
Improving API Documentation for Java-like Languages

Gilles Dubochet Donna Malayeri
Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract
The Javadoc paradigm for displaying API documentation to
users is quite popular, with similar variants existing for many
mainstream languages. However, two user interface design
properties of Javadoc may reduce its utility when displaying
documentation for APIs that make use of inheritance and
parametric polymorphism. First, Javadoc does not show a
flattened view of all members of a class or interface, but
rather only those defined directly in the type. Second, and
as a consequence, any methods whose types contain type
parameters of a superclass will always be shown in the
context of the superclass. That is, if the method C.m returns
type T, subclasses of C will always see this parent signature,
even if they instantiate T to a concrete type such as Integer.

We show that this situation arises often in some libraries,
and present the results of a study that measures the usability
consequences of these two Javadoc design decisions. Our
results show that a user interface that shows instantiated type
parameters for members is preferred over one that presents
type parameters in the Javadoc style.

1. Introduction
Javadoc-style documentation is a popular method for pre-
senting API documentation to users with similar tools in ex-
istence for most mainstream languages. However, producing
documentation for a language that makes heavy use of in-
heritance and parametric polymorphism can be challenging.

In particular, Javadoc lists only those members defined
(or overridden) directly in a class or interface. Inherited
members are listed only with their name (not even a full
signature) and link to the documentation in the parent class
or interface. This presents the problem that it can be difficult
to find a particular method if one does not know in which
supertype it was defined.

Copyright is held by the author/owner(s). This paper was published in the proceed-
ings of the Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU) at the ACM Onward! and SPLASH Conferences. October, 2010.
Reno/Tahoe, Nevada, USA.

Additionally, with increased use of parametric polymor-
phism (i.e., generics), documenting method signatures can
become quite complex. This is particularly a problem when
subclasses instantiate type parameters of their parent class
and, as a result, method signatures become more specialized
in the subclass. If only a superclass view of the method is
shown, the method signature will contain type parameters of
the parent class, which can be confusing when seen in the
context of the subclass.

1.1 Background
The Scala 2.8 collections library [4, 5] makes heavy use
of parametric polymorphism and inheritance. Methods that
exist in several classes in the library are typically defined in
a common supertype, to maximize code reuse and provide
useful abstractions for library clients.

For example, the method filter, which returns all of
the elements of a collection for which a particular predicate
holds, appears in many collection classes. The type of col-
lection that is returned is the same as that of the original
collection; applying filter to a List returns a new List,
whereas applying it to a Set will return a Set.

To define filter in a common supertype of List and
Set and also retain the most precise possible signature, the
library uses a type parameter to represent the collection re-
sult type. In particular, in the trait TraversableLike, a com-
mon supertype of List and Set, is defined approximately as
follows:

trait TraversableLike[A, Repr] {
...
def filter[B](p: (A) => Boolean): Repr

}

The class List[A] inherits (indirectly) from
TraversableLike[A, List[A]]; Set has an analogous
declaration.

Unfortunately, this extensive use of inheritance and poly-
morphism creates a challenge for providing documentation
to users. A user who wishes to see the methods that can
be called on a List does not necessarily care that some
methods are implemented in TraversableLike. Addition-
ally, the type parameter Repr is interesting in the context of

Table 1. Frequency of methods with changed signatures in subclasses in various Scala and Java programs.
The first column is the sum of all defined and inherited methods of all declared classes, interfaces, and
(for Scala programs) traits.

Inherited methods Changed signature

Methods Total Percentage Total % of all methods % of inherited

Scala standard library 121370 84121 69% 27618 23% 33%
Scala compiler 64310 33983 53% 7368 11% 22%
scalaz1 10947 2626 24% 311 3% 12%

Google Data API2 96487 67804 70% 16056 17% 24%
java.util 9486 3482 37% 277 3% 8%
plt utilities3 12030 5465 45% 284 2% 5%
Google collections4 3506 804 23% 44 1% 5%
1 http://code.google.com/p/scalaz/
2 http://code.google.com/p/gdata-java-client/
3 https://drjava.svn.sourceforge.net/svnroot/drjava/trunk/plt/
4 http://code.google.com/p/google-collections/

TraversableLike, but not in the context of List, as there
it has been instantiated to List[A]. As this pattern occurs
often in the Scala library, browsing Javadoc-style documen-
tation became quite difficult for users, as it involved many
click-throughs to parent classes and obscure type parameters
[3].

This problem is not confined to the Scala collections li-
brary; some Java libraries also use generics in conjunction
with inheritance in a similar manner. One such example is
the Google Data API,1 which provides functionality for ac-
cessing Google services such as YouTube and Google Cal-
endar. A common pattern in the Java version of this API is
to put common functionality in superclasses that take a type
parameter to represent the concrete subclass. For example,
consider the declaration of the class BaseEventFeed:
class BaseEventFeed
<F extends BaseEventFeed<F,E>,
E extends BaseEventEntry<E>>

Concrete subclasses pass themselves as a parameter to
BaseEventFeed:
class CalendarEventFeed extends
BaseEventFeed
<CalendarEventFeed,
CalendarEventEntry>

But, since a great deal of functionality is defined in
BaseEventFeed, users must view those methods in terms of
the F and E type parameters of BaseEventFeed, even if they
are interested in a concrete subclass such as
CalendarEventFeed. For example, the method getEntries
returns List<E>. For CalendarEventFeed, this will actually
be equivalent to List<CalendarEventFeed>, but this type
is not shown anywhere in the Javadoc.

1 http://code.google.com/p/gdata-java-client/

We ran a simple analysis on several Scala and Java pro-
grams to see how often method signatures changed in this
manner. Results are displayed in Table 1. The Scala standard
library had the highest frequency of methods whose signa-
tures changed in subclasses: 23% of all methods, which cor-
responds to 33% of inherited methods. Of the Java programs,
The Google Data API had the highest frequency of methods
with changed signatures, with 17% of all methods (corre-
sponding to 24% of inherited methods) changing signatures
in subclasses. This data shows that methods do indeed have
different signatures in subclasses and that some programs
have a significant number of inherited methods.

The data in Table 1 led us to hypothesize that it would be
useful to specialize method types in subclasses, rather than
showing types relative to parent type parameters.

Additionally, this data shows that in some programs, a
large percentage of methods are inherited from superclasses.
But, unless a class is being subclassed, most of its clients
do not care whether a method was inherited (or where it was
inherited from), but are more interested in the operations that
are available on the class. So, we additionally hypothesized
that for programs that make substantial use of inheritance,
it could be useful to show a flattened list of methods (i.e.,
all defined and inherited methods) for a given class. Our
concrete hypotheses are summarized below.

1.2 Hypotheses
We have the following hypotheses regarding API documen-
tation for Java-like languages:

Hypothesis I. It is more efficient to show a flattened, alpha-
betical list of methods for each class rather than grouping
methods by superclass.

Hypothesis II. It is more efficient to show context-dependent
method types (i.e., instantiate type parameters) than to

http://code.google.com/p/scalaz/
http://code.google.com/p/gdata-java-client/
https://drjava.svn.sourceforge.net/svnroot/drjava/trunk/plt/
http://code.google.com/p/google-collections/
http://code.google.com/p/gdata-java-client/

Version Description

alpha Alphabetical list of methods with context-
dependent method signatures

inherit List of methods grouped by parent class, with
context-dependent method signatures (i.e.,
substituted type variables)

javadoc List of methods grouped by parent class, with
superclass-relative method signatures (i.e., un-
substituted type variables)

Table 2. UI modes

show method types in terms of superclass type parame-
ters.

Here, “more efficient” means that users will answer ques-
tions more quickly and more correctly using a user interface
that has the described property. Additionally, we hypothe-
size that users will prefer user interfaces with each of above
properties.

1.3 Contributions
• Identification of two key design considerations in the de-

sign of documentation for Java-like languages (display-
ing a flattened list of members and instantiated type pa-
rameters).

• Results of a study that show that showing instantiated
type parameters in a documentation browser leads to
increased user satisfaction, when using either a Java or
Scala API.

2. Study Design
To measure the effect of each hypothesis independently,
there are four possible user interface versions, but only three
are sensible, those displayed in Table 2. We do not consider
a version consisting of an alphabetical list of methods with
superclass-relative method signatures, as this is not semanti-
cally meaningful. In particular, if a class C inherits a method
from a non-immediate superclass A, the type parameters of
A are not obvious within the context of C. Therefore, the
only reasonable way to present the type of of any methods
inherited from A is to show them in terms of C’s, rather than
A’s, type parameters.

An example of types presented in the first two modes as
compared to the last mode is presented in Fig. 1. Note that
the types in the “javadoc” mode are presented in terms of
parent type parameters.

2.1 Subjects
Subjects were recruited through an announcement on the
main Scala mailing list, scala@listes.epfl.ch, which ad-
vertised a study regarding the usability of Scaladoc. Sub-
jects were not told the specific characteristics of Scaladoc
that were being studied.

Scala library method List.filter

• Signature in “alpha” and “inherit” modes:
def filter (p: (A) => Boolean): List[A]

• Signature in “javadoc” mode:
Inherited from trait TraversableLike[+A, +Repr]
...
def filter (p: (A) => Boolean): Repr

GData method CalendarEventFeed.getEntries

• Signature in “alpha” and “inherit” modes:
def getEntries(): List[CalendarEventEntry]

• Signature in “javadoc” mode:

Inherited from
class BaseFeed[F <: BaseFeed, E <: BaseEntry]

...
def getEntries() : List[E]

Figure 1. Scaladoc signatures in different UI modes.

Sixty subjects completed the study, whose data was used
for the analysis.

2.2 Task
Subjects were divided into three groups, each receiving a dif-
ferent version of Scaladoc corresponding to the UI modes in
Fig. 2. They were each asked 4 questions (some multipart)
about the Google Data API and 4 questions (some multi-
part) about the Scala collections API. Questions are listed in
Appendix A. Subjects’ responses to questions as well as the
time to answer the question were recorded. We intentionally
chose both a Java API and a Scala API, so as to increase the
applicability of the results.

Subjects were then asked a series of subjective questions
about their experience with the user interface to assess their
satisfaction with the documentation. The complete list of
these questions appears in Appendix B. There were 3 sets
of questions with a 5-point scale from “strongly disagree” to
“strongly agree” and one yes/no question asking if their ex-
perience with Scaladoc in the study was overall satisfactory.

3. Results
3.1 Quantitative
Response time and correctness. Considering the sets of
Google Data and Scala collections questions as a whole,
there were no statistically significant differences between
the UI versions for correctness of response or response time
(of correct responses). The study contained several questions

scala@listes.epfl.ch

Scaladoc study data: Contingency of Feeling satisfied by UI mode inheritance Page 1 of 2

Sa
ti

sfi
ed

 w
ith

 S
ca

la
do

c

0.00

0.25

0.50

0.75

1.00

Integrated By inheritance

UI Mode

No

Yes

Mosaic Plot
U

I m
od

e
in

he
ri

ta
nc

e

Integrated

By inheritance

3.39
12.50

23.73
87.50

13.56
18.60

59.32
81.40

27.12

72.88

16.95 83.05

Feeling satisfied
Total %
Row %

No Yes

Contingency Table

59
N

1
DF

0.16245058
-LogLike

0.0061
RSquare (U)

Likelihood Ratio
Pearson

Test
0.325
0.309

ChiSquare
0.5687
0.5785

Prob>ChiSq

Left
Right
2-Tail

Fisher's
Exact Test

0.4511
0.8259
0.7128

Prob
Prob(Feeling satisfied=Yes) is greater for UI mode inheritance=Integrated than By inheritance
Prob(Feeling satisfied=Yes) is greater for UI mode inheritance=By inheritance than Integrated
Prob(Feeling satisfied=Yes) is different across UI mode inheritance

Alternative Hypothesis

Tests

Contingency Analysis of Feeling satisfied By UI mode inheritance
Scaladoc study data: Contingency of Feeling satisfied by UI mode typing Page 1 of 2

0.00

0.25

0.50

0.75

1.00

Substituted types Unsubstituted types
 UI mode

No

Yes

Mosaic Plot

U
I m

od
e

ty
p
in

g

Substituted

Unsubstituted

5.08
8.33

55.93
91.67

11.86
30.43

27.12
69.57

61.02

38.98

16.95 83.05

Feeling satisfied
Total %
Row %

No Yes

Contingency Table

59
N

1
DF

2.3899919
-LogLike

0.0890
RSquare (U)

Likelihood Ratio
Pearson

Test
4.780
4.870

ChiSquare
0.0288*
0.0273*

Prob>ChiSq

Left
Right
2-Tail

Fisher's
Exact Test

0.0333*
0.9946
0.0373*

Prob
Prob(Feeling satisfied=Yes) is greater for UI mode typing=Substituted than Unsubstituted
Prob(Feeling satisfied=Yes) is greater for UI mode typing=Unsubstituted than Substituted
Prob(Feeling satisfied=Yes) is different across UI mode typing

Alternative Hypothesis

Tests

Contingency Analysis of Feeling satisfied By UI mode typing

Sa
ti

sfi
ed

 w
ith

 S
ca

la
do

c

(a) (b)

Figure 2. Effect of user interface parameters on user satisfaction. Figure (a) does not show a statistically significant result
(p = 0.45), but figure (b) does (p = 0.0333).

concerning the subject’s self-assessed programming skills,
with the aim of using this data in the analysis to remove
the variation due to skill between subjects. Upon analysis
it appears that self-assessed programming skill did correlate
with real performance. However, even after taking into ac-
count reported skill, the amount of unassigned variation in
the results did not yield statistically significant differences
between the UI versions.

It is possible to calculate the effect of UI version on each
question separately, but this does not have a great deal of
statistical power; since the 95% confidence applies to each
test separately, with a large number of individual tests, we
expect 5% of the tests to yield a “statistically significant”
result by chance alone.

However, we found that one of the questions was essen-
tially directly measuring the effect of instantiated type vari-
ables, without requiring any additional coding tasks. This
particular question was the simplest of the Scala questions,
and required that the subject look up a method signature for
a method that was defined in a superclass and whose type
changed if type parameters were shown in the context of the
subclass. For this question, a t-test showed a statistically sig-
nificant difference in mean response time, which was 35%
higher (prob > t = 0.0311) for the user interface mode
“javadoc” when compared to either “alpha” or “inherit.” For
the remaining Scala questions, we found that Scala skill was
strongly correlated with time to correct response (using the
logarithm of skill, ANOVA F- and p-values are respectively:
9.44 and 0.0038, 11.86 and 0.0013, 9.30 and 0.0050), which
leads us to hypothesize that this factor masked the effect of
the user interface mode.

Satisfaction. Regarding overall satisfaction with Scaladoc
for the purposes of the study (the final question in the ques-
tionnaire), there was no statistically significant difference in
user satisfaction (p = 0.45) in the integrated view as com-
pared to the by-inheritance view (i.e., “alpha” as compared
to “inherit” and to “javadoc”). On the other hand, subjects

did significantly prefer (using Fisher’s exact test for cate-
gorical data: prob = 0.0333) the user interface modes that
substituted parent type variables (i.e., “alpha” and “inherit”)
to the mode that did not (“javadoc”). These results are sum-
marized in Fig. 2.

The level of satisfaction reported by subjects for the series
of eight agree/disagree questions on detailed satisfaction-
related items was analyzed using a MANOVA fit test. This
test was chosen because the response variables (the answers
to the satisfaction question) are obviously correlated. The
factors considered in the analysis were the UI’s inheritance
and type display modes as well as a synthetic indicator of
self-reported Scala skills and the self-reported Scaladoc 2
skill.

Figure 3 shows the mean response values for all eight re-
sponse variables by UI display modes. It is already visible
on these graphs that no different answering trend exists be-
tween the two UI inheritance display modes (Fig. 3(a)). On
the other hand, the UI with substituted types earns gener-
ally higher scores than that with unsubstituted types. Inter-
estingly, the results are consistently higher for the substituted
UI when considering questions that relate to the satisfaction
with the Scala library task or generally about Scaladoc, but
are mixed when considering those that relate to the Google
Data API task.

Reducing the response to a simple equal-weight sum
of the response variables confirms the trend visible on the
graphs: the UI’s type display mode has a significant effect on
the reduced response (F = 0.1457, Prob > F = 0.0095);
all other factors have no significant effect. The data was fur-
ther analyzed with a more refined MANOVA test, which
models the answer to each question separately (using the
identity matrix for transforming the response variables). The
whole-model fit is significant (Pilai’s trace test F = 1.8369,
Prob > F = 0.0002). This test confirms the role of the
UI’s type display mode (F = 0.4874, Prob > F = 0.0198)

Scaladoc study data: Fit Manova Page 5 of 11

-2.0

-1.0

0.0

1.0

2.0

 M

ea
n

re
sp

on
se

Go
og

le
 e

as
y

(1
a)

 G
oo

gl
e

Sc
al

ad
oc

 u
se

 (1
b)

Sc
al

a
ea

sy
 (2

a)

Sc
al

a
Sc

al
ad

oc
 u

se
 (2

b)

Si
gn

at
ur

e
ty

p
es

 (3
a)

Si
gn

at
ur

e
re

le
va

nc
e

(3
b)

 V
ar

ia
bl

es
 h

el
pe

d
(3

c)

 Si
gn

at
ur

e
va

ri
ab

le
s

d
es

ig
n

(3
d)

Responses

Integrated
By inheritance

Integrated
By inheritance

0.19414082
-0.1642181

1.83411431
1.39460029

-0.0861163
0.05407379

1.27581896
1.38965863

UI mode inheritance
Question Google easy Question Google Scaladoc use Question Scala easy Question Scala Scaladoc use

UI mode inheritance

-2.0

-1.0

0.0

1.0

2.0

U
I m

od
e

ty
p
in

g
LS

 M
ea

ns

Q
ue

st
io

n
G

oo
gl

e
ea

sy

Q
ue

st
io

n
G

oo
gl

e
Sc

al
ad

oc
 u

se

Q
ue

st
io

n
Sc

al
a

ea
sy

Q
ue

st
io

n
Sc

al
a

Sc
al

ad
oc

 u
se

Fe
el

in
g

si
gn

at
ur

e
ty

p
es

Fe
el

in
g

si
gn

at
ur

e
re

le
va

nc
e

Fe
el

in
g

si
gn

at
ur

e
va

ri
ab

le
s

he
lp

Fe
el

in
g

si
gn

at
ur

e
va

ri
ab

le
s

d
es

ig
n

Responses

Substituted
Unsubstituted

Substituted
Unsubstituted

-0.130625
0.16054774

1.56427909
1.6644355

0.25269756
-0.2847401

1.4371549
1.22832269

UI mode typing
Question Google easy Question Google Scaladoc use Question Scala easy Question Scala Scaladoc use

UI mode typing

Least Squares Means

Whole Model

Sum

Manova Fit

(a) Satisfaction results for integrated vs. by-inheritance view

Scaladoc study data: Fit Manova Page 5 of 11

-2.0

-1.0

0.0

1.0

2.0

U
I m

od
e

in
he

ri
ta

nc
e

 L
S

M
ea

ns

Q
ue

st
io

n
G

oo
gl

e
ea

sy

Q
ue

st
io

n
G

oo
gl

e
Sc

al
ad

oc
 u

se

Q
ue

st
io

n
Sc

al
a

ea
sy

Q
ue

st
io

n
Sc

al
a

Sc
al

ad
oc

 u
se

Fe
el

in
g

si
gn

at
ur

e
ty

p
es

Fe
el

in
g

si
gn

at
ur

e
re

le
va

nc
e

Fe
el

in
g

si
gn

at
ur

e
va

ri
ab

le
s

he
lp

Fe
el

in
g

si
gn

at
ur

e
va

ri
ab

le
s

d
es

ig
n

Responses

Integrated
By inheritance

Integrated
By inheritance

0.19414082
-0.1642181

1.83411431
1.39460029

-0.0861163
0.05407379

1.27581896
1.38965863

UI mode inheritance
Question Google easy Question Google Scaladoc use Question Scala easy Question Scala Scaladoc use

UI mode inheritance

-2.0

-1.0

0.0

1.0

2.0

M
ea

n
re

sp
on

se

Substituted
Unsubstituted

Substituted
Unsubstituted

-0.130625
0.16054774

1.56427909
1.6644355

0.25269756
-0.2847401

1.4371549
1.22832269

UI mode typing
Question Google easy Question Google Scaladoc use Question Scala easy Question Scala Scaladoc use

UI mode typing

Least Squares Means

Whole Model

Sum

Manova Fit

Go
og

le
 e

as
y

(1
a)

 G
oo

gl
e

Sc
al

ad
oc

 u
se

 (1
b)

Sc
al

a
ea

sy
 (2

a)

Sc
al

a
Sc

al
ad

oc
 u

se
 (2

b)

Si
gn

at
ur

e
ty

p
es

 (3
a)

Si
gn

at
ur

e
re

le
va

nc
e

(3
b)

 V
ar

ia
bl

es
 h

el
pe

d
(3

c)

 Si
gn

at
ur

e
va

ri
ab

le
s

d
es

ig
n

(3
d)

(b) Satisfaction results for substituted vs. unsubstituted types

Figure 3. Satisfaction results for various UI parameters. The value (2) corresponds to “strongly agree” and (-2) corresponds
to “strongly disagree.” See Appendix B for the list of satisfaction questions.

and the absence of role of the UI’s inheritance display mode
(F = 0.1650, Prob > F = 0.5353).

On the other hand, this analysis shows that both skill-
related factors have an effect on the responses. It is interest-
ing to note that, while Scala self-reported skills have a pos-
itive influence on agreeing that the Google Data API ques-
tions were easy to answer, they have a slight negative influ-
ence when considering the Scala library questions.

3.2 Qualitative
We analyzed the freeform comments for anything directly
related to the user interface variations that we used. We
found that 1 out of 16 subjects who were given the “inherit”
user interface and 4 of 18 users who used the “javadoc” user
interface, wanted an alphabetical list of methods (rather than
grouping based on parent class). Additionally, 4 of 18 users
who used the “javadoc” user interface complained about
types being shown in terms of parent type parameters, rather
than instantiated types.

4. Discussion and Future Work
The subjects took longer to complete the study than we ex-
pected (mean time to completion was 30.5 minutes, median
was 28.7 minutes), which suggests that the questions were
difficult for many of the subjects. Making the tasks easier
could make it easier to isolate the variables that we wished
to study and could reduce the noise in the result data.

On a related note, we expect that it would be beneficial
to repeat the study using a within-subject design. As men-
tioned above, we suspect that individual variation in skill,
mood, and other uncontrolled factors had a large impact on
the response time and correctness, so testing different user
interfaces on the same subject may allow a better statistical
control of these factors and yield stronger results. Of course,
such a study would be a more serious undertaking, as more
subjects would be needed in order to yield statistically sig-
nificant results.

Another factor that may have increased the noise level
in the data was that subjects took the study online, with

no control by the experimenters over their environment or
degree of commitment to the task.

Broader Implications. This study shows that two language
features, inheritance and generics, can have unexpected in-
teractions when it comes to the problem of displaying doc-
umentation. Both of these features are important and can
improve the quality of code. But, documentation generation
tools did not, until now, consider the impact of these features
on documentation.

The lesson for tool developers, be it Javadoc-like genera-
tors or IDEs, is that a new language feature can have a far-
reaching impact on the information needs of programmers.
This study only scratches the surface of how documentation
can be improved. Corpus studies such as that in Table 1 seem
a promising avenue for finding new directions in which tools
can be improved.

5. Related Work
Few researchers have studied the design of Javadoc itself,
aside from the studies that led to its initial design [2]. The
specific problems of Javadoc that we have considered seem
to have been largely ignored by most documentation tools
and IDEs.

For example, when performing a dot-completion, the
three top Java IDEs, Eclipse, IntelliJ, and NetBeans, all
show a flattened view of all members of a particular ob-
ject with correctly instantiated type parameters; however, in
the outline view for a particular class, parent type parame-
ters are not instantiated. In C#, only the Visual Studio Object
Browser shows correctly substituted type parameters. Other
IDE tools, such as the JetBrains ReSharper plugin2 do not
show instantiated type parameters. Additionally, the C# doc-
umentation generator does not show types in its summary
view, only method names and short comments. Clicking on
an inherited method will show the definition in the parent
class, with parent type parameters.

Instantiating parent type parameters bears some simi-
larity to functor application in ML. However, documenta-
tion generators such as OCamldoc3 do not show instantiated
types for modules that are the result of functor application,
even though the OCaml REPL does show the expanded type.
That is, in the generated documentation, the set of members
of the module are shown in terms of the types of the functor’s
formal, rather than actual, parameter.

References
[1] Google. Google Data Java client library. Available at http:

//code.google.com/p/gdata-java-client/, 2010.

[2] D. Kramer. API documentation from source code comments: a
case study of Javadoc. In SIGDOC ’99: Proceedings of the 17th
annual international conference on Computer documentation,

2 http://www.jetbrains.com/resharper/index.html
3 http://caml.inria.fr/pub/docs/manual-ocaml/manual029.html

pages 147–153, New York, NY, USA, 1999. ACM. ISBN 1-
58113-072-4. doi: http://doi.acm.org/10.1145/318372.318577.

[3] C. Marshall. Is the Scala 2.8 collections library a case
of “the longest suicide note in history”? Available at
http://stackoverflow.com/questions/1722726/is-the-scala-2-8-
collections-library-a-case-of-the-longest-suicide-note-in-histo,
2009.

[4] M. Odersky. Scala 2.8 collections. Available at http://www.
scala-lang.org/sid/3, 2010.

[5] M. Odersky and A. Moors. Fighting bit rot with types (experi-
ence report: Scala collections). In R. Kannan and K. N. Kumar,
editors, FSTTCS, volume 4 of LIPIcs, pages 427–451. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009. ISBN 978-
3-939897-13-2.

A. Task Questions
The main task comprised the following questions, presented
to users in all groups.

Question 1

import com.google.gdata.client.calendar._

import com.google.gdata.data.calendar._

import com.google.gdata.data._

/∗∗ Update the title of the entry ∗/
def updateTitle(entry: CalendarEventEntry,

newTitle: TextConstruct
): /∗ TODO 1: fill in return type ∗/ = {

// TODO 2: update the entry title
entry.update

}

• What is the return type of the method "updateTitle"?
• Insert the code marked by the comment "TODO 2"

Question 2

import com.google.gdata.client.calendar._

/∗∗ Get e−mail addresses of each participant in the event ∗/
def getParticipantEmails(

entry: CalendarEventEntry): Iterable[String] = {
// TODO: return an iterable of participant e−mail addresses

}

• Fill in the code for the TODO.

http://code.google.com/p/gdata-java-client/
http://code.google.com/p/gdata-java-client/
http://www.jetbrains.com/resharper/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual029.html
http://www.scala-lang.org/sid/3
http://www.scala-lang.org/sid/3

Question 3

import com.google.gdata.client.calendar._

import com.google.gdata.data.calendar._

import java.net.URL

/∗∗ Add calendar with name ‘calendarName‘ into feed ∗/
def addCalendar(service: CalendarService,

calendarName: String, calendarsUrl: URL
): /∗ TODO 1: insert type ∗/ = {

val calendar = new CalendarEntry
calendar.setTitle(new PlainTextConstruct(calendarName))
// TODO 2: insert the calendar into the feed indicated by ‘calendarsUrl‘

}

• What is the return type of the method "addCalendar"?
• Insert the code marked by the comment "TODO 2"

Question 4

import com.google.gdata.client.calendar._

/∗∗ Print all events in ‘theFeed‘ ∗/
def printAllEvents(theFeed: CalendarEventFeed) = {

// TODO: print the title of each event in ‘theFeed‘
}

• Insert the code marked by the comment "TODO"

Question 5

def clup(cs: immutable.List[Char]): Unit = {
val csg: /∗ TODO: insert type ∗/ = cs.groupBy({
case c if c.isWhitespace => ’ ’
case c if c.isLower => ’l’
case c if c.isUpper => ’U’
case _ => ’_’
})

}

• Insert a type for ‘csg‘, as marked by the comment
"TODO".

Question 6

val csgm = mutable.Map.empty[Char, mutable.Buffer[Char]]

for ((key, value) <- csg) {
csgm.update(key, mutable.Buffer.empty[Char])
// TODO: Add the elements in ‘value‘ to the empty
// buffer just added in ‘csgm‘ at ‘key‘

}

• Fill in the code marked by TODO.

Question 7

val vowels =
mutable.Buffer(’a’, ’e’, ’i’, ’o’, ’u’, ’y’)

// TODO: Update ‘vowels‘ to add upper case vowels
// by mapping over the lower case vowels (use toUpper)

• Fill in the code marked by TODO.

Question 8

val csgm:
mutable.Map[Char, mutable.Buffer[Char]] = ...

/∗ insert argument and return type.
look at use of function in definition of ‘csk‘ below ∗/

def removeVowels(
chars: /∗ TODO 1: insert arg type ∗/
): /∗ TODO 2: insert return type ∗/ = {

chars.diff(vowels)
}

val csk: /∗ TODO 3: insert type of csk ∗/ =
csgm.keySet
.filter({ c => c.isLetter })
.map({ c => removeVowels(csgm(c)) })

• Give the type of the argument to ‘returnVowels‘, as indi-
cated by TODO 1.

• Give the return type of ‘returnVowels‘, as indicated by
TODO 2.

• Give the type of ‘csk‘, as indicated by TODO 3.

B. Satisfaction Questionnaire
The following questionnaire was presented to subjects af-
ter they had complete the main task questions. For ques-
tions 1–3, subjects were presented with a 5-point scale
of “strongly disagree,” “disagree,” “neutral,” “agree,” and
“strongly agree.” Question 4 required a yes/no response.

1. Say whether you agree with the following statements
concerning the questions on the Google Data Client li-
brary (GData):

(a) I found the GData questions easy to answer.

(b) The Scaladoc played an important role in my answer-
ing the GData questions.

(c) I have already written programs that contain code like
that found in the GData questions.

2. Say whether you agree with the following statements
concerning the questions on the Scala collection library:

(a) I found the collection questions easy to answer.

(b) The Scaladoc played an important role in my answer-
ing the collection questions.

(c) I have already written programs that contain code like
that found in the collection questions.

3. A member is a method, value, variable or any other el-
ement owner by a class or object. Its signature contains
its parameter types (if it is a method) and return type. For
example, the following is the signature of method union
in List:
def union (that: Seq[A]) : List[A]

Say whether you agree with the following statements
concerning the member signatures displayed in Scaladoc:

(a) Member signatures were those I expected to see.

(b) I could relate the member signatures in the documen-
tation to the task at hand.

(c) Type variables in member signatures helped me solve
the task.

(d) Type variables im member signatures help me better
understand the design of the API.

4. Were you satisfied with Scaladoc during this study?

	Introduction
	Background
	Hypotheses
	Contributions

	Study Design
	Subjects
	Task

	Results
	Quantitative
	Qualitative

	Discussion and Future Work
	Related Work
	Task Questions
	Satisfaction Questionnaire

