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ABSTRACT

Estimation based on received signal strength (RSS) is crucial in sensor
networks for sensor localization, target tracking, etc. In this paper, we
present a Gaussian approximation of the Chi distribution that is appli-
cable to general RSS source localization problems in sensor networks.
Using our Gaussian approximation, we provide a factorized variational
Bayes (VB) approximation to the location and power posterior of multi-
ple sources using a sensor network. When the source signal and the sensor
noise have uncorrelated Gaussian distributions, we demonstrate that the
envelope of the sensor output can be accurately modeled with a multi-
plicative Gaussian noise model. In turn, our factorized VB approxima-
tions decrease the computational complexity and provide computational
robustness as the number of targets increases. Simulations are provided
to demonstrate the effectiveness of the proposed approximations.

Index Terms— Variational Methods, Stochastic Approximation, Mul-
tisensor Systems, Object Tracking

1. INTRODUCTION

Detection and localization based on received signal strength (RSS) are
important problems for sensor networks and pose interesting challenges
for statistical signal processing. The objective in these problems is the de-
tection, localization, and tracking of objects based on the received power
measurements at spatially distributed sensors. As the power of the sig-
nal is easy to compute and does not require high bandwidth or accurate
synchronization to transmit, estimation based on RSS has become quite
popular in sensor networks [1].

In this paper, we derive a factorized variational Bayes (VB) approx-
imation to the joint posterior of power and location of multiple acoustic
sources for efficient inference [2–4]. When the number of targets is K,
there are 3×K unknown parameters that need to be jointly solved using
the RSS measurements from multiple sensors: one parameter for each
source power and two parameters for each source location over a planar
area. A direct solution results in a computational complexity, which is
exponential in K. Our factorized VB approximation results in a compu-
tational complexity, which is linear with K. Note that for this problem,
the posterior density is not directly factorizable. We provide an approx-
imation that decouples the power estimation and localization of multiple
sources, which alleviates the tractability.

We assume that the source signals appear as noisy sinusoids over
short time segments and provide a Gaussian approximation of the Chi
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Fig. 1. This figure illustrates the geometry of the sensor-target configura-
tion for multiple monopole acoustic sources moving on the θh-θv plane.
The dashed lines are the acoustic wave-fronts, which create the interac-
tion between the sources and the sensors.

distribution, which appears when the power of Gaussian sources is cal-
culated. Our approximation is based on moment matching and is quite
accurate even at moderate sample sizes [2]. Most signals with a harmonic
frequency structure satisfy our source assumption: e.g., motor vehicles.
In this paper, we focus on the localization of the sources. In [2], we also
derive the Cramer-Rao lower bound for the localization parameter and the
receiver operating characteristics for target detection.

The organization of the paper is as follows. Section 2 introduces the
signal model and describes our Gaussian approximation of the Chi dis-
tribution. Section 3 applies the variational Bayes approach to determine
a factorized approximation to the multi target power and location poste-
rior. Computer simulations are provided in Section 4 to demonstrate the
estimation performance of the proposed approximations.

2. SIGNAL MODEL AND DENSITY APPROXIMATIONS

We discuss the location estimation of K-narrow-band sources with an
acoustic sensor network consisting of M -omnidirectional single micro-
phone sensors in an isotropic medium. We assume that there are no mul-
tipath effects. We denote sj(t), xij(t), ni(t), and yi(t) as the complex
envelopes of the jth source signal (j = 1, . . . ,K, where K is assumed
to be known), the jth source signal at the ith sensor (i = 1, . . . ,M ,
where M is assumed to be known), the ith sensor additive noise, and
the ith sensor output signal, respectively. The jth source position is de-
noted as θj =

�
θh,j , θv,j

�′
and the position of the ith sensor as

ζi =
�
ζh,i, ζv,i

�′
. Assuming a propagation loss constant α, we
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Fig. 2. (Top) A short segment of a Volkswagen Passat drive-by noise
is shown where Fs = 48kHz. A total of 480 samples are divided into
N = 4 segments, where each segment indexed by ti (i = 1, . . . , 4)
has 120 samples. As illustrated by the top plot, the observed signal at
each segment looks like a noisy sinusoid, whose dominant frequency is
approximately 1100Hz. (Bottom) Real (solid) and imaginary (circles)
parts of the complex envelope are illustrated.

write the complex envelope of the ith sensor output signal at the narrow-
band frequency f0 of the sources using the superposition principle [5, 6]
(see Figs. 1 and 2):

yi(t) =
K�

j=1

xij(t) + ni(t) =
K�

j=1

sj(t)�
βijR

α/2
ij

e
−j

2πf0Rij
βijc + ni(t), (1)

where Rij is the range of the jth source to the ith sensor, vj is the jth
source speed, ψij is the angle of the jth source speed vector with re-
spect to the line connecting the jth source and the ith sensor, βij =
1 +

vj

c
cosψij is the Doppler shift factor, and c is the speed of sound.

To calculate the RSS at a sensor, N snapshots of the acoustic en-
velope, calculated at times (t1, . . . , tN ), are used (see Fig. 2). We note
that if the time samples are sufficiently apart, then successive samples of
the source and the noise samples are uncorrelated [7]. We model the jth
source signal as i.i.d., zero mean, complex circularly symmetric Gaussian
random variables CN �0, σ2

j

�
with variance σ2

j and the noise samples
ni(t) ∼ CN

�
0, σ2

�
with variance σ2.

Based on our signal and noise assumptions, it is straightforward to
prove that the ith sensor output signal yi(t) also has an i.i.d. zero mean
circularly complex Gaussian distribution with variance σ2

y,i =
�

j σ
2
x,ij+

σ2
i , where σ2

x,ij =
σ2

j

βijRα
ij

. Now, we denote the N -sample RSS output of

the ith sensor as εi =
�

1
N

�N
n=1 |yi(tn)|2:

εi =
σy,i√
2N

���	 N

n=1

�
y2

i,real(tn)

σ2
y,i/2

+
y2

i,imag(tn)

σ2
y,i/2

�
=

σy,i√
2N

z, (2)

where we define z as the second square-root summation term in (2). The
variableZ has a Chi distribution pZ(·) with 2N DOF [8]. Then, εi has the

following distribution: εi ∼
√

2N
σy,i

pZ

√
2N

σy,i
εi

�
. In [2], we provide Gaus-

sian approximations for the Chi distribution, which are accurate even at
moderate sample sizes. Using moment matching [2], the RSS distribution
can be approximated by

εi ≈ p(εi) = N
��

2N − 1

2N
σy,i,

σ2
y,i

4N

�
≈ σy,ie

N(0,1)√
4N , (3)

where we used
�

2N−1
2N

≈ 1 for N � 1 and ex ≈ 1 + x for x � 1.
Hence, we approximate the acoustic RSS output with a multiplicative
noise model. In [2], we compare this approximation with other approx-
imations of the acoustic RSS output typically found in the literature and
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K

Fig. 3. A directed acyclic graph is used to represent the inference prob-
lem, where the dashed box denotes the set of M acoustic sensor obser-
vations Ei, which are assumed independent. The deterministic (known)
components of the problem are shown with solid dots. The shaded node
represents the observed variables Ei, whereas the remaining nodes in the
solid box represents theK-target latent variables σj and θj . Note that σj

and θj’s are independent. However, given Ei’s, they are entangled.

show that this approximation results in smaller range estimation bias and
better error estimates.

3. FACTORIZED POSTERIOR APPROXIMATIONS

In the acoustic target localization problem, the objective of the sensor
network is to determine the K target locations θj’s, which are entangled
with the source signal powers σ2

j ’s via (1). In this section, we address
the joint estimation of these latent variables, which is summarized as a
graphical model in Fig. 3. Instead of using the complex envelope samples
{si(t)}tN

t1
, we only use the sufficient statistics Ei � log εi from each

sensor i, which can completely determine the distribution of si(t) given
σ2

j ’s and θj’s. We assume that the propagation loss constant is α = 2
and the targets have moderate speeds so that the effects of the Doppler
factors can be ignored. To increase the tractability of the solution for the
latent variables Z = [σ,Θ′]′ (σ = [σ1, . . . , σK ], Θ = [θ′

1, . . . , θ
′
K ]

′)
from the observations E = [E1, . . . , EM ], we propose using a factor-
ized approximation to the joint posterior distribution of these variables
as p(Z ,E) =

�K
j=1 fσj (σj)fθj

(θj). The construction of our approxi-
mation follows the factorized variational Bayesian (VB) approximations
commonly used in the literature [3, 4].

Under the mean field theory framework, we consider minimizing the
Kullback-Leibler (KL) divergence of the full posterior p(Z ,E) from our
factorized approximation

�K
j=1 fσj (σj)fθj

(θj) [3,4]. Then, the optimal

factors f∗’s can be determined from the following implicit expressions:

f∗
σj

(σj) ∝ exp
�
EΘEσ\σj

log p(Z, E)
�

,

f∗
θj

(θj) ∝ exp
�
EσEΘ\θj

log p(Z, E)
�

.
(4)

Note that (4) does not represent an explicit solution as the solutions of the
optimal factors depend on expectations computed with respect to other
factors. Therefore, (4) denotes a set of consistency conditions, which
can be cycled to reach a consensus. It can be shown that convergence is
guaranteed [3, 4].

From the graphical model in Fig. 3, the posterior density factors as
p(Z, E) =

�K
j=1 p(σj)p(θj)

�M
i=1 p(Ei|Z), where, due to our Gaussian

approximation in (3), p(Ei|Z) ≈ N �log σy,i,
1

4N

�
, and p(σj) and p(θj)

are prior distributions for σj and θj . We restrict the form of the posterior
factors (4) as follows:

f∗
σj

(σj) ∼ Log-N 	
μj , υ2

j



; f∗

θj
(θj) ∼ N (θj ,Σj) , (5)

and we use the following conjugate prior distributions:

p(σj) ∼ Log-N 	
μj,0, υ2

j,0



; p(θj) ∼ N (θj,0,Σj,0) . (6)



We emphasize that the posterior density does not factorize directly in
terms of σj and θj :

log p(Z, E) = −2N
M�

i=1

�
�Ei − 1

2
log


� K�

j=1

σ2
j

R2
ij

+ σ2

�
�
�
�

2

−
K�

j=1

�
(log σj − μj,0)2

2υ2
j,0

+ log σj

�
− 1

2
(Θ − Θ0)′Σ−1

0 (Θ − Θ0),

(7)

where Σ0 = diag{Σ1,0, . . . ,ΣK,0}.
To proceed further, we perform a Taylor series expansion of the log σ2

y,i

term in the posterior density (7):

log σ2
y,i = log


� K�

j=1

σ2
j

R2
ij

+ σ2

�
� ≈ κi,0 +

K�
j=1

λij,0 log
σ2

j

R2
ij

, where (8)

λij,0 =
e(2μj,0)/R2

ij,0�K
k=1

�
e(2μk,0)/R2

ik,0

� ,

κi,0 = log


� K�

j=1

e(2μj,0)

R2
ij,0

+ σ2

�
�−

K�
j=1

λij,0 log
e(2μj,0)

R2
ij,0

,

(9)

andRij,0 = |θj,0 − ζi|. The expansion in (8) enables a VB factorization
of the posterior (4), which is detailed below.

3.1. VB Cycle on Source Powers

To update the jth source’s power, we take the expected value of the
logarithm of the posterior density (7) with respect to the all the source
positions Θ and the all the other source powers σ \ σj . We define
Êi,0 = Ei − 0.5κi,0 and approximate EΘlogRij ≈ logRij,0. Then,
by substituting (8) into (7), we determine the required expectation, which
has a log-Normal form:

log f∗
σj

(σj)
.
= −

K�
j=1

�	
log σj − μj,M


2
2υ2

j,M

+ log σj

�
, where (10)

1

υ2
j,M

= 4N
M�

i=1

λ2
ij,0 +

1

υ2
j,0

,

μj,M

υ2
j,M

= 4N
M�

i=1

Êi,0λij,0 − 4N
M�

i=1

K�
k = 1
k �= j

λij,0λik,0μk,0

+ 2N
M�

i=1

K�
k=1

λij,0λik,0 log Rij,0 +
μj,0

υ2
j,0

.

(11)

The derivation is omitted due to lack of space.

3.2. VB Cycle on Source Locations

To update the jth source’s location, we take the expected value of the
logarithm of the posterior density (7) with respect to the all the other
source positions Θ \ θj and the all source powers σ. We define Eij,0 =

Êi,0−�K
k=0 λik,0μk,0 +

�K
k=1,k �=j λik,0 logRij,0. Then, similar to the

VB cycle on source powers, we take the expected value of the logarithm
of the posterior (7) to obtain:

log f∗
θj

(θj)
.
= −2N

M�
i=1

[Eij,0 + λij,0 log Rij ]
2

− 1

2
(θj − θj,0)′Σ−1

j,0(θj − θj,0).

(12)

Input: Prior density parameters: {μj,0, υj,0, θj,0,Σj,0}Kj=1 and
the sensor network data E .

Output: Factorized posterior density parameters for approximate
inference: {μj , υj , θj ,Σj}Kj=1.

Iterations=0;
repeat {VB Cycles}

Linearize log σ2
y,i using (8) to obtain κi,0 λij,0 (9) ;

Êi,0 = Ei − 0.5κi,0 ;
Eij,0 = Êi,0 −�K

k=0 λik,0μk,0 +
�K

k=1,k �=j λik,0 logRij,0;

foreach source power σj , j ← 1 to K do
Calculate μj,M (1× 1), υj,M (1× 1) using (11) ;

end
foreach source location θj , j ← 1 to K do

Determine the mode gj,0(2× 1) and the Hessian
H j,0(2× 2) at the mode of log f∗

θj
(θj) (12);

Calculate θj,M ,Σj,M using (14);
end
for j ← 1 to K do
{μj,0, υj,0, θj,0,Σj,0} ←− {μj,M , υj,M , θj,M ,Σj,M};

end
Iterations← Iterations+ 1;

until Iterations= VBIts;
for j ← 1 to K do
{μj , υj , θj ,Σj} ←− {μj,0, υj,0, θj,0,Σj,0};

end

Algorithm 1: Factorized VB algorithm for multiple source local-
ization using RSS.

Unfortunately, (12) cannot be rearranged in a Gaussian form. Since it
requires too much computation to numerically obtain the Gaussian ap-
proximation directly from the KL divergence, we approximate this VB
cycle using the Laplacian approximation [9]:

log f∗
θj

(θj)≈̇ − 1

2
(θj − θj,M )′Σ−1

j,M (θj − θj,M ), where (13)

Σ−1
j,M = Hj,0, and θj,M = gj,0. (14)

In (14), we use (12) and numerically calculate the mode gj,0 = arg maxθj

log f∗
θj

(θj) and the Hessian H j,0 = ∇2

θj
log f∗

θj
(θj)

���
θj=gj,0

for each

source j. The mode (size(gj,0): 2 × 1) and the Hessian (size(H j,0):
2 × 2) are calculated by interior point optimization methods such as
Newton-Raphson recursion. Because of the prior term, the behavior of
the optimization algorithm is quite stable. A pseudo code of the VB cy-
cles is given in Algorithm 1.

4. SIMULATIONS

Figure 4 illustrate the results of Monte-Carlo (MC) runs that compare the
factorized VB estimation algorithm with the maximum likelihood (ML)
method, which jointly solves the multiple source powers and locations.
Hence, the ML method maximizes the logarithm of the joint posterior
in (7) without any approximations. In the simulations, a sensor network
of 100 sensors is uniformly deployed on an area of radius 100m, which
corresponds to a density of roughly one sensor per 18m2. In the MC runs,
we vary the sensor locations, the target signals according to (1), the source
powers p(σj) = Log-N �80dB, (3dB)2

�
, and the initial target locations.

The MC run sizes are K × 104 for the different scenarios.
We provide two different configurations. In the first configuration

shown in Fig. 4(Top), three closely spaced targets are localized where the



Table 1. Performance (VB\ML)

Huber Estimator1 K = 3 K = 7

Amplitude Bias† 0.17 \ 1.24 0.15 \ −0.12

Amplitude Error RMS† 2.41 \ 3.1 2.28 \ 2.36

Absolute Location Bias 0.43 \ 2.14 0.54 \ 0.08

Location Error RMS 8.47 \ 14.1 7.33 \ 9.12

∗ We use nearest neighbor classification in location to assign estimates
to targets. We then use Huber’s M-estimator to reduce the effects of
outliers [10].
† In units of dB.

target locations are initialized randomly as shown in Fig. 4(a). For this
simulation, we use VBIts = 30, and the prior density on target locations
is given by p(θj) ∼ N

�
θsample, 202I2×2

�
whereas the prior density of

the source powers is p(σj) = Log-N �80dB, (3dB)2
�
. The results of

the VB and ML algorithms are visualized in Fig. 4(b) and (c), where the
target locations are shown with ⊗’s and algorithm estimates are shown
with ·’s. Figure 4(d) shows the histogram of the source power estimates
of the both methods (VB: solid line, ML: dashed line) as well as the ini-
tial source power histogram (dotted line). The ML solution has problem
converging to the true locations when target locations are randomly ini-
tialized as opposed to an initialization matching the prior density p(θj).
Therefore, its source power estimates histogram has a shoulder (dashed
line in Fig. 4(d)) and has a larger variance. In the histogram plot, we have
removed the outliers from the ML estimates. Performance results can be
found in Table 1. In the table, we show the root-mean squared errors and
the �1 error results, which are more robust to outliers. The location error
results are in terms of meters whereas the power errors are in terms of dB.

In the second configuration shown in Fig. 4(Bottom), we localize 7
targets, where the initial locations are randomly sampled from the prior
density: p(θj) ∼ N

�
θj,true, 102I2×2

�
as illustrated in Fig. 4(e). The

results of the VB and ML algorithms can be found in Fig. 4(f) and (g).
The histogram results are also shown in Fig. 4(h), where the ML method
(dashed line) has outperformed the VB (solid line). In the histogram,
the ML outliers are removed. The simulations parameters and the error
results can be found in Table 1

On the average, the distribution of the location estimates in Fig. 4(b,c,f,g)
show that the VB method is more susceptible to divergence whereas the
ML approach is more susceptible to local minima and quite often cannot
find an initial optimization direction. The divergence of the VB method
can easily be determined as the large jumps are quite easy to detect whereas
detecting whether the ML algorithm is stuck at a local minima is generally
much harder. In addition to convergence properties, the VB method is an
order of magnitude faster than the ML method in each iteration when the
number of targets is 1. As the number of targets increase, the VB method
significantly outperform the ML method in computation. In most cases,
we found that the VB method converges for VBIts ≤ 10, which makes it
a computationally attractive alternative even for one target as it factorizes
the source location and power of the posterior.

5. CONCLUSIONS

In this paper, we provided a factorized VB approximation to the joint
multi source energy and location posterior, which effectively decouples
the estimation of the source energy and location. We compared the re-
sults with the ML approach and showed that the VB method provides
computational savings while still providing competitive performance to
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Fig. 4. Monte-Carlo simulation results for two multi target configura-
tions. The sensor network boundary is also shown with dashed lines in
(a-c,e-f). The true target locations are shown with ⊗ whereas the initial
and estimated target locations are shown with dots. The histograms in
(d) and (h) show the source power estimation performance (solid: VB,
dashed: ML, and dotted: initialization).

the ML. For future work, we plan to extend our formulation to a dis-
tributed estimation scheme, where only a subset of sensors are used for
posterior estimation to minimize the communication bandwidth among
the sensors.
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