
COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

Collaborative Development of a PLE for
Language Learning

0doi:10.3991/ijet.v5s1.1196

D. Renzel1, C. Höbelt2, D. Dahrendorf2, M. Friedrich3, F. Mödritscher4,
K. Verbert5, S. Govaerts5, Matthias Palmér6 and Evgeny Bogdanov7

1 RWTH Aachen University, Aachen, Germany
2 imc information multimedia communication AG, Saarbrücken

3 Fraunhofer Institute for Applied Information Technology, St. Augustin
4 Vienna University of Economics and Business, Vienna, Austria

5 Katholieke Universiteit Leuven, Leuven, Belgium
6 Uppsala University, Uppsala, Sweden

7 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract—This paper provides a report on the experimental
collaborative and distributed development of a prototypic
Widget-based PLE. The development process is described
and detailed taking into account the requirements of a lan-
guage learning scenario. First results are presented, and
developer experiences are discussed critically with a focus
on the development process as well as problems with cur-
rent Widget technologies and interoperability.

Index Terms—Collaborative Software Development, Tech-
nology Enhanced Learning, Personal Learning Environ-
ment, Widget Interoperability.

I. INTRODUCTION

Current endeavors in the domain of Technology En-
hanced Learning (TEL) exhibit the need for increased
openness and responsiveness of current learning environ-
ments. While older learning technology generations were
often central and closed systems, often merely focusing on
the management of learning processes, the next generation
of Personal Learning Environments (PLEs) tackled by the
ROLE project1 concentrates on a highly distributed ap-
proach drawing on the combination of established open-
standard Web technologies in order to enable the learner-
side integration of services and tools from a plethora of
heterogeneous sources into customized learning environ-
ments. One of the major goals of ROLE is to deliver an
appropriate technical infrastructure for the establishment
of such responsive open learning environments. Another
goal of the project is to establish a community of open
source and external developers outside the consortium
contributing further tools and services based on this infra-
structure. During the first project developer meeting, we
thus agreed to work in parallel to the standard project plan
towards a common goal, called the "Christmas Project"
with the following objectives in mind:
 Create a first demonstrator of ROLE to visualize the

potential of the project
 Enable the consortium to better define needs and de-

rive technical specifications

1 http://www.role-project.eu/

 Experiment with promising combinations of Web
technologies towards an integration infrastructure for
PLEs

 Explore the feasibility of a collaborative and distrib-
uted development process scalable to a large com-
munity of independent developers

While the first two objectives addressed the consor-
tium-internal collaboration, the last two clearly address a
broader audience. Thus, this paper reports on the results of
the Christmas Project with a focus on the collaborative
distributed development process and a first integrated PLE
prototype resulting from this process. It gives the reader
an insight into the challenges we faced during our work
regarding the development process and the technologies
we experimented with. After drawing the conclusion that
current technology and development processes are often
still insufficient for a seamless independent development
of interoperating learning services and tools, it outlines
possible improvements.

The rest of this document is structured as follows. In
Section II we describe the development process to give an
insight of how our work was organized. In Section III we
present details on the requirements elicited for an inte-
grated PLE based upon a language learning scenario. In
Section IV we present the individual partner contributions
in more detail. Section V presents our experiences and a
critical conclusion of our work regarding current issues
regarding Widget technology. In Section VI we end with a
short summary and give a short outlook to further work.

II. DEVELOPMENT PROCESS

Following the objective of establishing a community-
oriented development process, we planned to explore such
a process in a smaller scale within the consortium starting
off with a community of nine partners across Europe,
from both industry and academia and with different de-
grees of technical background. Since heavy-weight proc-
esses would in practice not be feasible and accepted with a
large-scale developer community, we decided to keep the
process as light-weight as possible, however borrowing
concepts from standard processes such as Agile Develop-
ment [1][2], e.g. short iteration cycles, shared code &
documentation, continuous integration, regular developer

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/ijet.v5s1.1196�

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

communication, etc. However, given by the spatial distri-
bution of the community, concepts requiring physical at-
tendance emphasized in Agile approaches had to be re-
placed by communication technology in order to avoid
roundtrip unrealistic in a larger scale community. Fur-
thermore, such a distributed approach requires technical
means for code and documentation sharing and an integra-
tion environment with low entry barriers. Table I briefly
shows the rather light-weight abstract schedule we pur-
sued during our experiments. It should be noted that this
process can be iterated. However, the schedule shown
here is likely to be subject to refinement or even replace-
ment in next phases of the ROLE project.

In the following, we provide details on the first iteration
conducted during the ROLE Christmas Project.

All of the participants dedicated themselves to contrib-
ute components for an integration framework, individual
learning services, either implemented or as mockup to
reach the common goal of delivering an integrated PLE
prototype.

After the collection of all contributions intended by the
partners, we sketched the ROLE Christmas Project Big
Picture (cf. Figure 1). Given by the heterogeneity of the
partners' plans for contributions, we agreed on a common
scenario serving as a concrete use case for a ROLE PLE
prototype based on a Widget approach. For that purpose
we chose a language learning scenario described in detail
in Section III.

As a basis for ongoing documentation we decided to
setup a document to be edited collaboratively by all part-
ners, starting with the Big Picture, an elaborate description
of the scenario and a time plan. Every partner added a
description of his contribution and how it would fit with
the scenario. Thereby, we did not require a perfect match,
but at least a high degree of relevance.

A ROLE XMPP Server was setup for direct communi-
cation. A ROLE developer chat room was configured to
log all group conversations on the server side. Thus, eve-
rybody could easily keep track on previous discussions,
which turned out to be a helpful feature. However, restric-
tive firewall policies enforced by various partner institu-
tions sometimes hindered the use of XMPP – a valuable
experience for future considerations regarding its use in
our software (cf. Section IV.E.)

TABLE I.
ABSTRACT PROCESS SCHEDULE

Planning Phase (collaborative)

 Start with of story-based use case scenario
 Extract (non-)functional requirements
 Identify components
 Structure & categorize components
 Identify interfacing components

 Agree on time schedule

Development Phase (distributed & independent)

 Develop & document components
 Use own development environment
 Communicate with other developers
 Continuously share code & documentation

 Continuously run latest version of components in integra-
tion environment

Figure 1. ROLE Christmas Project Big Picture

Furthermore, in order to maintain the source code of all
partner contributions, we agreed on utilizing a git-based
[3] repository at github.com for reasons of wide visibility
and acceptance in the open source developer community.
Besides SCM functionality, github provides an issue
tracker, Wikis, repository statistics, etc. All of these fea-
tures were frequently used during the development phase.

With regard to a development environment for the indi-
vidual partner contributions, we defined the following
simple policy:

1. All partners setup development environments.
2. One partner maintains integration environment and

regularly pulls from the ROLE github.

During a later physical meeting we discussed a few op-
tions and suggestions regarding the choice of technologies
as a basis for development and integration environments.
The following considerations were taken into account:

1. How to quickly move forward and succeed with
Christmas Project on schedule.

2. Avoid using technologies that will hinder us or force
us to start over completely later on.

3. Make as few decisions as possible at this point in
time.

Since the prototype should be Widget-based, we dis-
cussed a pre-selection of promising technologies for soft-
ware components such as Widget engines, containers,
stores and repositories, inter-Widget communication
mechanisms, protocols, etc. and started our developments
after a first decision for one configuration.

All components of the software we used as technical
foundation for our work promised to be platform and
browser independent – unfortunately, this assumption was
far from being fulfilled. It turned out that all regarded al-
ternatives were still in an early experimental development
stage. The consequence was an increased communication
overhead among the partners for the purpose of finding,
agreeing on and changing to more acceptable solutions.
Due to the fact that we could never rely upon the software
components of our development and integration environ-
ments, continuous integration was hardly possible, leading
to the usual longer and error-prone final integration phase

32 http:www.i-jet.org

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

shortly before the prototype delivery deadline. The details
of the technical problems we faced will be discussed in
Section V. In the next section we present detailed re-
quirements for the ROLE Christmas Project.

III. REQUIREMENTS

In this section we will present an overview of the re-
quirements elicited for the realization of the Christmas
Project. We start with the language learning scenario we
agreed upon as well as the underlying psycho-pedagogical
model. We then continue with technical requirements for
the realization of our prototype and considerations on how
to fulfill them.

A. Scenario
In our language learning scenario, the learner, Tim, is

an employee at Travel Books that sells books and videos
on travel destinations. He works in the sales department
and has to go to international fairs and to speak with dis-
tributors, bookshops and other business partners. As most
business communication is in English, Tim needs to im-
prove his English skills, especially in Business English.
One part of his learning strategy is to read texts and to
learn its vocabulary using his PLE. For that purpose he
adds three widgets: a Language Resource Browser, a
Vocabulary Trainer and a Translator widget. All of them
are visible on one webpage.

In the Language Resource Browser, Tim searches for a
text and starts reading it. Each time he misses a word he
selects it and opens a context menu on it. The system then
proposes him to either look it up in the Translator widget
or send it to the Vocabulary Trainer widget (cf. Figure 2).

So he adds words that he considers as important to the
Vocabulary Trainer and others he only looks up.

After reading the text, he has gathered a list of words he
considers important to be repeated in future using the Vo-
cabulary Trainer widget.

In the next days he continues reading newspaper arti-
cles regularly and his Vocabulary Trainer widget obtains
more and more words. In an analogous manner he uses the
Language Resource Browser widget to work with other
media types such as audio or video.

One day, he is learning with his Vocabulary Trainer,
memorizing the words on the list and testing whether he
knows them sufficiently well. He recognizes that he has
problems to remember a certain word because he does not
know the context anymore where it originally appeared.

Fortunately the Vocabulary Trainer always stores the
link to the original text. So Tim clicks on the word and the
original text appears in the Language Resource Browser
widget and shows the sentence where the word was taken
from.

Reading the sentence and thinking of the context facili-
tates him to memorize the vocabulary. Furthermore he
improves his language proficiency by knowing situations
where he can use the word.

The scenario can be extended by a group of learners,
e.g. students that participate in an English Language
course. The instructor sends them a list of newspaper arti-
cles that are available online. The students are asked to
read and analyse them and to learn the vocabulary. As
they come from the same background (high school Eng-
lish level), they decide to jointly create a vocabulary list

Figure 2. PLE with three Learning Widgets

Figure 3. Learner Navigation Tool Mockup

using the Vocabulary Trainer widget. Whenever a student
finds an unknown word in the newspaper article, he adds
it to the joint vocabulary list. The Vocabulary Trainer
widget will also display words added by other students
who have the same level in the English language. Words
that have been added more often are sorted higher. Each
learner individually trains the list of words and the vo-
cabulary widget keeps track of each student’s individual
vocabulary knowledge. The group’s average knowledge
(number of words learned) is displayed in the widget, to-
gether with the current student’s knowledge. Nevertheless
it should be possible to deactivate the group functionality
if the learner only wants to learn for herself.

B. Psycho Pedagogical Model
In this section we shortly present the ROLE psycho-

pedagogical model [4]. The central element of this model
is a cyclic learning process model consisting of several
learning phases related to learning activities. Following
the connections between learning phases, activities and
tools, a sequence of learning tools can be derived. Fur-
thermore, two different kinds of learning tools are identi-
fied, first "normal" learning tools conveying domain
knowledge, and second, meta-learning tools used for self-
regulating the own learning process.

A navigation tool guiding the learner through a self-
regulated learning process by recommending activities
and tools was proposed. The partners created an interac-
tive mock-up of such a navigation tool (cf. Figure 3) and
presented it in the context of the scenario from the previ-
ous section.

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 33

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

The contribution of education professionals had a great
impact on the technical developments and showed us once
more that technical and conceptual work should be con-
ducted hand-in-hand.

C. Technical Requirements
For the technical realization of a first ROLE PLE proto-

type, we decided to follow an approach of intercommuni-
cating Widgets. The expectations from choosing such an
approach were a relatively loose coupling between indi-
vidual widgets contributed from different partners. It
should be noted that we also experimented with such an
approach, because in future project stages, developers
outside the consortium should be enabled to work com-
pletely independent from other developers.

First, a technical infrastructure was needed as a basis
for our prototype. Starting from the Big Picture, we identi-
fied requirements for the following components of such an
infrastructure:

1. Widget Container/Engine
2. Widget Store/Repository
3. Widget Interoperability Mechanisms
4. Widget User Interface

As promising Widget Container/Engines, we consid-
ered experiments with Apache Shindig [5], the reference
implementation of an OpenSocial [6] container currently
under incubation at Apache. OpenSocial defines a com-
mon API for social applications across multiple websites
and also includes a specification for widgets – gadgets in
OpenSocial terminology. As further alternative we con-
sidered SocialSite [7], based on Glassfish and Apache
Shindig with the ability to run OpenSocial gadgets and
have them backed by the same social graph. Furthermore,
Apache Wookie [8] was taken into consideration as a so-
lution for adding W3C Widgets [9] as well as OpenSocial
and Google (Wave) Gadgets to web applications.

1) As solutions for a Widget store/repository, we con-
sidered the following four solutions:
 No store/repository, fixed list.
 Wookie
 Google Gadget directory
 ROLE widget store (remains to be built)

A fundamental requirement to Widget interoperability
was the support of inter-widget communication. There
should be no major configuration needed on the side of
end users assembling widgets. Furthermore, it should be
easy to build containers for the chosen widget technology.
Integration into existing systems, like LMS should be pos-
sible. Preferably, standard containers should also support
these technologies. The following technologies were taken
into closer consideration as potential candidates:
 Gadget pubsub [6]
 OpenAjax Alliance hub2.0 pubsub [10]
 Open Application (draft) [11]
 XMPP [12],[13] XEP-060 Publish/Subscribe [14]
 HTML5 DnD[16]

2) Regarding a Widget user interface a couple of differ-
ent approaches were considered, e.g. portal pages such as
iGoogle, Wiki or LMS approaches, etc. However, we de-
cided to keep things simple first using a fixed HTML

page. An additional solution experimented with was the
integration in Graaasp (http://graaasp.epfl.ch), a Web 2.0
contextual aggregator of people, spaces, assets and tools,
in order to be able to make use of its built-in mechanisms
for sharing, commenting, and recommendation.

For the first experiments, we decided to use a configu-
ration of SocialSite as a container, no widget store, simple
HTML page or Graaasp as user interface and OpenAppli-
cation based on Gadget pubsub for inter-widget communi-
cation. Furthermore, the previously described ROLE
XMPP Server was used for experiments on remote inter-
widget communication. For this first prototype, the pri-
mary focus was thus put on the development of communi-
cating widgets.

IV. PARTNER CONTRIBUTIONS

In this section we will present the contributions of all
partners for the Christmas Project prototype. The first two
contributions are targeting at an integration framework
focus on the communication between widgets. All remain-
ing contributions consist of different types of widgets ei-
ther especially for the language learning scenario or with
rather general functionality.

A. Inter-Widget Communication
Uppsala University introduced the Open Application

Event API to provide a generic solution to the requirement
of inter-widget communication in the scenario. The most
important aspect of the solution is that widgets need not
be “hard-wired” against each other. Instead, they commu-
nicate using well-known data expressions, with the inten-
tion that widgets will understand the parts that are impor-
tant to them.

The basic principle behind the event API is that all wid-
gets are notified of all events. No specific subscription
step is necessary. All widgets are given the opportunity to
react to any event, which they may choose to do depend-
ing on event type, message type, message content, etc.

1) Events types
The event types include: state, load, modify, save, se-

lect, unselect, startDrag and stopDrag. A state event is
different from the others in that it has no relevant re-
source, and therefore no resource is sent along. Instead, a
state event indicates a change of state in the widget that
sent it.

2) Event Structure
Notifications of events are sent out as messages. The

message consists of the relevant resource, if any, depend-
ing on the event. The message is wrapped in an envelope
containing further event information.
event - the event type (see previous section).
type - The message type
message - The message, for example a resource.
uri - The message's URI, if any.
date - Timestamp of when the event occurred shar-
ing - How the event is allowed to be used.

At the moment, the event API consists of a Gadgets
PubSub channel, in which the messages are published and
thereafter sent out to all widgets.

An Open Application compliant widget subscribes to
the PubSub channel when the widget is loaded. The shar-

34 http:www.i-jet.org

http://graaasp.epfl.ch/�

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

ing property is intended to specify how the data may be
used: on the same page, only on the user’s machine, by a
service under the user’s control, by participants with ac-
cess to the same widget instances, or that it may be trans-
mitted to various services. Each level includes all the
privileges of the previous levels.

3) Message Types
A number of message types are defined. These include:

namespaced-properties, JDIL, JSON, URL, HTML, XML
and MIME content. Of these, namespaced-properties is
intended for simple RDF-like metadata with direct proper-
ties, and MIME content for unparsed text or binary data.

B. Web 2.0 Platform for Collaborative Organization of
Information and Tools

The EPFL team developed a Web 2.0 platform, namely
Graaasp, to helps users to collaboratively organize infor-
mation and tools toward a given goal or activity. Tools in
Graaasp are implemented as widgets. In addition to the
standard add, remove, browse, group and share operations,
Graaasp also supports tagging, rating and commenting.
The widgets are imported/bought from a widget store and
linked to the given Graaasp space dedicated to a learning
activity.

Once the activity is configured the user can switch the
view to play with instances of selected widgets. The wid-
get instances are rendered in a widget container managed
by a Wookie engine. Any widgets following the W3C
widget specifications can be instantiated into Graaasp.

Based on both the created activity structure and the user
ratings, a recommender system that would contextually
recommend widgets to users is being developed. Simi-
larly, Trust and Reputation algorithms for widgets are also
considered.

C. Monitoring of User Behaviour
To provide recommendation and self-evaluation mecha-

nisms Fraunhofer FIT developed a CAM [17] widget to
unobtrusively monitor user behavior. Other widgets, like
the vocabulary trainer widget (cf. next section), trigger
events on different user actions which are then broad-
casted to other widgets using Open Application. The
CAM schema provides a standardized data format to store
user activities and thus fosters widget interoperability
since every widget could access these data.

Since the CAM widget is a simple subscriber widget, it
listens to every event published from any other widget and
collects them. The collected events are then transferred
into the CAM schema and afterwards stored in a database.
As all control should be with the user, she can decide be-
tween different storage modes. For the Christmas project
we therefore specified three different storage modes which
can be selected by the user (cf. Figure 5).

If the user decides to store her activities remotely, the
CAM widget transfers the data to a central CAM reposi-
tory, where all events of every user are stored. After creat-
ing a CAM instance, the CAM widget calls a Web service
[18] passing the CAM information which is then stored in
a database. The local storage mode uses the Gears plug-in
[19] to store CAM information in a local database. The
Gears plug-in is available for many platforms and sup-
ports all common browsers. It provides a SQLite [20] in-
terface to easily create a database and store information

Figure 4. Graaasp views to organize the activity (on the back) and to

play the instantiated widgets (on the front)

Figure 5. The CAM widget with three different storage modes

inside of the local browser profile. An alternative ap-
proach to Gears is using HTML5 [16]. Since the specifica-
tion of HTML5 is not finished yet and is currently not
supported by every browser we have chosen Gears. If the
user does not want her usage behavior stored, she can
choose the storage mode off.

To generate recommendations based on CAM, these
can either be based on the user's own previous behavior or
the usage history of others can be taken into account as
well. The different storage modes have effect on the gen-
eration of recommendations. In the remote mode the user
can get recommendations, but also allows the system to
use his information to generate recommendations to other
users. The local storage mode only allows retrieving rec-
ommendations, and disallows the system to use her infor-
mation to generate recommendations to other users. If the
user does not want her usage behavior to be monitored she
can neither get recommendation nor support the system to
generate recommendations to other users.

As we had no Vocabulary Trainer CAM data for the
Christmas project, we transferred some PLE Monitoring
data [21] into the CAM schema and provided a separate
Web service which offers methods to generate recommen-
dation and self evaluation statistics.

D. Visualization of Monitored Activity
KU Leuven developed a dashboard that enables stu-

dents and teachers to monitor learning activities. In the
dashboard students, can monitor the progress they made

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 35

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

Figure 6. Dashboard with line chart

on a certain course or task and compare themselves with
other students working on the same task.

An important feature of the dashboard is learning mate-
rial recommendation. Based on the learning material other
students have used, who have progressed further, we can
recommend interesting learning material to the student. A
student can compare his activities with other students and
a teacher can get a general overview of what is going on
in the course, see if it meets expectations and detect poten-
tial problems.

Figure 9 illustrates the first version of the user interface
for our application. The student can select the course and
will be presented with 2 different charts, a course analytics
overview and document recommendations. Every line in
the chart in figure 1 is a student. The chart shows when
the student worked (horizontal axis) and how long he
worked on the course (vertical axis). The red line shows a
selected student, we see that the student was very late in
finishing the course and that he spent a lot of

work in a small number of sessions. This view enables
a student to compare his progress with that of his fellow
students. Another visualization uses parallel coordinates
[22]. It shows a set of metrics on parallel axes. A student
is represented as a polyline with the vertices on every axis.
The metrics are: the average and total time spent on the
course, the number of documents used and the average
time of the day that a student works. By visualizing these
metrics next to each other one can grasp another view on
the course activity and discover trends.

The widget is developed in Adobe Flex. To monitor
user activities, we use CAM [17]. In order to test the tools,
we used course data provided by U&I Learning [21]. To-
gether with our partners at FIT, we experimented with the
data to propose possible metrics and collaborated on a
Web service providing methods to retrieve and calculate:
a list of all courses, a list of recommended documents for
a course, general statistics for a course, statistics of a stu-
dent of a course and the student’s attention metadata for a
course. The widget can be easily deployed on top of an-
other Web service that uses different attention metadata to
provide the same statistics.

In a teacher modus, the student names may need to be
anonymized. Privacy is an important issue when monitor-
ing this kind of data. For the Christmas project, we want
to simply anonymize the names of the students in the

teacher view. This is not implemented yet, because the
data from U&I was already anonymized.

Another design idea, not yet implemented, is a graph-
based community visualization widget. This tool could
allow students to find fellow students how have the same
language proficiency as them to chat or collaborate with.
The widget would communicate with the chat module of
RWTH to provide chat functionality. We are currently
implementing this widget.

E. XMPP Chat Widget
The contribution of RWTH Aachen University is a Chat

Widget providing a simple Instant Messaging (IM) client
(cf. Figure 7) based on the XMPP [12][13] protocol. The
widget offers interface elements for 1-on-1 conversations,
the management of buddy lists and user presence informa-
tion. In its default configuration, the widget connects to
the ROLE XMPP Server. However, connections to arbi-
trary XMPP Servers are possible. Regarding the ROLE
Christmas Project's language learning scenario, the XMPP
Chat Widget contributes to synchronous communication
between learners integrated in a PLE. The widget is as a
rich source for communication events, e.g. updated pres-
ence information, incoming/outgoing message, etc. The
integration of event publishing into the Open Application
approach to be captured by CAM is planned for the near
future.

Besides the added value of XMPP chats between learn-
ers and basic communication statistics, these two widgets
demonstrate how inter-widget communication could be
realized between remote widgets (via sending messages
over XMPP) and between local widgets (e.g. via Gadget
pubsub). There already exist specifications on XMPP Ex-
tension Protocols (XEPs) for Publish/Subscribe [14] or
Personal Eventing Protocol [15] mechanisms, which will
be considered for a seamless remote/local inter-widget
communication for future developments.

F. Language Learning Widgets
In order to fulfill the requirements of the language

learning scenario, imc AG developed the English learning
widgets: The Language Resource Browser widget, the
Vocabulary Trainer widget and the Translator widget.
These widgets demonstrate a reasonable use of the Inter-
widget communication by sending and receiving term
items described by a term and its context and source.

Figure 7. ROLE XMPP Chat Widget

36 http:www.i-jet.org

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

Figure 8. Language Resource Browser Widget

1) Language Resource Browser Widget
The Language Resource Browser widget (cf. Figure 8)

allows user to consume media and send term items to
other widgets processing the information. Examples of
such widgets are the Translator Widget where the term
will be translated or the Vocabulary Trainer where the
user can add this term to a vocabulary list. At the moment
the widget offers three different tabs. The “Text” tab
works like a web browser. It displays a page to a given
URL in an iframe where the user can select the term and
context. The source of such a term item will be the URL
from the page.

In the second tab "Own Text" the user can add her own
text taken from an online or offline resource. The third tab
provides support to browse for different media such as
video and audio. While watching or listening to the media,
the user can enter a term in a field. The source of such a
term item will be the URL from the media and the context
will be defined as “Media Context”.

2) Translator Widget
The Translator widget allows a user to translate terms

or sentences. It translates either a term which was entered
from the user or a received term item. We combined dif-
ferent Web services (i.e. Wikipedia, Google Dictionary,
DICT.ORG, Google Translate) for the translation process

At the moment only English to German is supported,
but the language pool could be extended to all languages
supported by the services above.

3) Vocabulary Trainer widget
The Vocabulary Trainer (cf. Figure 9) widget is imple-

menting a slightly modified Leitner system [23] . A vo-
cabulary list consists of five different buckets. If an item is
added is will be put in the first bucket. If the user is train-
ing a list and knows the right translation the item will be
moved to the next bucket and else it will be moved to the
previous bucket.

The information is stored on a central server and ac-
cessed using REST Web services. Each user has a unique
login and authentication is done by basic access authenti-
cation over REST. For translation the same Web services

Figure 9. Vocabulary Trainer Widget

are used as in Translator widget, and Flickr is used to sug-
gest pictures for terms. Vocabulary items are stored in a
list which can be managed by the user.

The widget has four functionalities represented by four
tabs: "Add", "List", "Train" and "Stats".

The "Add" tab allows users to manually insert a new
term/sentence, the context of that term and its source. In
combination with the Language Resource Browser the
sent term item appears automatically in the Vocabulary
Trainer widget.

The "List" tab provides an overview of the stored lists
and vocabulary items. The user can create/delete lists and
inspect the content of the different buckets.

The "Train" tab gives the learner the possibility to prac-
tice her stored vocabulary. After choosing a bucket that
she wants to train a term from this bucket and its context
will be displayed. The user can get help by viewing the
source of that item or viewing the image to that item (if
there exists one). The fourth tab "Stats" shows statistics of
the training. It displays a global score and a score for each
list.

G. Federated Search & Language Processing
In traditional educational scenarios, teachers typically

provide appropriate learning materials and give feedback
on student essays. Vienna University of Economics &
Business contributed two widgets which are useful for
these purposes and indicate their application for language
learning.

ObjectSpot, a widget for federated search of academic
papers in different digital libraries, has its origins in the
iCamp project (http://www.icamp.eu). This search client
allows plugging in different digital repositories, whereby
the documents are retrieved via the Simple Query Inter-
face (SQI) [24] standard. The central core of this widget is
the ranking algorithm which has been developed over sev-
eral iterations and mixes in the search results from the
repositories on the fly [25]. In practice, this widget is use-
ful for both learners and teachers to retrieve the most ap-
propriate literature for a specific knowledge domain. By
default, the most important digital libraries containing

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 37

http://www.icamp.eu/�

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

academic papers, e.g. ACM, IEEE, Google Scholar, Cite-
Seer, EBSCO, etc., are included.

The screenshot shows the results for the query term
‘open responsive learning environments’. At the top, the
search term and the state of the repositories are displayed.
At the bottom, the user can navigate through the pages.
On the left hand side, a user can 'lock' appropriate results,
thus giving explicit relevance feedback and recommenda-
tions for others. This mechanism can also be used to ex-
port search results through a feed-based API if another
tool is attached to ObjectSpot. Pressing the option button,
a user can configure SQI-enabled digital repositories for
her search client, visualize the location of the repositories
on a map, get statistics on the quality of the repositories,
export the results as RSS-feed, get recommendations for a
query term, or plug another tool to ObjectSpot.

Conceptalyzer comprises a language processing widget
which builds upon a LSA-based Web services developed
within the LTfLL project (http://www.ltfll-project.org).

This widget analyzes online resources (e.g. Wikipedia
articles or RSS feeds) in terms of the concepts behind the
text and visualizes them according to their relevance. Ap-
plication areas of this widget comprise learner positioning,
monitoring one’s conceptual development. It can be also
helpful for teachers in preparing learning materials or
grading students [26].

The screenshot shows the result of the analysis of a
Wikipedia article, whereby the relevant terms are visual-
ized in the form of a ‘concept cloud’. The size of a term
indicates its relevance for the article while the color links
to the text corpora used to train the LSA function.

V. DISCUSSION OF WIDGET TECHNOLOGIES

During the development process of the ROLE Christ-
mas Prototype PLE, we collected a set of valuable how-
ever negative experiences to be shared with other devel-
opers working with the technologies we attempted to
combine. These experiences will be discussed in this sec-
tion.

One of the most surprising experiences from the devel-
oper perspective was the immature state of many widget
technologies, especially with regard to inter-widget com-
munication, one of our main requirements for the lan-
guage learning PLE. During the development process we
tested the following three OpenSocial compliant Gadget
development environments:

1. Apache Shindig
2. SocialSite (based on Shindig within Glassfish)
3. OSDE (Eclipse Plugin with integrated Shindig)

With all of the above systems we encountered at least
one of the following problems:
 Lack of Forward Incompatibility
 Client Browser Dependence
 Server Platform Dependence
 Inaccessible Bugs in Generated Code
 Incompatibility with External Libraries
 Lack of Developer Support

The first problem was related to the installation of a
gadget container, in particular with SocialSite. First, the
current SocialSite distribution is restricted to specific,
already outdated versions of Glassfish and Shindig, and

Figure 10. Objectspot – Federated Search Widget

Figure 11. Conceptalyzer – Language Processing Widget

thus is not forward compatible - an essential property,
when working with experimental systems. Given the di-
versity of devices and platforms available to the develop-
ers, we quickly had to find out that platform and browser
independence was not given at all. Container-side or/and
browser-side errors were the result. The most essential
problem was the inaccessibility of bugs in JavaScript
code. In many cases, problems occurred outside the source
code under developer control. The reason was a malfunc-
tion in the code production performed by the container
itself. Furthermore, error messages were cryptic and in-
comprehensible and thus did not provide any hint to the
original location of an error. Furthermore, we lost a lot of
time communicating possible alternatives. An excursion to
the usage of Apache Shindig instead of SocialSite was
also not successful for all of us. Further problems were
related to the incompatibility of external JavaScript librar-
ies with the Widget container, which again resulted in
strange code rewriting effects. Especially with regard to
JavaScript library support for XMPP, we had to experi-
ence that libraries were not far enough for the realization
of our goals and definitely need improvement. Finally, we
had to experience that the developer support by the So-
cialSite team was not available at all. At the time of writ-
ing this document, it seems quite obvious, that SocialSite
is dead.

We finally managed to deploy our prototype in Graaasp
in a rather stable version, but still with a lot of open issues

38 http:www.i-jet.org

http://www.ltfll-project.org/�

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

to be tackled in later development stages of the ROLE
project.

Drawing the conclusions from our experiences, we can
state that the technologies we experimented with were
insufficiently mature for the deployment of a stable inte-
grated prototype assembled from a set of innovative tools
realized using different technologies. For further collabo-
rative distributed development experiments we agreed on
short, but regular biweekly meetings in order to get aware
of occurring problems earlier. The agenda will be inspired
by action items of W3C meetings.

VI. CONCLUSION & OUTLOOK

In this paper we provided a report of the collaborative
distributed development of the ROLE Christmas Project
resulting in a prototype of a Widget-based PLE for lan-
guage learning. We first described the development proc-
ess conducted among nine different partners from both
academia and industry, with varying technical back-
grounds, motivations and interests regarding the whole
project. We pointed out that regular communication and
the clear definition of goals and a schedule was inevitable
during the whole process. Furthermore, we listed useful
technical means of collaboration such as communication
media, shared documentation, shared code repositories,
etc. Furthermore, we had to draw the conclusion that our
approach did not work as expected, rising the necessity for
an improved approach better suited for collaborative dis-
tributed development of Widget-based PLEs. In a section
on requirements we presented our use case scenario and
gave an insight into the psycho-pedagogical model be-
hind. In that context we pointed out that conceptual and
technical work must happen together. We elicited techni-
cal requirements to a basic infrastructure for distributed
PLE development and presented a selection of technolo-
gies for its realization as foundation for our experiments.
We then provided an overview of the innovations result-
ing from individual partner contributions, ranging from
integration technologies to scenario-dependent and inde-
pendent learning service widgets. Finally, we critically
discussed the outcome of the ROLE Christmas project and
reported a set of technical issues hinting to the conclusion,
that Widget technology is not mature and stable enough to
enable distributed collaborative PLE development without
hassle at this point in time. However, we worked out the
requirements and associated problems for distributed im-
plementation of widget based PLEs and collected a lot of
valuable experience that will shape future endeavors. In an
upcoming consolidation phase, the developer team will
stabilize current results, improve and align the develop-
ment process and then continue work towards a number of
bundles for the implementation of the ROLE test bed sce-
narios.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community's Seventh Framework
Programme (FP7/2007-2013) under grant agreement no
231396 (ROLE project).

REFERENCES
[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cun-

ningham, M.Fowler et al. Manifesto for Agile Software Develop-
ment. 2001. http://www.agilemanifesto.org/

[2] K. Beck and C. Andres. Extreme Programming Explained. Em-
brace Change. 2nd Edition, Addison Wesley, December 2004,
ISBN 0-321-27865-8

[3] git. The fast version control system. http://git-scm.com/. Last
visited: Jan 2010.

[4] A. Nussbaumer, K. Fruhmann, U. Kirschenmann, P. Ferdinand, A.
Kiefel, A. Naeve. ROLE Deliverable 6.1: Common psycho-
pedagogical framework. Unpublished.

[5] Apache Shindig. OpenSocial container reference implementation.
http://incubator.apache.org/shindig/. Last visit January 2010.

[6] OpenSocial. A common Web API for social applications.
http://code.google.com/apis/opensocial/. Last visit January 2010.

[7] Glassfish – Project SocialSite. https://socialsite.dev.java.net/. Last
visit January 2010.

[8] Apache Wookie. http://incubator.apache.org/wookie/. Last visit
January 2010.

[9] Marcos Cáceres. Widget Packaging and Configuration. W3C
Candidate Recommendation. W3C. December 2009.

[10] Open Ajax Alliance. Standardizing Ajax Development.
http://www.openajax.org. Last visit January 2010.

[11] Open Application. http://code.google.com/p/open-app/. Last visit
January 2010.

[12] P. Saint-Andre, ed. Extensible Messaging and Presence Protocol
(XMPP): Core, IETF proposed standard, RFC 3920, Oct. 2004;
http://www.ietf.org/rfc/rfc3920.txt.

[13] P. Saint-Andre, ed. Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence, IETF proposed stan-
dard, RFC 3921, 2004; http://www.ietf.org/rfc/rfc3921.txt

[14] P. Millard, P. Saint-Andre, Ralph Meijer, ed. XEP-060 Publish-
Subscribe. Draft Standard in progress, Dec. 2009;
http://xmpp.org/extensions/xep-0060.html

[15] P. Saint-Andre, K. Smith, ed. XEP-163 Personal Eventing Proto-
col. Draft Standard in progress, Oct. 2009;
http://xmpp.org/extensions/xep-0163.html

[16] I. Hickson and D. Hyatt. HTML5: A vocabulary and associated
APIs for HTML and XHTML. Editor’s Draft. W3C. Jan. 2010;
http://dev.w3.org/html5/spec/spec

[17] M. Wolpers, J. Najjar, K. Verbert, and E. Duval, „Tracking Actual
Usage: the Attention Metadata Approach,” in Educational Tech-
nology & Society, vol. 10, no. 3, pp. 106-121, 2007.

[18] Apache Axis2: Java Next Generation Web Services. Last up-
dated: 23 Oct 2009; http://ws.apache.org/axis2

[19] Gears. Improving Your Web Browser; http://gears.google.com/.
Last visit January 2010.

[20] SQLite; http://www.sqlite.org. Last visit January 2010.
[21] U&I Learning; http://www2.learning-service.com/portal/uni/. Last

visit January 2010.
[22] A. Inselberg, “N-Dimensional Coordinates,” in IEEE Pattern

Analysis & Machine Intelligence (PAMI), "Picture Data Descrip-
tion & Management", Asilomar, California, 1980, 136.

[23] S. Leitner: So lernt man lernen. 13. Auflage. Verlag Herder, Frei-
burg 1995, ISBN 3-451-05060-9

[24] B. Simon, D. Massart, F. van Assche, S. Ternier, and E. Duval.
Simple Query Interface Specification. Public Draft. April 2005;
http://ariadne.cs.kuleuven.be/lomi/index.php/LorInteroperability

[25] R. Koblischke, Federated Ranking: Evaluating Result Merging
Algorithms for Distributed Retrieval, master’s thesis, Vienna Uni-
versity of Economics and Business, Vienna, 2010.

[26] F. Wild, B. Hoisl, and G. Burek, “Positioning for Conceptual
Development using Latent Semantic Analysis,” in Proceedings of
the EACL Workshop on GEMS, Athens, Greece, pp. 41-48, 2009.

AUTHORS

D. Renzel (renzel@dbis.rwth-aachen.de) is with the
Chair for Computer Science 5, RWTH Aachen University,
Aachen, Germany.

C. Höbelt (christina.hoebelt@im-c.de) is with imc in-
formation multimedia communication AG, Saarbrücken,
Germany.

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 39

http://www.agilemanifesto.org/�
http://git-scm.com/�
http://incubator.apache.org/shindig/�
http://code.google.com/apis/opensocial/�
https://socialsite.dev.java.net/�
http://incubator.apache.org/wookie/�
http://www.openajax.org/�
http://code.google.com/p/open-app/�
http://www.ietf.org/rfc/rfc3920.txt�
http://www.ietf.org/rfc/rfc3921.txt�
http://xmpp.org/extensions/xep-0060.html�
http://xmpp.org/extensions/xep-0163.html�
http://dev.w3.org/html5/spec/spec�
http://ws.apache.org/axis2�
http://gears.google.com/�
http://www.sqlite.org/�
http://www2.learning-service.com/portal/uni/�
http://ariadne.cs.kuleuven.be/lomi/index.php/LorInteroperability�

COLLABORATIVE DEVELOPMENT OF A PLE FOR LANGUAGE LEARNING

D. Dahrendorf (daniel.dahrendorf@im-c.de) is with
imc information multimedia communication AG, Saar-
brücken, Germany.

M. Friedrich (martin.friedrich@fit.fraunhofer.de) is
with the Fraunhofer Institute for Applied Information
Technology, Sankt Augustin, Germany.

F. Mödritscher (fmoedrit@wu.ac.at) is with the Vi-
enna University of Economics and Business, Vienna, Aus-
tria.

K. Verbert (katrien.verbert@cs.kuleuven.be) is with
the Katholieke Universiteit Leuven, Leuven, Belgium.

S. Govaerts (sten.govaerts@cs.kuleuven.be) is with the
Katholieke Universiteit Leuven, Leuven, Belgium.

M. Palmér (matthias@nada.kth.se) is with the Uppsala
University, Uppsala, Sweden.

Evgeny Bogdanov (evgeny.bogdanov@epfl.ch) is with
the École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland.

This article was modified from a presentation at the International Confer-
ence of Interactive Computer Aided Learning ICL2009, September 2009
in Villach, Austria. Submitted 11 September 2009. Published as resub-
mitted by the authors on 17 January 2010.

40 http:www.i-jet.org

