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Abstract

Herein, a probabilistic model for predicting the effect of post-weld treatment on the fatigue performance of the welded joints in tubu-
lar truss bridges is described. Specifically, a probabilistic LEFM-based model is first developed for the fatigue analysis of single untreated
and treated crack sites in tubular K-joints. A systems reliability approach is then proposed for the analysis of tubular structures with
multiple potential crack sites. Using this approach, it is then demonstrated that significant improvements in the fatigue reliability of tubu-
lar joints with dimensions common to bridge structures can be obtained with post-weld treatment, even when the influences of the var-
ious untreated and treated potential crack sites are considered.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the design of tubular truss bridges, that is bridges
consisting of steel tubes welded together to form truss gird-
ers, engineers have found the fatigue performance of the
joints to be a critical aspect [1–3]. This means that larger
member sizes and welds must often be specified than would
be required to meet static strength requirements alone – a
fact that hinders the ability of these structures to compete
economically with more conventional bridge types. In
looking for ways of improving this performance, the use
of residual stress-based post-weld treatment methods such
as needle peening has been suggested.

To study this possibility, large-scale fatigue tests were
carried out by Schumacher [1,2], which demonstrated the
ability of needle peening to increase the fatigue lives of
tubular K-joints with dimensions common to bridge struc-
tures (i.e. c = 0.5 Æ D/T < 12, see Fig. 1). Although encour-
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aging, a number of concerns with the use of these methods
have limited the extent to which such findings can be trans-
lated into practical guidelines. Firstly, although their abil-
ity to increase the average fatigue lives of welded
structural details is well documented (see, for example:
[4,5]), there is some concern in general about the reliability
of these methods. Secondly, in the fatigue tests cited above,
it was seen that the benefit of treating the critical crack
location (determined by prior testing and deterministic
analysis), although substantial, was eventually limited by
cracking at a less critical, untreated site.

As a result of these concerns, it was concluded that in
order to determine the extent to which post-weld treatment
methods such as needle peening can be used to improve the
fatigue performance of tubular bridge structures, a probabi-
listic analytical model was needed that was capable of con-
sidering the influences of the various potential crack sites
(untreated and/or treated) on the overall fatigue reliability
of the structure. Herein, such a model is developed. This
model is founded on a deterministic, linear elastic fracture
mechanics (LEFM)-based model developed previously for
predicting the fatigue lives of single potential crack sites
(untreated and treated) in welded plate stiffener details [6].
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Table 1
Tubular joint specimens studied in [1]

Series Investigated
parameter

Size (mm, �) DQ

(kN)
D T d t g hbr

S1 – 273 20 139.7 12.5 20–29 60 594
S2 No backing

ring
273 20 139.7 12.5 54–60 60 594

S3 Smaller joint 168.3 12.5 88.9 8.0 31–44 60 396
S4 Site 1 treated 273 20 139.7 12.5 57–67 60 594

Fig. 3. Needle peening of test specimens [1].

Fig. 1. Non-overlapping single K-joint.
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Herein, this deterministic model is first modified for the
analysis of single potential crack sites in tubular K-joints. It
is then transformed into a probabilistic model for predict-
ing the reliability of these crack sites. Several studies are
carried out using this model. A systems reliability approach
for the analysis of tubular structures with multiple poten-
tial crack sites is then proposed and demonstrated. As well
as providing useful information regarding one potential
means of improving the fatigue performance of tubular
bridge joints, it is believed that the current work represents
a step forward in the study of the treatment methods them-
selves, which to date has consisted primarily of laboratory
testing and deterministic analysis. Although its possible
applications are believed to be wide-ranging, the immediate
scope of the current work is limited to non-overlapping sin-
gle K-joints (see Fig. 1) such as those common to planar
Warren truss bridges and residual stress-based treatment
methods such as needle peening.

2. Fatigue tests on tubular bridge joints

Fig. 2 shows the specimen configuration used in the fati-
gue tests reported in [1,2]. The specimens (shaded area in
Fig. 2) were fabricated from S355 steel. Four series of spec-
Fig. 2. Tubular truss specimen
imens were tested with two specimens in each series (16
joints in total). The varied parameters are summarized in
Table 1. In this table (see also Fig. 1), D, d, T, and t are
the chord and brace diameters and wall thicknesses, g is
the gap at the crown toe of the joint, and hbr is the brace
angle. All of the specimens were the same size except those
in Series S3. All of the specimens had short backing rings to
facilitate proper application of the first weld pass, except
those in Series S2. In Series S4, the effect of post-weld treat-
ment of the critical crack location (by needle peening [5] –
see Fig. 3) was examined. In all of the tests, a cyclic load,
DQ(= Qmax � Qmin), was imposed at a frequency of 2 Hz.
configuration used in [1].



Fig. 4. Results of tests reported in [1].
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This load was fixed at DQ = 594 kN for the Series S1/2/4
tests, and DQ = 396 kN for the Series S3 tests. The applied
load ratio, R(= Qmin/Qmax), was fixed at 0.1.

The results of these fatigue tests are summarized in
Fig. 4. In this figure, the number of cycles to failure, N,
is plotted as a function of the applied hot-spot stress range,
Drhs,app, where hot-spot stress, rhs, is defined as the surface
stress at the crack location or hot-spot including all of the
stress raising effects of the structural detail, but excluding
those due to the local weld profile itself [1–3]. Failure is
defined as through-thickness cracking at any location in
the joint, or N3 failure according to van Wingerde et al.
[7]. Runouts or specimens for which N3 failure did not
occur are indicated with an arrow.

Based on these test results, it was concluded that the use
of a backing ring did not significantly affect the fatigue lives
of the joints. Looking at Fig. 4 it can be seen that the fati-
gue lives of the treated joints (Series S4) are significantly
greater than those of the untreated joints of similar size
(Series S1/2). As discussed in [1,2], if characteristic S–N

curves corresponding with a 95% survival probability are
compared, then the calculated improvement in the fatigue
strength of the joint due to the treatment is more than
Fig. 5. Shift of crack location with treatment [1].
50%. If these S–N curves are assumed to have a constant
slope of m = 3.0 on a log–log plot of stress versus fatigue
life, then this can be shown to correspond with an improve-
ment in fatigue life of over 300%.

During these tests it was observed that treatment of the
critical location, that is Site 1 on the tension (+) diagonal
(see Fig. 5), while improving the fatigue performance of
the joint considerably, resulted in a shift of the eventual
crack site away from the treated location to the untreated
Site 1c on the compression (�) diagonal. This was an unex-
pected result, as discussed in [1,2], but one that could be
explained by the presence of tensile residual stresses near
the weld toe, which caused crack growth to occur even
though the applied cyclic stress was entirely compressive.

3. Deterministic LEFM model for single crack sites

Following the large-scale fatigue tests, a deterministic
LEFM-based analysis was carried out to determine
whether or not the test results could be predicted analyti-
cally. A range of deterministic models are available for
the fatigue analysis of welded details, with varying levels
of accuracy and complexity. For the current study, a model
was desired that would provide a sufficient level of accu-
racy, while at the same time being simple enough that it
could be transformed into a probabilistic model, to be used
later for the analysis of large numbers of potential crack
sites on entire full-scale tubular bridge trusses.

Towards this end, a deterministic model based on the
work of Bremen [6] was adopted. This model employs the
basic assumption that the critical initial defects in tubular
bridge joints can be represented as small, semi-elliptical sur-
face cracks along the toes of the joint welds. A second, fun-
damental assumption made by the model is that post-weld
treatment methods such as needle peening work primarily
by introducing compressive residual stresses near the trea-
ted surface. These stresses have the effect of reducing crack
growth rates in the early part of the stable growth phase of
the total fatigue life. Other effects of the treatment, such as
the possible beneficial smoothing of the discontinuity at the
weld toe, the potentially detrimental introduction of small
notch-like dents, the beneficial flattening and aligning of
the surface grains, the increase in the toughness of the sur-
face layer etc., are all assumed to have an influence that is
either negligible or small but beneficial. The model is
founded on the well-known Paris–Erdogan crack growth
law, modified to consider crack closure effects and the exis-
tence of a threshold stress intensity factor (SIF) range, DKth,
and integrated over a crack depth range, a0 to ac:

N c ¼
Z ac

a0

da
C � DKm

eff � DKm
th

� � ð1Þ

wherein:

DKeff ¼MAXðKapp;max � Kop; 0Þ
�MAXðKapp;min � Kop; 0Þ ð2Þ
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wherein, Kapp,max and Kapp,min are the maximum and min-
imum SIFs due to the applied load and Kop is the applied
SIF level at which the crack tip opens upon loading. Kop

is calculated as follows:

Kop ¼ �ðKres þ KplÞ ð3Þ
wherein Kres is the SIF due to the residual stress distribu-
tion along the anticipated crack path and Kpl is the SIF
due to the additional stresses that must be present to cause
the crack to be closed at SIFs less than Kop. Kpl is calcu-
lated using the following empirical expression from [6]:

Kpl ¼ �MIN
0:2

ð1� ReffÞ
; 0:28

� �
� ðKapp;max þ KresÞ ð4Þ

wherein Reff is the effective stress ratio, defined as follows:

Reff ¼
Kapp;min þ Kres

Kapp;max þ Kres

ð5Þ

Eq. (4) was selected over a number of alternatives. It was
thought to be a good choice for the current study, as the
data on which it is based includes measurements obtained
at high negative applied stress ratios (R = �1 to �4). Using
Eqs. (1)–(5) the fatigue lives of untreated and treated crack
sites can be predicted, given the applied and residual SIFs
(Kapp and Kres) over the crack depth range, the initial and
final crack depths (a0 and ac), and the crack growth param-
eters (C, m, and DKth).

A number of approaches are discussed in [3] for calcu-
lating Kapp and Kres at a given crack depth. Herein, Kres

is calculated using the rather well-known approach pro-
posed by Albrecht and Yamada [8]. Specifically, given the
residual stress distribution along the anticipated crack
path, rres(b), Kres at a given crack depth, a, is calculated
using the following expression:

Kres ¼ Y e � Y s � Y w � Y g � rres �
ffiffiffiffiffiffiffiffiffi
p � a
p

ð6Þ
wherein rres is a measure of the residual stress magnitude
(such as the surface stress), and:

– Ye is the so-called shape factor (for an elliptical crack),
– Ys is the free surface factor,
– Yw accounts for the finite thickness of the plate or tube

wall, and
– Yg accounts for the non-uniformity of the stress distri-

bution along the crack path.

Herein, the factors Ye, Ys, and Yw are calculated using the
following expressions:

Y e ¼
1R p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 / � ððc2 � a2Þ=c2Þ

q� �
� d/

ð7Þ

Y s ¼ 1þ 0:12 � 1� 0:75 � a
c

� �
ð8Þ

Y w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � T
p � a

� �
� tan

p � a
2 � T

� �s
ð9Þ
wherein / is an angle describing the location around the
crack perimeter, a is the crack depth, c is half of the
semi-elliptical crack width, and T is the thickness of the
cracked plate or tube wall. Regarding these expressions,
Eq. (7) is an exact solution derived by integral transforma-
tion [8,9], and Eqs. (8) and (9) are empirical relationships
[8,10,11]. Yg is calculated according to [8]. Specifically,
the stress distribution present in the uncracked structure
is modelled as a series of n discrete uniform stress pairs act-
ing over the crack depth. Yg is then calculated by summing
the effects of each stress pair, as follows:

Y g ¼
2

p

� �
�
Xn

i¼1

rbi

rres

� sin�1 biþ1

a

� �
� sin�1 bi

a

� �	 

ð10Þ

wherein bi is the distance from the plate or tube wall sur-
face to the discrete stress or stress range pair rbi.

The adopted residual stress distributions along the
anticipated crack path due to the welding and post-weld
treatment processes are based on measurements reported
by others [6,12]. The residual stress distribution due to
the welding process is defined by the following expression:

rweldðbÞ ¼ fy � 0:62þ 2:327 � b
T

� �
� 24:125 � b

T

� �2
 

þ42:485 � b
T

� �3

� 21:087 � b
T

� �4
!

ð11Þ

wherein b is the depth below the surface, T is the thickness
of the cracked tube wall, and fy is the yield strength. This is
essentially the empirical expression proposed in [12],
shifted to represent an average of the measured data, rather
than an upper bound. For modelling the residual stresses
due to post-weld treatment a stress distribution similar to
the one proposed in [6] is employed. This distribution is
based on X-ray diffraction measurements of residual stres-
ses due to shot, needle, and hammer peening, made on a
longitudinally stiffened plate specimen after imposing a
number of high amplitude nominal stress cycles to consider
the possibility of residual stress relaxation. This distribu-
tion takes the following form:

rpwtðbÞ ¼ �fy � ð0:5Þ if b 6 0:1 � dp

rpwtðbÞ ¼ fy �
b
dp

� �
� 5

6

� �
� 7

12

� �� �
if b > 0:1 � dp

ð12Þ

wherein, dp is the imprint diameter of the peening tool. To
determine the combined stress distribution, rres(b), the log-
ical parameter PWT is introduced. This parameter is set to
equal one if the crack site is treated, or zero if it is not trea-
ted. The residual stress distribution is then described as fol-
lows:

rresðbÞ ¼MINðrpwtðbÞ;rweldðbÞÞ if PWT ¼ 1

rresðbÞ ¼ rweldðbÞ if PWT ¼ 0
ð13Þ



Fig. 6. Residual stress distribution for a needle peened crack site
(T = 20 mm).
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An example of the modelled stress distribution for a nee-
dle-peened crack site is presented in Fig. 6.

If the applied stress distribution is known, Kapp can be
calculated in the same manner as Kres. Normally, in order
to obtain this stress distribution, a finite element (FE) anal-
ysis must be carried out. For the analysis of the large num-
bers of potential crack sites in entire tubular bridge trusses,
however, it was quickly realized that this would be a pro-
hibitively time-consuming step. Fortunately, design aids
have been developed by others that allow this step to be cir-
cumvented, although presumably with some influence on
the accuracy of the model. To calculate Kapp herein, the
approach proposed by Bowness and Lee [13] is employed.
Specifically, Kapp is calculated directly, using the following
expression:

Kapp ¼ ðMkm � Y m � ð1� DOBÞ þMkb � Y b � DOBÞ
� rhs;app �

ffiffiffiffiffiffiffiffiffi
p � a
p

ð14Þ

wherein Mkm and Mkb are magnification factors for the
membrane and bending stress cases, Ym and Yb are correc-
tion factors for these same stress cases, and rhs,app is the ap-
plied hot-spot stress at the location of interest. The degree
of bending, DOB, is defined as follows:

DOB ¼ rb

rb þ rm

ð15Þ
Fig. 7. Crack at the weld toe of a T-butt joint.
wherein rm and rb are the membrane and bending stresses
through the thickness of the tube wall.

The basis for employing this approach in the current
context is the assumption that weld toe cracks in tubular
joints essentially behave like similar cracks in a T-butt
joints such as the one in Fig. 7.

Given the applied hot-spot stress, rhs,app, the degree of
bending, DOB, the crack shape parameters: a and c, the
wall thickness of the cracked member, T (or t), and the
weld geometry parameters: Lw and hw (see Fig. 7), Eq.
(14) can be solved, using:

– the Bowness and Lee parametric equations for the mag-
nification factors, Mkm and Mkb. The basis for these
equations was an FE analysis-based parametric study
of T-butt joints with different geometries and crack
shapes [13]. They require as input the following param-
eters: a/T, a/c, Lw/T, and hw.

– the Newman and Raju [14] parametric equations for the
correction factors, Ym and Yb. The basis for these equa-
tions was an FE analysis-based study of surface cracks
in flat plates under pure membrane and bending stress
conditions. They require as input the following parame-
ters: a/T and a/c.

The applied hot-spot stress, rhs,app, and degree of
bending, DOB, can determined in a number of ways.
Specifically, the former can be determined by surface
strain measurements such as those reported in [1],
obtained during the tests discussed in the previous sec-
tion. Alternatively, it can be determined by FE analysis
(using a relatively coarse mesh) or by multiplying the
more easily obtained nominal member stresses, rnom,
for various simple load cases, by stress concentration fac-
tors or SCFs and summing the resulting terms, as dis-
cussed in [1–3]. The degree of bending, DOB, can also
be determined by FE analysis or using parametric equa-
tions such as the ones proposed by Connolly et al. [15],
which are based on an FE analysis-based study using
two-dimensional thin shell elements. In using these equa-
tions for bridge applications, however, it may be neces-
sary to make assumptions for load cases that are not
covered, and it may also be necessary to ignore the lower
limit on c of 7.6 [3].

A final piece of information that is needed to perform
fatigue calculations using the model described above con-
cerns the manner in which the crack shape evolves as the
crack increases in depth. Herein, a one-dimensional crack
propagation model is employed and the aspect ratio, a/c,
varied according to a predefined crack shape evolution
function. According to this function, the initial aspect ratio
(a/c)0 may vary, but this ratio then evolves smoothly, con-
verging on a fixed value of 0.2 at b/T = 0.25 [3].

In comparing the fatigue lives predicted by the model
with the test results reported in [1,2], one objective was to
confirm that the model was able to predict the observed
shift of the eventual crack site, due to the localized



Fig. 8. Comparison of deterministic model and test results.
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treatment of Site 1 (see Fig. 5). Towards this end, three
cases were investigated:

– Case 1-NT: Site 1 not treated (critical for Series S1/2),
– Case 1-T: Site 1 treated, and
– Case 1c-NT: Site 1c not treated (critical for Series S4).

Table 2 summarizes the input parameter values used
in the comparison between the predicted fatigue lives and
the test results for these three cases. Regarding this table,
the following comments are made:

– The applied hot-spot stress range, Drhs,app, at Site 1
(Cases 1-NT and 1-T) and the DOB were determined
by an FE analysis carried out by Schumacher [1]. At Site
1c (Case 1c-NT), the hot-spot stress range was assumed
to be compressive, with a magnitude of 60% of the stress
at Site 1, based on strain gauge and speckle interferom-
etry measurements also reported in [1].

– The critical crack depth, ac, was taken as half of the wall
thickness, T, for the Site 1 cracks, and 7.6 mm for the
crack at the untreated Site 1c. The former limit was
selected rather than the normal N3 failure crack depth
of a = T, due to concerns regarding the validity at
greater crack depths of the simplified method proposed
in [8] for calculating Yg. The latter limit is based on the
measured crack depth for a treated specimen that was
sectioned after testing as discussed in [3].

– The imprint diameter of the peening tool, dp, was taken
as 1.5 mm for needle peening.

– In calculating the welding and post-weld treatment
residual stresses, fy = 355 MPa was assumed. This corre-
sponds with the characteristic yield strength for S355
steel. Another choice might have been the mean value
for this parameter; however the lower, characteristic
value was used in the current study on the basis that this
would result in conservative estimates of the treatment
benefit.
Table 2
Deterministic input parameters

Parameter Case Units

1-NT 1-T 1c-NT

T 20 20 20 mm
hw 43 43 43 �
Lw 20.6 20.6 20.6 mm
a0 0.2 0.2 0.2 mm
(a/c)0 0.8 0.8 0.8 –
Drhs,app 143 143 �86 MPa
DOB 0.84 0.84 0.84 –
R 0.1 0.1 0.1 –
PWT 0 (no) 1 (yes) 0 (no) –
dp – 1.5 – mm
C 2.0 · 10�13 2.0 Æ 10�13 2.0 · 10�13 (mm/cycle)

(N/mm�3/2)m

m 3.0 3.0 3.0 –
DKth 0.0 0.0 0.0 MPa

p
mm

ac 0.5 Æ T 0.5 Æ T 7.6 mm
Eq. (1) was solved by numerical integration using a sub-
routine written in the programming language FORTRAN
90 for each of the cases described in Table 2. The results are
presented in Fig. 8. In this figure, it can be seen that the
model predicts well the test results for the untreated speci-
mens, which all failed at the untreated Site 1 (Case 1-NT).
On the other hand, the model over-predicts the test results
for the Series S4 specimens, all of which cracked at the
untreated Site 1c. This over-prediction ranges from 51%
to 88%. This may have been due to poor choices for one
or more of the input parameters. In order to study this pos-
sibility, a probabilistic calibration was carried out, as dis-
cussed in the next section.

With the crack propagation curves in Fig. 8, the two
failure modes observed in the Series S1/2/4 fatigue tests
can be explained. To do this, the untreated specimens
comprising Series S1/2 can each be considered as struc-
tures with two potential crack sites modelled by Cases
1-NT and 1c-NT. Studying the crack propagation curves
for these cases, it can be concluded that the failure of
such structures should occur at the untreated Site 1 (Case
1-NT) first (after 1.23 · 106 cycles). At the time of failure,
the theoretical crack at the untreated Site 1c has a depth
of approximately 0.35 mm, which is not much larger than
the assumed initial crack depth of 0.2 mm (see Table 2).
The treated specimens comprising Series S4, can each be
similarly considered as structures with two potential crack
sites modelled by Cases 1-T and 1c-NT. Studying the
crack propagation curves for these cases, it can be con-
cluded that for such structures, failure should occur at
the untreated Site 1c-NT (after 5.14 · 106 cycles). This
represents an improvement in fatigue life over that of
the untreated joint of �320% – very close to the value
cited in [1,2].

4. Probabilistic model for single crack sites

In order to transform the deterministic model described
in the previous section into a probabilistic model, the fol-
lowing three steps were followed:
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– First, a suitable definition of failure or limit state func-

tion was established.
– Next, the various sources of uncertainty associated with

the deterministic model were considered by representing
the input parameters (or additional parameters to be
added) as statistical variables.

– Finally, a solution method was adopted to determine the
probability of failure, pf, as a function of the number of
applied stress cycles, N, given the information provided
in the preceding steps.

The limit state function adopted herein indirectly
employed the approach of limiting crack growth to a crit-
ical depth, ac. Specifically, the number of cycles required
to grow the crack to this depth was denoted Nc, and the
limit state function, G(z), was defined as follows:

GðzÞ ¼ N c � N ¼
Z ac

a0

da
C � DKm

eff � DKm
th

� �� N ð16Þ

A certain error should be expected when using a limit
state function based an arbitrarily defined critical crack
depth, ac (such as ac = 0.5 Æ T or T). For non-redundant
welded structural details, which spend most of their fatigue
lives at the smaller crack depths, this error should be small.
For highly redundant structures such as tubular joints,
however, a certain reserve is known to exist beyond the
time required to cause through-thickness cracking. Accord-
ing to [7], for example, the time to total joint failure (N4

failure) is on average 49% greater than the time to
through-thickness cracking (N3 failure). Ignoring this
reserve capacity should therefore result in conservative
probability of failure estimates for redundant structures
such as tubular joints. When comparing similar joints, this
approach may also facilitate meaningful estimates of the
relative fatigue performance, as in this case the effects of
redundancy will presumably be similar for the two joints.
On the other hand, caution should be exercised when
ignoring this reserve capacity in the comparison of joint
configurations that are very different, as in such cases this
approach may erroneously favour one joint configuration
over the other. When analyzing entire tubular trusses, a
similar logic can be applied. In other words, the proposed
approach is presumably suitable for comparing similar
truss configurations, but not ones with largely differing lev-
els of redundancy.

The representation of the various input parameters as
statistical variables in the probabilistic fatigue analysis of
welded structures is discussed in numerous references,
i.e.: [16–20]. Detailed discussion regarding the statistical
variables used in the current study can be found in [3].

One area where practically no guidance appears in the
existing literature, concerns the probabilistic modelling of
the residual stresses due to the welding and post-weld treat-
ment processes. A brief discussion of this aspect of the
model is thus presented herein. The guidance in the existing
literature on the probabilistic modelling of the residual
stresses due to welding can be summarized as follows:
– Shetty and Baker [16–18] model the maximum tensile
residual stress due to welding (at the surface of a cracked
tube wall) using a lognormal distribution with a mean of
300 MPa and a standard deviation of 75 MPa
(COV = 0.25) for steel with a characteristic yield
strength of 355 MPa. Residual stress measurements on
tubular joints by Porter Goff et al. [21] are cited as the
basis for this distribution. In [17], the residual stress dis-
tribution due to welding is modelled as a linear bending
stress, tensile on the exterior surface (and to a depth
below the surface of b/T = 1/3) and compressive on
the interior surface of the tube wall. The justification
given for this choice is that solutions are readily avail-
able to facilitate the rapid calculation of the SIFs for this
stress distribution. This distribution is subsequently
multiplied by a factor that decreases from one to zero
as the crack propagates through the tube wall to account
for dissipation of the residual stresses with crack growth.

– Lukic [20] assumes a uniform residual stress due to
welding through the wall thickness of stiffened plates.
This stress is assumed to follow a lognormal distribution
with a mean of 420 MPa and a standard deviation of
42 MPa (COV = 0.1) for S355 steel plates, 16–40 mm
in thickness.

– The JCSS Code [22] recommends that the residual stress
due to welding be assigned a lognormal distribution with
a mean value of 300 MPa and a standard deviation of
60 MPa (COV = 0.2).

In order to consider uncertainties in the welding residual
stresses, Eq. (11) was modified as follows:

rweldðbÞ¼ fy � 0:62þ2:327 � b
T

� �
�24:125 � b

T

� �2
 

þ42:485 � b
T

� �3

�21:087 � b
T

� �4
!
�VARweld ð17Þ

In this expression, the statistical variable VARweld was as-
sumed to follow a normal distribution with a mean of 1.0
and a standard deviation of 0.25. In other words, the
COV proposed in [16–18] was adopted, but the estimated
mean surface stress of 0.62 Æ fy was retained. In fact, the
use of a mean surface stress of 0.62 Æ fy with Eq. (17) gives
similar results to those obtained using the linear stress
distribution and higher surface stress proposed in [16–18]
(assuming fy = 355 MPa) except near the surface
(b/T < 0.1).

No consideration was given to the possibility of residual
stress dissipation with crack growth, as it is believed that
although the residual stresses at the crack face will dissipate
due to the presence of the crack, the stress distribution in
close proximity to the crack face will remain unchanged,
affecting further crack growth in a manner similar to that
of the same stress distribution acting on the crack face.

In Fig. 9, the residual stress distribution calculated using
Eq. (17) is plotted, along with the data from six measure-



Fig. 9. Eq. (17) compared with measured residual stresses due to welding.

Fig. 10. Eq. (18) compared with measured residual stresses due to needle
peening.
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ments on two welded Y-joints reported in [21] and an enve-
lope of the residual stress data for various tubular joint
types reported in [12]. In this figure, the stress distribution
for VARweld = 1.0 is plotted along with the ±1.0 and 2.0
standard deviation (rx) envelopes. Comparing these enve-
lopes with the measured data it can be seen that near the
surface, the highest tensile residual stresses due to welding
reported in [12,21] are basically enclosed by the VARweld =
1.0 ± 2.0 Æ rx envelope. In some cases, however, the lowest
residual stresses at the surface fall below this envelope. At
greater depths (b/T � 1/3), pinching of the residual stress
distributions is predicted by Eq. (17), which does not
appear to be reflected in the data for various joint types
reported in [12]. A much better match with the measured
behaviour can be seen, however, when only one joint type
is considered, such as the Y-joint data from [21].

No guidance was found in the literature regarding the
consideration of uncertainties in the residual stress distri-
bution due to post-weld treatment. Although these stress
distributions have been measured by a number of research-
ers, the number of measurements reported is often too
small to serve as a basis for meaningful statistical analysis.
Thus, lacking a viable alternative, an estimate of the uncer-
tainty associated with the treatment stress distribution was
made herein using the data presented in [6].

As a first step, Eq. (12) was modified to incorporate the
statistical variable VARpwt as follows:

rpwtðbÞ ¼ �fy � ðVARpwtÞ if b 6 0:1 � dp

rpwtðbÞ ¼ fy �
b
dp

� �
� 5

6

� �
� 1

12
þ VARpwt

� �� �
if b > 0:1 � dp

ð18Þ

The VARpwt variable was then assumed to follow a normal
distribution with a mean of 0.50 and a standard deviation
of 0.10. In other words, the surface stress of �0.5 Æ fy used
in the deterministic calculations was retained as the mean.
In Fig. 10, the stress distribution calculated using Eq. (18)
is plotted with the measured data from [6] for needle peen-
ing (dp = 1.5 mm). Again, the distribution for VARpwt =
1.0 is plotted along with the ±1.0 Æ rx and 2.0 Æ rx enve-
lopes. For the measured data, the timing of the measure-
ment, i.e. before loading, after 1000 applied stress cycles
at Drnom = 200 MPa (R = 0.1), and after 1000 additional
cycles at Drnom = 256 MPa (R = 0.1), is also indicated.

Comparing the calculated envelopes with the measured
data in Fig. 10, it can be seen that, with the exception of
a few surface measurements made after the application of
the stress cycles, all of the data falls on or above the lower
bound of the VARpwt = 1.0 ± 1.0 Æ rx envelope. The mea-
surements made prior to the application of the stress cycles
almost all fall above the upper bound of the VARpwt =
1.0 ± 2.0 Æ rx envelope. The choice of the standard devia-
tion for this variable was first made based on such a visual
comparison. In order to provide a more solid theoretical
basis for the chosen distribution, a maximum likelihood
approach was then used to calibrate the estimated mean
and standard deviation [3]. This resulted in a mean of
0.56 and a standard deviation of 0.11. Based on this cali-
bration, it was decided that the visually determined param-
eters characterized reasonably well the uncertainty
associated with the post-weld treatment stresses, and could
therefore be retained.

The distributions adopted for the other statistical vari-
ables employed by the probabilistic model are summarized
in Table 3. The following comments are made regarding
these variables:

– For the analysis of test specimens under constant ampli-
tude loading conditions, rhs,min and rhs,max were deter-
mined as a function of the applied stress range, Dr,
and ratio, R. These parameters were first multiplied by
the statistical variables VARDr and VARR respectively,
to consider the uncertainties associated with the estima-
tion of the nominal member stresses.

– The degree of bending, DOB, was multiplied by the sta-
tistical variable VARDOB to consider the uncertainties
associated with the estimation of this parameter.



Table 3
Statistical variables

Variable i lx
a rx Dist. type Units

a0 1 0.2 0.045 LN mm
(a/c)0 2 0.5 (0.5) 0.16 LN –
VARDr 3 1.0 0.01 N –
VARR 4 1.0 0.01 N –
VARDOB 5 1.0 0.08 N –
VARSCF 6 1.0 0.04 LN –
VARMk 7 1.0 0.05 LN –
VARLw 8 1.0 0.1 N –
VARhw 9 1.0 0.1 N –
VARweld 10 1.0 0.25 N –
VARpwt 11 0.5 0.1 N –
LN(C) 12 �29.24 (�28.80) 0.55 N LN ((mm/cycle)

(N/mm�3/2)m)
DKth 13 100.0 (100.0) 15.0 LN MPa

p
mm

a Note: numbers in ( ) are post-calibration values.
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– The weld footprint length and angle, Lw and hw, which
are needed for the calculation of the magnification fac-
tors, Mk, were multiplied by the statistical variables
VARLw and VARhw to consider the uncertainties associ-
ated with these parameters.

– The calculated hot-spot stress, rhs, was multiplied by the
statistical variables VARSCF and VARMk to consider the
uncertainties associated with the estimation of the SCF,
Y, and Mk parameters.

– In the calculation of the residual stress distribution,
rres(b), the yield stress, fy, was again considered as a
deterministic input parameter (fy = 355 MPa). This
was done based on the assumption that most of the
uncertainty in the residual stresses caused by variations
in the yield stress was covered by the choices for the
parameters describing the VARweld and VARpwt statisti-
cal variables.

As discussed in [3], subroutines employing the first order
reliability method (FORM) and Monte Carlo simulation
(MCS) solution method were written, again using the pro-
gramming language FORTRAN 90. In the case of the lat-
ter method, a simple importance sampling scheme was
employed, which concentrated sampling in a LN(C) range
where early failures were found to be most likely. A total of
1.0 · 105 trials were used for each simulation. The adopted
sampling scheme offered a modest increase in the maximum
reliability index, b(= �U�1(pf)), attainable over crude
MCS with the same number of trials.

Using the FORM subroutine, a sensitivity study of the
13 statistical variables was first carried out. Based on this
study, the LN(C) variable was identified as the one to which
the results were by far the most sensitive. In addition, the
(a/c)0 and DKth variables were seen to have a large effect
on the results for the untreated Site 1c (Case 1c-NT), while
having a relatively minor effect on the results for the
untreated Site 1 (Case 1-NT). This attribute was of particu-
lar interest as it was for Case 1c-NT that the deterministic
model was seen to give the least accurate results. On this
basis, the mean values for the variables LN(C), (a/c)0,
and DKth were calibrated using a maximum likelihood
approach. This resulted in a change in the mean of the
LN(C) variable as shown in Table 3. The means for the other
two variables did not change. It should be stated however,
that coarse increments were employed in the calibration,
and the result may have been influenced by the starting
point, which was based on engineering judgement [3].

It should be noted that the use of the calibrated mean
for the LN(C) variable results in a lower estimate of the
treatment benefit than if the prior mean is used. In [3], a
short review is presented of the values for this parameter
recommended by others. From this review, it can be con-
cluded that if the commonly used values for this parameter
are employed (i.e. l(LN(C)) = �28.84 to �29.30 with
m = 3.0), rather than the calibrated value of �28.80, then
the calculated treatment benefit will actually be greater.

In order to determine whether or not the probabilistic
model could be used to predict the shift in the critical crack
site observed in the tests, analyses were first carried out for
the three cases examined deterministically in the previous
section. The following critical crack depths were assumed:

– For Case 1-NT, a critical crack depth of ac = T was
assumed. This corresponds with the crack depth at the
reported number of cycles to N3 failure for the Series
S1/2 specimens.

– For Case 1-T, a critical crack depth of ac = 2.0 mm was
assumed. This is intended to correspond with the possi-
bility of a crack at the treated Site 1 (in the Series S4
tests) growing to a size that would likely be detected
using the non-destructive testing (NDT) methods
employed during these tests.

– For Case 1c-NT, critical crack depths of ac = 2.0 mm
and 7.6 mm were assumed.

A limit on the critical crack depth of ac = 0.5 Æ T was
imposed in the previous section due to concerns regarding
the validity of the approach proposed in [8] for determining
Yg (in the calculation of Kres) at larger crack depths. This
concern was mitigated for Case 1-NT, however, by the fact
that the effective SIF range, DKeff, was known to be equal
to the applied SIF range, DKapp, for this particular case
(i.e. the applied and residual stresses were such that the
entire applied stress cycle was effective) and therefore, the
effect of this error was known to be negligible [3]. The
choice of a detectable crack depth of 2.0 mm is based on
the reported detection in [1] of cracks as small as 3–5 mm
in length.

The results of this study are presented in Fig. 11. Look-
ing at this figure, it can be seen that for the untreated Series
S1/2 specimens, the probability of failure, pf, at Site 1 (Case
1-NT, ac = T) for a given number of load cycles is always
much higher (keeping in mind that a lower b means a
higher pf) than the probability of a detectable crack occur-
ring at Site 1c (Case 1c-NT, ac = 2.0 mm). When Site 1 is
treated, on the other hand, it can be seen that early in



Fig. 11. Probabilistic assessment of critical crack sites in tests.
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the fatigue life, the probability of a detectable crack occur-
ring at the treated Site 1 (Case 1-T, ac = 2.0 mm) is in fact
higher than the probability of failure of the untreated Site
1c (Case 1c-NT, ac = 7.6 mm). The two curves cross, how-
ever, around b � 1.5. Looking at it another way, at the
point in time corresponding with the average number of
load cycles, N, at failure for the Series S4 specimens
(3.28 · 106 cycles), the probability of failure at the
untreated Site 1c (Case 1c-NT, ac = 7.6 mm) is �0.26, ver-
sus a probability of having a detectable crack of �0.14 for
the treated Site 1 (Case 1-T, ac = 2.0 mm). This compares
favourably with the observed test results. The closeness
of these results suggests, however, that if more specimens
had been tested, it is likely that a small crack would have
eventually been detected at the treated Site 1 for at least
one of the tested specimens.

5. Studies carried out with probabilistic single site model

As the statistical variable used to characterize the uncer-
tainty associated with the post-weld treatment residual
stress distribution was established based on a relatively
small number of measurements, there was some interest
in examining the sensitivity of the calculated treatment
benefit to variations in the parameters describing this var-
iable. Towards this end, the mean, l( ), and standard devi-
ation, r( ), of the VARpwt variable were varied in order to
study the significance of the treatment intensity and quality,
assuming these parameters to be suitable measures of these
attributes. In this study, the untreated and treated Site 1
cases were compared. The critical crack depth was set to
ac = 0.5 Æ T for all cases.

The studied variations in l(VARpwt) and r(VARpwt) can
be summarized as follows:

– The treatment intensity, described by the parameter
l(VARpwt), was set to the following values: 0.75, 0.50,
and 0.25. The intermediate value was assumed to be
the normal value for this parameter. The first and last
values were assumed to correspond with high and low
levels of treatment intensity.
– The treatment uniformity or quality, described by the
parameter r(VARpwt), was set to the following values:
0.05, 0.10, and 0.15. Again, these values were assumed
to correspond with high, normal, and low levels of treat-
ment quality.

The results of the treatment intensity study are pre-
sented in Fig. 12. In this figure, it can be seen that an
increase in the treatment intensity results in a significant
increase in the treatment benefit. This benefit can be quan-
tified in a number of ways. For example, in [23], S–N

curves for various fatigue details are established corre-
sponding with a 95% survival probability, based on the sta-
tistical analysis of test results for various details and
applied stress range levels. This probability can be equated
to pf = 0.05 or b = 1.64. On this basis, if the fatigue lives
corresponding with b = 1.64 are compared for each case
in Fig. 12, then the fatigue life improvements for the vari-
ous treatment intensities can be seen to vary between 67%
and infinity, with an improvement of 510% calculated for
normal intensity treatment.

One concern, raised in Section 1, with post-weld treat-
ment methods is that although they have been shown in
test-based studies to increase fatigue life, based (for exam-
ple) on comparisons of the mean (50%) or 95% survival
probability S–N curves of untreated and treated details,
such increases have not been confirmed at the higher reli-
ability indices often used in the design of civil engineering
structures. In order to address this concern, a higher target
index of 3.74 was used in [3] for quantifying the benefit of
post-weld treatment. This value corresponds with the tar-
get index for a planned service life of 70 years (as specified
in [24] for steel bridges in Switzerland), calculated using the
most severe annual target index for fatigue suggested in [25]
(modified for the planned service life, using the formula
provided in the same reference). On this basis, the fatigue
life improvements for the various treatment intensities were
seen to vary between 44% and 1030%, with an improve-
ment of 184% calculated for normal intensity treatment.
These improvements can surely be characterized as signifi-
cant, although it must be acknowledged that they are only
representative of what can be expected under highly deter-
ministic, constant amplitude loading conditions. It should
also be reiterated that the target index from [3] is employed
herein primarily to facilitate quantitative comparisons of
untreated and treated potential crack sites at very low
probabilities of failure.

The results of the treatment quality study are presented
in Fig. 13. In this figure, it can be seen that an increase in
treatment quality, corresponding with a decrease in the
r(VARpwt) parameter, tends to result in an increase in the
benefit of treatment. Comparing Figs. 12 and 13, however,
it can be seen that a 50% increase in the treatment quality
tends to result in less of a fatigue life improvement than a
similar increase in the treatment intensity. If a target index
of btarget = 3.74 is again assumed, then the fatigue life
improvements for the various treatment qualities range



Fig. 12. Effect of treatment intensity on fatigue reliability of a single crack
site.
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from 111% to 346%. If btarget = 1.64 (pf = 0.05) is again
assumed, the corresponding improvements range from
295% to 1060%.

In order to study the influence of the applied stress
range, Drhs,app, and ratio, R, on the benefit of post-weld
treatment, a study was carried out next where in these
parameters were each varied. In this study, the untreated
and treated Site 1 were again compared. The treatment
parameters for normal intensity/quality needle peening
were assumed, i.e.: dp = 1.5 mm, l(VARpwt) = 0.5, and
r(VARpwt) = 0.1. The studied variations in Drhs,app, and
R were as follows:

– Four applied hot-spot stress ranges, Drhs,app, were stud-
ied, corresponding with 25%, 50%, 75%, and 100% of
the assumed mean yield stress, l(fy) = 385 MPa (note:
fy = 355 MPa was still used in the calculation of the
residual stress distributions due to welding and post-
weld treatment).

– Three applied stress ratios were studied: R = �0.5, 0.1,
and 0.5.
Fig. 13. Effect of treatment quality on fatigue reliability of a single crack
site.
The results of this study are presented in Fig. 14. In this
figure, the following trends can be observed:

– As expected, it can be seen in all of the graphs in this fig-
ure that as the applied stress range, Drhs,app, increases,
the fatigue lives, N, corresponding with a given reliabil-
ity index, b, decrease. This trend can be seen for both the
untreated and treated crack sites.

– The improvement in fatigue performance due to post-
weld treatment is seen to decrease as the applied stress
range, Drhs,app, increases, for a given stress ratio, R.

– As the stress ratio, R, is varied, there appears to be little
movement in the reliability versus fatigue life curves (on
the left) for the untreated crack sites. The reliability
curves for the treated crack sites, however, appear to
be significantly affected by this parameter. In general,
the higher the stress ratio, the lower the improvement
in fatigue performance due to post-weld treatment.

– The reliability curves for otherwise identical treated and
untreated crack sites never cross according to the pro-
posed model. In other words, the reliability of the trea-
ted site is never less than that of the corresponding
untreated site for a given fatigue life, N.

Fig. 15 presents a summary of the calculated fatigue life
improvements due to normal intensity/quality needle peen-
ing based on the data in Fig. 14. Again, the improvements
in this figure are determined for btarget = 3.74 and 1.64
(pf = 0.05). In general it can be seen that greater improve-
ments are obtained at lower applied stress ranges and
ratios. It can also be seen that the calculated improvement
is generally greater if the comparison is made at the lower
of the two target indices.

With the calculated fatigue lives for the untreated and
treated Site 1 at the different stress range levels, it is possi-
ble to construct S–N curves for various target reliability
indices, btarget, and stress ratios, R. This is demonstrated
in Fig. 16 for btarget = 3.74 and 1.64 (pf = 0.05). For the
untreated case, these curves were seen to be virtually inde-
pendent of the stress ratio. Thus, only the R = 0.1 curves
are plotted in this figure. For the treated case, S–N curves
are plotted for each of the examined stress ratios. Using
curves such as these, the treatment benefit can be deter-
mined for various loading conditions.

In Fig. 17, the S–N curves for the untreated Site 1,
derived using the results of the study described above, are
compared with design S–N curves, based on the results of
the large-scale fatigue tests reported in [1]. The first of these
design curves is the Detail Category 86 (Drhs = 86 MPa)
curve, proposed in [1] for N4 (total joint) failure. Using
these same test results, it can be shown that the correspond-
ing design curve for N3 (through-thickness cracking) failure
is Detail Category 75. In both cases, the design curve has
been established for a 95% survival probability (pf = 0.05,
btarget = 1.64).

Looking at Fig. 17, it can be seen that the slopes of the
calculated S–N curves are similar to those of the design



Fig. 14a. Effect of Drhs,app on b(R = �0.5).

Fig. 14b. Effect of Drhs,app on b(R = 0.1).

Fig. 14c. Effect of Drhs,app on b(R = 0.5).
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curves (m = 3.0). The calculated S–N curve corresponding
with btarget = 3.74 is much lower than the other curves. The
calculated S–N curve for btarget = 1.64 (pf = 0.05), on the
other hand, is very close to the Detail Category 75 design
curve. One explanation for the small difference is that the
calculated curve corresponds with a slightly more severe
failure criterion, that is: ac = 0.5 Æ T.

A final comparison between the test results and the cal-
culated and test-derived S–N curves is presented in Fig. 18.
In this figure, calculated S–N curves corresponding with
btarget = 1.64 and zero are compared with design S–N

curves corresponding with 95% and 50% survival probabil-
ities based on the N3 failure criterion, determined using the
Series S1/2 test results from [1]. From this comparison, it
can be seen that the model predicts rather well the scatter
observed in the Series S1/2 results. These results can be
assumed to contain some, but not all, batch effects as the
specimens were fabricated using similar materials and



Fig. 15. Fatigue life improvement versus stress range and ratio.

Fig. 16. S–N curves based on applied stress range and ratio studies.

Fig. 17. Comparison of test data, calculated S–N curves, and design
curves (untreated joints).
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welding processes, but at different times and perhaps by
different people. Notably, very different gaps, g, were
observed between the brace walls in the Series S1 and S2
joints.

6. Probabilistic model for tubular joints with multiple

potential cracks sites

The reliability of structural systems is discussed in a
number of references, for example: [26]. Typically, simple
structures and structural systems are distinguished, the
the latter term being used to describe structures composed
of multiple constituent elements. A number of researchers
have employed a systems reliability approach in the fatigue
analysis of welded structures with multiple potential crack
sites, for example: [27–29]. Work in this area has typically
been limited, however, to the development of models for
determining optimum inspection strategies or (to a lesser
extent) for establishing target reliability indices for design
codes.

In general, complex systems can be idealized as simple
series or parallel systems, or combinations of simple series
and/or parallel sub-systems. In [3], tubular structures (i.e.
joints or entire bridge trusses) with multiple potential crack
sites are modelled as simple series systems, with each poten-
tial crack site considered as a single constituent element.
Thus, failure of the structure is assumed to coincide with
the failure of the first crack site. The justification given in
[3] for this approach is as follows:

– It is believed that the simple series system model best
reflects the fatigue behaviour of tubular joints. In gen-
eral, tubular joints can and often do fail due to a crack
occurring at one location and growing to a size sufficient



Fig. 18. Evaluation of predicted and observed scatter in the Series S1/2
test results.

Fig. 19. Discretization of the joint.
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to cause brittle fracture or plastic collapse. Crack coales-
cence (i.e. two cracks starting at adjacent defects and
growing until they join to make one crack) has been
observed [1], however it is believed that this phenome-
non generally occurs at the level of the individual crack
site, and thus, that it would be more appropriate to con-
sider coalescence at this rather than the system level.
Herein, this is done implicitly in the choice of the crack
shape evolution function.

– Tubular joints are known to have a reserve life beyond
the time required to cause through-thickness cracking
at any single crack site [7]. Tubular bridge trusses may
also have a reserve life beyond the time to failure of a
single joint. Thus, the proposed model should give con-
servative estimates of the true levels of fatigue reliability
of tubular joints and bridge trusses.

– An alternative to the proposed approach would be to
consider tubular structures as parallel or complex sys-
tems that require the failure of multiple crack sites for
structural collapse to occur. At the level of the joint, this
would seem inappropriate, since total failure of the joint
can occur due to a crack propagating from a single site.
At the level of the entire bridge truss, failure modes
involving multiple joints can be envisioned, however
considering these would require a step-wise calculation,
and thus, a computational effort much greater than that
of the proposed approach.

– As was the case in the choice of the failure criterion for
single crack sites, it can be argued that, despite its limi-
tations, the adopted model can be used to make mean-
ingful comparisons of the relative fatigue performances
of tubular joints and bridge trusses with similar levels
of redundancy.

In order to consider the tubular joint as a structural sys-
tem, it must first be discretized into a suitable, finite num-
ber of constituent elements. Herein, it is assumed that the
joint can be represented as a system comprised of 16 ele-
ments, corresponding with each of the potential crack sites
identified in Fig. 19. In this figure, the designators ‘L’ and
‘R’ are adopted to indicate whether the site of interest is on
the left or right brace. With the chosen discretization
scheme, the probability of failure of each constituent ele-
ment or crack site can be calculated using the probabilistic
model developed in the previous section.

In reality, the weld toes of tubular joints can each be
divided into an infinite number of potential crack sites,
since the critical defect from which a crack eventually prop-
agates can theoretically occur anywhere along their length.
By assuming that the probability of failure of the joint can
be determined knowing the probabilities of failure of each
of the 16 representative potential crack sites in Fig. 19, cer-
tain simplifying assumptions are therefore implicitly being
made. These can be summarized as follows:

– The true attributes of each of the infinite number of
potential crack sites along the length of weld tributary
to the representative potential crack site are fully (or
highly) correlated, and

– The attributes assigned to each of the representative
potential crack sites used to model the joint represent
worst-case scenarios along the corresponding tributary
weld lengths.

If these assumptions were entirely true, then there would
be no error in the probability of failure calculated using the
proposed model. Herein, it is assumed that these assump-
tions are more or less true, and thus, that the error associ-
ated with the proposed model is acceptably small.

The probability of failure of a series system consisting of
n elements can be expressed as follows:

pf ¼ P ðEsystemÞ ¼ P E1 [ E2 [ . . . [ Enð Þ ð19Þ
wherein Esystem is the event of system failure, E1 is the event
of failure of element 1, etc. If the probabilities of failure of
the individual system elements are assumed to be fully
independent, then the probability of system failure can be
calculated as follows [26]:

pf;system ¼ 1� ð1� pf ;1Þ � ð1� pf ;2Þ � � � ð1� pf ;nÞ ð20Þ
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wherein pf,system is the probability of system failure, pf,1 is
the probability of failure of element 1, etc. To describe
the probability of failure of a tubular K-joint, this formula
can be rewritten as follows:

pf;joint ¼ 1� ð1� pf ;1LÞ � ð1� pf ;11LÞ � � � ð1� pf ;4RÞ ð21Þ

wherein pf,joint is the probability of joint failure, pf, 1L is the
probability of failure of Site 1L, etc. In Eq. (21), there are,
in fact, 16 terms corresponding with each of the crack sites
in Fig. 19. Only 12 single site analyses are required, how-
ever, since the results for Sites 2L, 4L, 2R, and 4R can each
be used twice. Eq. (20) is often referred to as the first order
lower bound reliability (b) model for series systems (note:
in fact it gives an upper bound estimate of the probability
of failure, pf).

In order to consider the effects of possible correlations
between the reliabilities of the individual system elements,
an upper bound reliability model for series systems is
employed. This model assumes full correlation of the reli-
abilities or probabilities of failure of each potential crack
site. Although this scenario seems unlikely in reality, it is
of interest to compare the results obtained using the lower
and upper bound models to determine the significance (if
any) of the true correlation level. The probability of failure
of the joint according to the upper bound reliability model
can be calculated as follows [26]:

pf;joint ¼MAXðpf ;1L; pf;11L; . . . ; pf;4RÞ ð22Þ

Using Eqs. (21) and (22), envelopes of the reliability of the
entire joint versus the number of applied load cycles can be
generated. In [3], this approach is extended for the analysis
of entire tubular bridge trusses with multiple joints. In or-
Table 4
Load cases for K-joints from [1]

Load case Schematic Nominal stress

Balanced axial brace rax_br

Unbalanced in-plane bending brace ripb1_br

Balanced in-plane bending brace ripb2_br

Axial chord rax_ch

In-plane bending chord ripb_ch

Table 5
Site-specific input parameters for the Series S1/2/4 specimen size

Parametera Tension brace

1L 11L 2L 3L 31L 4L

Drhs,app 160.5 106.7 84.8 11.9 40.5 81.5
DOB 0.77 0.83 0.77 0.74 0.77 0.74
hw 43 20 21 59 62 21
Lw 21 37 32 41 32 44

a Note: Drhs,app in MPa, DOB unitless, hw in �, Lw in mm.
der to first demonstrate this approach for single joints,
however, a number of calculations were carried out on
the Series S1/2/4 joint geometry studied in [1]. Since FE
analysis results were only available for Site 1, the Drhs,app

and DOB parameters for each of the 16 potential crack
sites had to be determined by other means. Nominal mem-
ber strain data was available for the tested joints, as re-
ported in [1]. Using this data, along with the SCF tables
from the same reference for tubular joints with dimensions
common to bridge structures (4.2 6 c 6 12.7), Drhs,app was
determined for each hot-spot using the following expres-
sion, wherein the hot-spot stress is determined given the
nominal member stress ranges corresponding with the five
simple load cases in Table 4:

Drhs;app ¼ Drax br � SCF ax br þ Drax ch � SCF ax ch

þ Dripb1 br � SCF ipb1 br þ Dripb2 br

� SCF ipb2 br þ Dripb ch � SCF ipb ch ð23Þ

In this expression, Drax_br is the nominal member stress
range due to the balanced axial brace load case and
SCFax_br is the corresponding stress concentration factor,
etc. The SCF tables in [1] require as input the following
parameters: b(= 0.5 Æ d/D), c, s(=t/T), and hbr.

For lack of a viable alternative, the parametric equa-
tions from [15] were used to determine the values for the
DOB at each hot-spot, with some assumptions for the miss-
ing load cases and ignoring the lower limit on c. The impli-
cations of this choice were deemed acceptable, as discussed
in [3]. The parametric equations in [15] require as input the
following parameters: a(= 2 Æ Lch/D), b, c, s, and hbr. For
each crack site, the critical crack depth was taken as half
of the wall thickness of the cracked member. The weld
geometry parameters, Lw and hw, were measured on a spec-
imen sectioned after testing.

Table 5 summarizes the values of the site-specific param-
eters used in this analysis (see Table 1 for the additional
joint geometry parameters). Based on this information, b
versus N curves for each of the potential crack sites in
the untreated joint and the joint with Site 1L (Site 1 on
the tension brace) treated are presented in Fig. 20. In this
figure, it can be seen that the second most critical crack site
(after Site 1L) is Site 11L. The fact that this site is seen to
be weaker than Site 1R (where cracks were observed in the
Series 4 tests) is believed to be due partly to the use of a
common critical crack depth for all sites and partly to
Compression brace

1R 11R 2R 3R 31R 4R

�92.4 �96.9 �88.4 �57.9 �24.1 �83.0
0.77 0.83 0.77 0.74 0.77 0.74

43 20 21 59 62 21
21 37 32 41 32 44
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the observed systematic differences in the brace and chord-
side weld toes caused by the position of the joint during
welding, as discussed in [3]. Since the model was calibrated
using data for cracks on the systematically weaker chord-
side weld toe, these differences could be safely ignored.

In Fig. 21, envelopes of the reliability of the joint, deter-
mined using the lower and upper bound reliability models,
are presented. In this figure, it can be seen that a significant
improvement in the overall reliability of the joint is
achieved with post-weld treatment, even when the influ-
ences of the various untreated potential crack sites are con-
sidered. It can also be seen that although the two models
give diverging results at the lower reliability indices, at
the higher indices the difference between the two models
is small. In general, this latter trend will be apparent when-
ever the overall reliability of the joint is determined by a
small number of relatively weak potential crack sites, as
is the case here. In Fig. 21, two treatment strategies are
compared: treating the critical crack site (Site 1L) only
and treating the entire joint. Looking at this figure it can
be seen that when comparisons are made at high target reli-
Fig. 21. Reliability envelopes for untreated and treated joints.
ability indices, there is almost no benefit in treating sites
other than the critical one for this joint.

7. Conclusions

Based on the work presented herein, the following con-
clusions are drawn:

– The deterministic and probabilistic single site models
developed herein are able to predict the shift in the crit-
ical crack site observed in the fatigue tests reported in
[1,2].

– Using the probabilistic single site model developed
herein, it is demonstrated that significant increases in
the fatigue lives of single potential crack sites in tubular
bridge joints can be reliably achieved by needle peening,
under certain constant amplitude loading conditions. In
general, the higher the applied stress range or ratio, the
lower the benefit of post-weld treatment. For higher
stress ranges and ratios, there may in fact be no treat-
ment benefit.

– Increasing the treatment intensity will result in a signifi-
cant increase in the effectiveness of residual stress-based
treatment methods such as needle peening. Likewise,
increasing the treatment uniformity or quality will also
result in an increase in the effectiveness of these meth-
ods. In general, however, the treatment benefit is more
sensitive to treatment intensity than quality.

– The fatigue reliability of tubular structures with multiple
potential crack sites can be predicted using first order
lower and upper bound reliability models for series sys-
tems. The reliabilities of tubular joints are often deter-
mined by one or two crack sites. Thus, the two models
tend to give converging results for the higher btarget indi-
ces often used in the design of civil engineering
structures.

– The current work demonstrates that significant improve-
ments in the fatigue performance of tubular bridge joints
can be obtained with post-weld treatment, even when
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the influences of the various untreated and treated
potential crack sites on the overall reliability of the joint
are considered.

Although its immediate scope is limited to the post-weld
treatment of tubular joints with geometries common to
bridge structures, it is believed that the possible applica-
tions of the work presented herein are wide-ranging. Spe-
cifically, it is believed that the models developed herein
can be used, essentially in their current form, for the anal-
ysis of tubular joints in offshore structures. A similar
approach could also be used for analyzing the effects of
treating plate structures such as plate girder bridges.

A number of issues are not addressed in this article,
which may have a significant influence on the potential of
post-weld treatment methods for improving the fatigue
performance of tubular bridge joints. Some of these issues
are examined in [3]. These include the effect on the pre-
dicted treatment benefit of considering realistic, variable
amplitude loading conditions, the influence of fatigue
cracking at untreatable locations such as the weld root,
and the effect of post-weld treatment on the fatigue perfor-
mance of entire bridge trusses with multiple joints. The
models presented herein provide important results, how-
ever, and a foundation for the study of these other issues.

Acknowledgements

The work presented herein was supported financially by
the Swiss Federal Roads Authority (OFROU Project No.
AGB2002/011) and the Swiss National Research Founda-
tion (SNF Grant 200020-101521).

References

[1] Schumacher A. Fatigue behaviour of welded circular hollow section
joints in bridges. EPFL thesis no. 2727, Lausanne; 2003. Available
from: http://icom.epfl.ch.

[2] Schumacher A, Nussbaumer A. Experimental study on the fatigue
behaviour of welded tubular K-joints for bridges. Eng Struct
2006;28(5):745–55.

[3] Walbridge S. A probabilistic study of fatigue in post-weld treated
tubular bridge structures. EPFL thesis no. 3330, Lausanne; 2005.
Available from: http://icom.epfl.ch.

[4] Kirkhope KJ, Bell R, Caron L, Basu RI, Ma K-T. Weld detail fatigue
life improvement techniques – Part 1: review. Mar Struct 1999;12:
447–74.

[5] Haagensen PJ, Maddox SJ. IIW Recommendations on the post weld
improvement of steel and aluminium structures. Doc. XIII-1815-00,
International Institute of Welding; 2000.

[6] Bremen, U. Amelioration du comportement à la fatigue d’assem-
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