km), and (c) long (≈ 735 km) distances. Bottom panels: K′ consisting of (d) the 10 lowest,
(e) the 10 highest, and (f) all K = 46 sites.
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these conditions are relevant for both marginal and conditional events
{Ik, k ∈ K}.

Consider the max-stable process, {Y(t)} (Section 2.1), and some
parametric family of distributions for the dependence function (e.g.,
the storm profile model; cf. Smith 1990) derived from the specifi-
cation of some function f in (1). Then the associated density family
F = {f (y;ψ),y ∈ Y ⊆ R

K ,ψ ∈ 
 ⊆ R
q} of the process, for fixed K,

is assumed to be the parametric statistical model for the data. Define
ψ̂MCLE as the root of the equation Dψ�C (ψ;Y) = 0. Suppose that:

C.1 The support, Y , does not depend on ψ ; the true parameter, ψ0
is an interior point of 
; and Fψ ≡ Fψ0

⇔ ψ = ψ0 ensures
parameter identifiability through the distribution function F.
(Alternatively, identifiability may be ensured through the con-
ditional or marginal distributions.)

C.2 f (y;ψ) is continuous in ψ for all y. Further, ∀y and ∀ψ such
that f (y;ψ) > 0, Dψ log f (y;ψ) < ∞, and Hψ log f (ψ;y) < ∞
(these conditions satisfied componentwise).

C.3 Interchange of differentiation and integration of f (y;ψ) with
respect to ψ is valid for

∫
f (y;ψ)dy and

∫
Dψ log f (y;ψ)dy,

∀ψ ∈ 
 .
C.4 Eψ [{Dψ log f (y;ψ)}2] is a positive definite matrix ∀ψ ∈ 
 .
C.5 Eψ {Dψ�C (y ∈ Ik;ψ)} = 0 (for each component of ψ ),

∀ψ ∈ 
 . Note that the unbiasedness of the composite score
equation stems from the assumption that C.3 also holds for
each f (y ∈ Ik;ψ).

C.6 Hψ�C (y;ψ) exists (with finite components) ∀y ∈ Ik∈K and
∀ψ ∈ 
 .

C.7 Interchange of differentiation and integration of �C (y;ψ) with
respect to ψ is valid for

∫
�C (y;ψ)f (y;ψ)dy, ∀ψ ∈ 
 .

C.8 [Eψ {Hψ�C (y;ψ)}]2 is a positive definite matrix, ∀ψ ∈ 
 .
C.9 �C (y;ψ) admits a Taylor expansion up to the third order in an

open neighborhood of ψ0, where m−1
E{|DψHψ�C (y;ψ)|} is

uniformly bounded ∀ψ in this neighborhood.

Under these assumptions, if the root is unique, then ψ̂MCLE is con-
sistent and asymptotically normal as sample size m → ∞. Consistency
results of the MCLE are obtained by requiring MLE consistency as-
sumptions on each component in the composite likelihood. The nor-
mality of the asymptotic distribution of the MCLE is derived from Tay-
lor expansion arguments of the composite log-likelihood (e.g., similar
to those of Davison 2003, p. 147, and Huber 1967).

Note that when modeling with GEV margins, condition C.1 is not
strictly satisfied as the support of the parameter space does depend on
the parameter vector. However despite this, standard MLE asymptotics
are still available under most practical modeling situations (broadly
speaking, when ξ > −1/2) as shown by Smith (1985).

Observe that the MCLE asymptotics examined here result from as-
suming an increasing sample size M (of Y) which has a fixed dimen-
sion K. However equivalent results are available for the asymptotic
behaviour of the MCLE for fixed M and increasing K (e.g., Cox and
Reid 2004). Known in spatial statistics as fixed or increasing-domain
(Cressie 1993), typically a single replication of a process is observed
at many spatial points. MCLE asymptotics in this setting are discussed
by, for example, Nott and Rydén (1999) and Bevilacqua et al. (2007).

A.3 Derivation of the Bivariate Distribution Function

In order to derive the cumulative distribution function (3), consider-
ing formula (2), and the assumptions of Section 2.3, we need to solve

F(zi, zj) = exp

{
−

∫ ∞
−∞

∫ ∞
−∞

max

(
f (x1, x2)

zi
,

f (x1 − t1, x2 − t2)

zj

)
dx1 dx2

}
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{
−
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,

where f (x1, x2) is the bivariate normal density of (X1,X2) ∼
N((0,0)�,�), and for brevity we set h = (tj − ti)

� ≡ (t1, t2)�. Recall
from (3) that

a(h) = (hT�−1h)1/2

= 1√
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where ρ = σ12/σ1σ2. Consider first the case (t1σ2 −ρt2σ1) > 0. Note
that f (x1, x2)/zi ≥ f (x1 − t1, x2 − t2)/zj implies that
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Similarly,
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It then follows that∫ ∞
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≥ f (x1 − t1, x2 − t2)

zj

)
dx1 dx2

= 1

zj

∫ ∞
−∞

∫ ∞
c

1

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

(
(x1 − t1)2

σ 2
1

− 2ρ(x1 − t1)(x2 − t2)

σ1σ2
+ (x2 − t2)2

σ 2
2

)}
dx1 dx2

= 1

zj

∫ ∞
−∞

ϕ(x2 − t2)

×
∫ ∞

c
ϕ

(
(x1 − t1) − ρσ1(x2 − t2)/σ2

σ1
√

1 − ρ2

)
dx1 dx2

= 1

zj

∫ ∞
−∞

ϕ(x2 − t2)

{
1 − �

(
c − ρσ1(x2 − t2)/σ2

σ1
√

1 − ρ2

)}
dx2

= 1

zj
�

(
1

2
√

(1 − ρ2)

(
t21
σ 2

1

− 2ρt1t2
σ1σ2

+ t22
σ 2

2

)1/2

+
(

t21
σ 2

1

− 2ρt1t2
σ1σ2

+ t22
σ 2

2

)−1/2 log zi/zj

(1 − ρ2)−1/2

)

= 1

zj
�

(
a(h)

2
+ log zi/zj

a(h)

)
,

and the form of the distribution (3) is confirmed. Observe, that the
same result is obtained for the case (t1σ2 −ρt2σ1) < 0. See also Smith
(1990) and de Haan and Pereira (2006).

A.4 Derivation of the Bivariate Density Function

In order to derive the bivariate density function (4) we require the
second-order derivative of

F(zi, zj) = exp

(
−�(w)

zi
− �(v)

zj

)
with respect to zi and zj, where for brevity we set a ≡ a(h), w ≡ w(h),
and v ≡ v(h) and write w = a/2 + log(zj/zi)/a and v = a − w. The dif-
ferentiation gives

f (zi, zj) ≡ ∂2

∂zi ∂zj
F(zi, zj)

= exp

(
−�(w)

zi
− �(v)

zj

)

×
{

∂

∂zi

(
−�(w)

zi
− �(v)

zj

)
∂

∂zj

(
−�(w)

zi
− �(v)

zj

)

+ ∂2

∂zi ∂zj

(
−�(w)

zi
− �(v)

zj

)}
.

First-order differentiation gives

∂

∂zi

(
−�(w)

zi
− �(v)

zj

)
= �(w)

z2
i

+ ϕ(w)

az2
i

− ϕ(v)

azizj
,

∂

∂zj

(
−�(w)

zi
− �(v)

zj

)
= �(v)

z2
j

+ ϕ(v)

az2
j

− ϕ(w)

azizj
,

using the results

∂�(w)

∂zi
= −ϕ(w)

azi
,

∂�(v)

∂zi
= ϕ(v)

azi

and

∂w

∂zi
= − 1

azi
,

∂v

∂zi
= 1

azi
.

Second-order differentiation yields

∂2

∂zi ∂zj

(
−�(w)

zi
− �(v)

zj

)
= vϕ(w)

a2z2
i zj

+ wϕ(v)

a2ziz2
j

,

using

∂ϕ(w)

∂zi
= wϕ(w)

azi
and

∂ϕ(v)

∂zi
= − vϕ(v)

azi
.

Substituting, we obtain the probability density function

f (zi, zj) = exp

{
−�(w)

zi
− �(v)

zj

}

×
{(

�(w)

z2
i

+ ϕ(w)

az2
i

− ϕ(v)

azizj

)

×
(

�(v)

z2
j

+ ϕ(v)

az2
j

− ϕ(w)

azizj

)

+
(

vϕ(w)

a2z2
i zj

+ wϕ(v)

a2ziz2
j

)}
.

A.5 An Expression for the Squared Score Statistic

From Section 3.2 the term J(ψ) of the sandwich information matrix
can be estimated from

M∑
m=1

{K−1∑
i=1

K∑
j=i+1

wijDψ�ij(ψ)

}{K−1∑
i=1

K∑
j=i+1

wijDψ�ij(ψ)

}�
,

where ψ� = (σ ,βμ,βλ,βξ ), σ� = (σ 2
11,σ 12,σ 2

22) and where each
parameter β is p-dimensional vector of coefficients. The bivariate log-
density has the form

�ij(ψ) = A + log(BC + D) + E,

where

A = −�(w)

zi
− �(v)

zj
, B = �(w)

z2
i

+ ϕ(w)

az2
i

− ϕ(v)

azizj
,

C = �(v)

z2
j

+ ϕ(v)

az2
j

− ϕ(w)

azizj
, D = vϕ(w)

a2z2
i zj

+ wϕ(v)

a2ziz2
j

,

and

E = log

{
1

λiλj

(
1 + ξi

yi − μi

λi

)1/ξi−1

+

(
1 + ξj

yj − μj

λj

)1/ξj−1

+

}
and where μi = (Xβμ

βμ)i, ξi = (Xβξ
βξ )i, and log(ψi) = (Xβψ

βψ)i.
The GEV parameters are related to the predictors by the form (8). We
assume identity link functions for the location and shape parameters
and exponential for the scale. The term E corresponds to the log of
the determinant of the Jacobian matrix associated with the transforma-
tion (7); see Section 3.2.

The first-order derivative term of the square score statistic is defined
by

Dψ�ij(ψ) = (
Dσ �ij(ψ),Dβμ

�ij(ψ),Dβλ
�ij(ψ),Dβξ

�ij(ψ)
)
.

Vector differential calculus (e.g., Wand 2002) leads to

Dσ �ij(ψ) ≡
[
−vϕ(w)

azi
− wϕ(v)

azj

+
{

C

(
(w2 − 1)ϕ(v)

a2z2
j

+ (1 + wv)ϕ(w)

a2zizj

)
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+ B

(
(v2 − 1)ϕ(w)

a2z2
i

+ (1 + wv)ϕ(v)

a2zizj

)

+ (w − 2v − wv2)ϕ(w)

a3z2
i zj

+ (v − 2w − vw2)ϕ(v)

a3z2
j zi

}/
(BC + D)

]
Dσ a�,

where we have used the results

Dσ a� = 1

2a|�|2 ( t21 t1t2 t22 )

×
⎡⎢⎣

−σ 4
2 2σ 2

2 σ12 −σ 2
12

2σ 2
2 σ12 −2(σ 2

1 σ 2
2 + σ 2

12) 2σ 2
1 σ12

−σ 2
12 2σ 2

1 σ12 −σ 4
1

⎤⎥⎦ ,

Dσ w = v

a
Dσ a�, Dσ �(w) = vϕ(w)

a
Dσ a�,

Dσ ϕ(w) = −wvϕ(w)

a
Dσ a�,

and

Dσ vϕ(w) = w(1 − v2)ϕ(w)

a
Dσ a�.

The first-order derivatives of v, �(v), ϕ(v), and wϕ(v) are the same as
the above, substituting v for w. Similarly for the second term we have

Dβμ
�ij(ψ)

≡
{(

ϕ(w) + a�(w)

az2
i

− ϕ(v)

azizj

)
z1−ξi
i
λi

}(
Xβμ

)
i

+
{(

ϕ(v) + a�(v)

az2
j

− ϕ(w)

azizj

) z
1−ξj
j

λj

}(
Xβμ

)
j

+
{

C

(
wϕ(v)

a2ziz2
j

+ vϕ(w)

a2zjz2
i

)
z1−ξi
i
λi

/
(BC + D)

}(
Xβμ

)
i

+
{

B

(
vϕ(w)

a2zjz2
i

+ wϕ(v)

a2ziz2
j

) z
1−ξj
j

λj

/
(BC + D)

}(
Xβμ

)
j

+
{

C

(
(a + w)ϕ(w)

a2ziz2
j

− (2a + w)ϕ(v)

a2z3
j

− 2�(v)

z3
i

) z
1−ξj
j

λj/
(BC + D)

}(
Xβμ

)
j

+
{

B

(
(a + v)ϕ(v)

a2zjz2
i

− (2a + v)ϕ(w)

a2z3
i

− 2�(w)

z3
j

)
z1−ξi
i
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(BC + D)

}(
Xβμ

)
i

+
{(

(1 − av − v2)ϕ(w)

a3zjz
3
i

− (1 + aw + vw)ϕ(v)
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i z2

j

)
z1−ξi
i
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(BC + D)

}(
Xβμ

)
i

+
{(

(1 − aw − w2)ϕ(v)

a3ziz
3
j

− (1 + av + vw)ϕ(w)

a3z2
j z2

i

) z
1−ξj
j
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/
(BC + D)

}(
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)
j

+ (ξi − 1)

λiz
ξi
i

(
Xβμ

)
i + (ξj − 1)

λjz
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j

(
Xβμ

)
j.

Observe that the above expression is obtained by deriving in order
the components: Dβμ

A, Dβμ
log(BC + D), and Dβμ

E. These three
components have the form Dβμ

f (x) = Dzi f (x)Dβμ
zi + Dzj f (x)Dβμ

zj,

where Dβμ
zi = z1−ξi

i /λi(Xβμ
)i. For this reason the derived expres-

sions of Dβλ
�ij(ψ) and Dβξ

�ij(ψ) are essentially the same but substi-
tuting Dβμ

zi with Dβλ
zi and Dβξ

zi, and Dβμ
E with Dβλ

E and Dβξ
E.

We have

Dβλ
zi ≡ − zi(yi − μi)

λi

(
Xβλ

)
i

and

Dβξ
zi ≡

{
1

ξi

(
z1−ξi
i (yi − μi)

λi
− zi log(zi)

)}(
Xβξ

)
i.

Finally,

Dβλ
E ≡

(
(ξi − 1)(yi − μi)

λizi
−

)(
Xβλ

)
i

+
(

(ξj − 1)(yj − μj)

λjzj
−

)(
Xβλ

)
j

and

Dβξ
E ≡

[
1

ξi

{
(1 − ξi)(yi − μi)

zξi
i λi

− log(zi)

}](
Xβξ

)
i

+
[

1

ξj

{
(1 − ξj)(yj − μj)

z
ξj
j λj

− log(zj)

}](
Xβξ

)
j.

Combining all these results together we obtain an expression for the
squared score statistic.

[Received October 2008. Revised September 2009.]
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