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Abstract In this paper we determine bounds of the capacity region of
a two-user multiple-access channel with Rayleigh fading when neither
the transmitters nor the receiver has channel state information (CSI).
We assume that the fading coefficients as well as the additive noise are
zero-mean complex Gaussian and there is an average power constraint
at the channel input for both senders. Results that we get show that
the lower (inner) and the upper (outer) bound of the capacity region are
quite close for low and high signal-to-noise ratio (SNR). Surprisingly,
the boundary of the capacity region is achieved by time sharing among
users, which is not the case for fading channels with perfect CSI at the
receiver. As an additional result we derive a closed form expression for
the mutual information if the input is on-off binary.
Index Terms− Multiple-access channel, capacity region, Rayleigh fading,
channel state information, volume of the capacity region.

1 Introduction

Wireless communication systems are currently becoming more and more impor-
tant. A challenging task for operators of mobile communication systems and
researchers is the need to constantly improve spectral efficiency, maintain a de-
sirable quality of service, minimize the consumption of transmit power in order
to lower electromagnetic radiation and prolong the battery life. In the same time
the number of base stations has to be minimized, whilst accommodating as many
users as possible. In fulfilling these requirements, the greatest obstacle is the na-
ture of the mobile communication channel, which is time-varying, due to rapid
changes in the environment and mobility of users. Signal strength may drop by
several orders of magnitude due to an increase in distance between transmitter
and receiver and superposition phenomena in scattering environments. This phe-
nomenon is commonly known as fading and such channels as fading channels.
Many modern wireless systems send a training sequence inserted in the data
stream in order to provide the receiver with information about the channel. On
the other hand, some systems provide a feedback channel from the receiver to
the transmitter and this information can help the transmitter to choose an ap-
propriate signal to access the channel. Knowledge of the channel is known as
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channel state information (CSI). Many papers have been written on channels
with perfect CSI at the receiver, at the transmitter, at both and at neither of
them. In practical wireless communication systems, whenever there is a large
number of independent scatterers and no line-of-sight path between the trans-
mitter and the receiver, the radio link may be modelled as a Rayleigh fading
channel. In a multi-user environment the uplink channel is typically modelled
as multiple access channel (MAC). The performance of the channel strongly de-
pends on the fact whether the state of the channel is available at the receiver
and(or) the transmitter(s). In this paper we are interested in deriving the capac-

ity region of the two-user Rayleigh fading channel without CSI at the receiver
or the transmitter. The capacity region of a multiple access channel is the clo-
sure of achievable rates for all users [5]. This channel is of interest since in some
cases the channel can vary very quickly and it will be not possible to send any
information about the channel.

The case without channel state information for the single user channel has
been studied in [9,7,3,6] and for the multi-user channel in [8,2]. In [3], authors
show that without channel state information, the optimal input is discrete with
a mass point at zero. In [9] it is shown that without channel state information,
the capacity at high SNR depends double-logarithmically on the SNR. A more
general result on the double logarithmic behavior at high SNR is given in [6].

In Section 2 we establish a closed form solution for the mutual information
when the input is binary on-off. In Section 3 we find lower and upper bounds
of the capacity region of a two-user Rayleigh fading channel. We compare the
bounds in Section 4 and give conclusions in Section 5.

2 Rayleigh Fading Channels without CSI

The capacity Csu(ρ) of the single user channel Y ′ = AX ′ + Z, where A,Z ∼
NC(0, 1) and E[|X|2] ≤ ρ has been derived in [3]. Having ρ = σ2

AP/σ2
Z , the

capacity of this channel is the same as the capacity of the channel with A ∼
NC(0, σ2

A), Z ∼ NC(0, σ2
Z) and E[|X|2] ≤ P . According to [3], the capacity

achieving input distribution is discrete. For low SNR, the mutual information
for binary inputs is not far from the capacity. For extremely high SNR, higher
than the fading number, defined in [6], the capacity behaves as log(log(SNR)).

Next we give a closed form expression for the mutual information between
the input and the output, if the input is on-off binary, namely (0, b). The binary
on-off input is interesting since for low SNR, it is optimal. At the end of the
section we give a numerical result for the capacity.

Proposition 1. (Closed form expression for the mutual information for a par-
ticular on-off input probability p and SNR ρ): For the channel Y = AX + Z,
when the input is binary on-off with Pr{X = 0} = 1 − p and power constraint
E[|X|2] ≤ ρ, the mutual information between the input X and the output Y , is

I(X;Y ) = h(p) + pJ

(

p + ρ

p2(1 − p)−1
,
ρ

p

)

+ (1 − p)J

(

p2(1 − p)−1

p + ρ
,

ρ

p + ρ

)

(1)



where h(·) is the binary entropy function, J (c, d) = − ln(1+ c)+ cd
1+d

· 2F1(1, 1+

d−1; 2 + d−1;−c), and 2F1(u, v;w; z) = Γ (w)
Γ (u)Γ (v)

∑∞
k=0

Γ (u+k)Γ (v+k)
Γ (w+k) · zk

k! is the

Gaussian hypergeometric function defined in [4]. Γ (q) =
∫ ∞

0
xq−1e−xdx is the

Euler gamma function.

The detailed proof is given in [1].
To compute the capacity of the binary input Rayleigh fading channel with-

out channel state information, denoted by Cb, one has to find the maximum of
Ip,ρ(X;Y ) over p for different ρ. Unfortunately dIp,ρ(X;Y )/dp = 0 is a transcen-
dental equation and cannot be solved explicitly. The capacity and the optimizing
p∗ as functions of ρ are shown in Fig. 1. Note that as the power of the input sig-
nal increases the information rate of this channel goes to its limit of ln 2 nats and
p∗ goes to 0.5. This happens since if ρ goes to ∞, we get the channel Y = AX.
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Figure 1. Capacity Cb and the optimal probability p∗ as function of ρ

3 Two-User Rayleigh Fading Channel

In this section, we give a lower and an upper bound of the capacity region of
a two-user Rayleigh fading channel in the case where the channel is not known
either at the transmitters or at the receiver, but all of them know the statistics of
the channel exactly. The ratio of volumes [1] of the lower and the upper bound of
the capacity region will serve us as a measure for the proximity of these bounds.
The channel is

Ỹ = Ã1X̃1 + Ã2X̃2 + Z̃, (2)

where Ã1, Ã2 and Z̃ are independent and identically distributed (i.i.d.), zero-
mean, complex Gaussian random variables of variances σ2

A1
, σ2

A2
and σ2

Z respec-

tively. There are input constraints, E[|X̃1|]2 ≤ P1 and E[|X̃2|]2 ≤ P2. No channel
information is provided to the transmitters and the receiver. However, they per-
fectly know the statistics of the channel. To find “good” bounds of the capacity



region of this channel, we use the results for the single user memoryless Rayleigh
fading channel, studied in [3]. Channel (2) has the same capacity as the channel
Ỹ
σZ

= Ã1

σA1

σA1

σZ
X̃1 + Ã2

σA2

σA2

σZ
X̃2 + Z̃

σZ
. Letting Y = Ỹ /σZ , X1 = σA1

X̃1/σZ and

X2 = σA2
X̃2/σZ , we get

Y = A1X1 + A2X2 + Z, (3)

with A1 = Ã1/σA1
, A2 = Ã2/σA2

and Z = Z̃/σZ all being NC(0, 1). Power con-
straints on the new inputs become E[|X1|]

2 ≤ σ2
A1

P1/σ2
Z = ρ1 and E[|X2|]

2 ≤
σ2

A2
P2/σ2

Z = ρ2. It is clear that doing these transforms, all mutual informa-
tion in the new channel remain the same. Thus, the capacity region of the
channel (2) is the same as the capacity region of the channel (3). For a par-
ticular input distribution, the region of achievable rates for the channel (3) is
R(pX1

, pX2
) = {(R1, R2) ∈ R

2
+ : R1 ≤ I(Y ;X1|X2);R2 ≤ I(Y ;X2|X1);R1 +

R2 ≤ I(Y ;X1,X2)}. The capacity region is a closure of the convex hull of the
union over all possible product input distributions pX1

(x)pX2
(x) of all such re-

gions R(pX1
, pX2

). To compute the maximum mutual information in the capacity
region for user 1 and user 2 separately, we need to analyze the single user fading
channel, similarly as it is done in [3]. Given X2 = x2, the equivalent channel is
Y = A1X1+(A2x2+Z). This channel is the same as the single user fading channel
Y = A1X1+Z, with larger variance of the additive noise, that is, 1+|x2|2. Thus,
it behaves as the channel Y = A1X1 +Z, with different SNR constraint, that is,
ρ′ = ρ/(1+ |x|2). It is shown in [3] that the capacity achieving input distribution
for this channel has to be discrete with a mass point at the origin. Moreover, it is
shown in the same paper that for low SNR, the maximizing input distribution is
binary. Thus, the rate of user 1 is bounded by R1 ≤

∑

x2
pX2

(x2)I(X1;Y |X2 =

x2) ≤
∑

x∈X2
pX2

(x)Csu

(

ρ1

1+|x|2

)

≤
∑

x∈X2
pX2

(x)Csu (ρ1) = Csu (ρ1), where

the last inequality is achieved with equality if pX2
(0) = 1, i.e. if user 2 is silent.

By Csu(ρ) we denote the capacity of the single user fading channel with no
channel state information, for a particular SNR= ρ. Thence, the point Csu (ρ1)
is achievable and it is the highest rate that can be achieved by user 1, using the
channel while user 2 is silent. That is one point on the boundary of the capacity
region, namely the extreme point on the R1−axis. From symmetry, the same is
true for user 2, i.e. the extreme point on the R2−axis is Csu (ρ2).

After finding both extreme points, let us find the maximum sum rate. It is
shown in [8] that if the propagation coefficients take on new independent values
for every symbol (i.i.d.), then the total throughput capacity for any number of
users larger than 1, is equal to the capacity if there is only one user. Hence, time
division multiple access (TDMA) is an optimal scheme for multiple users. In
that case the sum rate is given by Θ = aCsu (ρ1/a) + (1 − a)Csu (ρ2/(1 − a)) ≤
Csu(ρ1+ρ2), with a ∈ [0, 1]. Note that the maximum throughput cannot be larger
than Csu(ρ1 + ρ2), the capacity which is achieved if both users fully cooperate,
and is equivalent to the single user capacity for SNR= ρ1 + ρ2. The latest is
achieved with equality for a = ρ1/(ρ1 + ρ2). This is an upper bound of the
capacity region, namely the pentagon {(R1, R2) ∈ R

2
+ : R1 ≤ Csu(ρ1), R2 ≤



Csu(ρ2), R1 + R2 ≤ Csu(ρ1 + ρ2) (Fig. 2). A straightforward lower bound is
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Figure 2. Lower and upper bounds of the capacity region, for given ρ1 and ρ2.

the region obtained by connecting the points that are achievable (dash-dot line
in Fig. 2). Better lower bound is the time-sharing region (dashed line in Fig.
2). It is obtained by allowing user 1 to use the channel aT seconds and user 2,
(1−a)T seconds. Because of the average power constraint the power used during
the active period is normalized. Hence, the proposed lower bound of the capacity
region parameterized by a ∈ [0, 1] is given by

R1(a) = a · Csu (ρ1/a)

R2(a) = (1 − a) · Csu (ρ2/(1 − a)) . (4)

The capacity region touches the upper bound in the following three points

(Csu(ρ1), 0), (0, Csu(ρ2)) and (ρ1Csu(ρ1+ρ2)
ρ1+ρ2

, ρ2Csu(ρ1+ρ2)
ρ1+ρ2

). Note that a trivial up-
per bound that is much looser is the capacity region of the same channel, with
perfect channel state information at the receiver.

4 Comparison

Comparing the bounds for different SNRs [1], it can be seen that for low and
high SNR they are closer then for the some medium SNR. How to measure the
“tightness” of the bounds? We propose comparing the volumes of the corre-
sponding regions. For the two user case the volume is V2 =

∫

R1

R2dR1. It is easy
to compute the volume of the upper bound in terms of the single-user capacities.
For ρ1 = ρ2 = ρ, VUB(ρ) = 1

2 · [Csu(2ρ)]2 − [Csu(2ρ) − Csu(ρ)]2. The volume of

the lower bound is VLB(ρ) =
∫ Csu(ρ)

0
R2dR1 =

∫ 1

0
R2(a)Ṙ1(a)da, where R1(a)

and R2(a) are given by (4), and Ṙ1(a) is the first derivative of R1 with respect to



a. It can be seen that for low SNR the lower and the upper bound are very close
and as the SNR increases they diverge up to some SNR (∼ 3 dB), where the
lower and the upper bound are at maximum “distance”. In this case the ratio
VLB ≃ 0.925VUB . As SNR increases above 3 dB, the bounds approach again,
i.e. the ratio of VLB and VUB increases and tends to 1. The results can be easily
extended for an M−user case.

5 Conclusions

The single user Rayleigh fading channel with no side information has attracted
some attention since it is useful for modelling different wireless channels. In this
paper we get some insight for the multiple access Rayleigh fading channel with
no CSI. We give bounds of the capacity region of the two-user Rayleigh multiple
access channel. We see that the sum rate is maximized by time-sharing among
users and in that case we achieve the boundary of the capacity region by giving
to each user an amount of time that is proportional to its input average power
constraint multiplied by the variance of the fading. This is not the case with
multiple access channels with perfect CSI at the receiver only. However it is the
case with the Gaussian MAC. We also see that the inner bound is always within
92.6 % (in terms of the volume of the capacity region) of the outer bound. As
an open problem for future research we leave the improvement of the inner and
the outer bound.
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