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ABSTRACT

Joint processing of sensor array outputs improves the performanceof pa-
rameter estimation and hypothesis testing problems beyond the sum of
the individual sensor processing results. When the sensors have highdata
sampling rates, arrays are tethered, creating a disadvantage for their de-
ployment and also limiting their aperture size. In this paper, we develop
the signal processing algorithms for randomly deployable wireless sen-
sor arrays that are severely constrained in communication bandwidth. We
focus on the acoustic bearing estimation problem and show that when
the target bearings are modeled as a sparse vector in the angle space,
functions of the low dimensional random projections of the microphone
signals can be used to determine multiple source bearings as a solution
of anℓ1-norm minimization problem. Field data results are shown where
only 10bits of information is passed from each microphone to estimate
multiple target bearings.

Index Terms— Array signal processing, acoustic bearing estimation,
compressive sensing, wireless sensor networks

1. INTRODUCTION

Wireless communication technologies have revolutionized the informa-
tion gathering and processing systems by enabling a large number of
simple sensors to coordinate among themselves to tackle larger sensing
problems in a bandwidth constrained and distributed manner [1]. In the
quintessential application of target localization, the research trend in the
sensor networks literature has subsequently shifted from sensor networks
of a small number of bearing-capable arrays to sensor networks of large
number of proximity-capable sensors. In contrast, recent results in sen-
sor network design suggest that when constrained with the same budget,
a sensor network consisting of only arrays can significantly outperform
the average localization performance of the cheaper proximity sensorsin
spite of their sheer number per capita [2].

For arrays, array signal processing is used to enhance the signal-to-
noise ratio beyond that of a single sensor’s output for parameter estima-
tion [3]. To realize the gains from the joint processing of array outputs, ar-
rays are characteristically tethered since the output data from each sensor
in the array generally requires a high bandwidth for transmission. When
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this transmission is achieved in a wireless setting, the sensor batteries
can be quickly depleted and array elements may cause communication
interference among themselves as they send relatively large data pack-
ets. Compared to wireless proximity sensors, arrays are harder to set
up and deploy as they require special deployment mechanisms. In addi-
tion, because of their wired nature, arrays tend to have relatively small
apertures as unattended ground sensors (UGS), diminishing their main
advantage derived from aperture gains. Hence, there is a clear needfor a
wireless design for arrays to overcome the disadvantages of the tethered
array designs to further push the frontiers of what is achievable by sensor
networks.

In this paper, we discuss the 2D bearing estimation of multiple acous-
tic sources with a set of sensors using a wireless channel under bandwidth
constraints. Typical examples of sources are sniper fire, human footstep
and speech signals, vehicle signals, and chirp signals. We employ the
recent results in compressive sensing theory, which state that exact recov-
ery of sparse sources may be obtained with high probability from highly
under-sampled data in the Nyquist-Shannon sense (see [4] and the refer-
ences therein). A signal is calledsparse if it contains only a small num-
ber of non-zero components within some transform domain. We demon-
strate the feasibility of wireless arrays for bearing estimation when low
dimensional random projections of the signals from (possibly randomly)
distributed single microphone sensors are used as inter-sensor messages
over the communication channel.

We treat the target bearings as a sparse vector in a discretized bearing
space and applyℓ1-norm minimization with the Dantzig selector [5] as a
proxy to a combinatorial optimization problem to obtain multiple source
bearings. For acoustic bearing estimation, we assume that the individual
sensor locations are knowna priori; however, the number of sources is
not assumed. We explain how the array steering matrix for a sparse setof
sources in the angle domain is formed for bearing estimation and how the
multiple target bearings are calculated using the random projections of
the signals from multiple microphones, which constitute the compressive
samples of the target bearings. We note that these projected samples are
used directly to calculate the target bearings without any auxiliary signal
reconstruction as they may not recover the microphone signals directly.
We also give possible implementation schemes for the proposed wireless
system. Although we focus on bearing estimation with acoustic signals
for acoustic surveillance and teleconferencing, the results can be extended
for other types of sources.

Our approach is fundamentally different in many ways from the ear-
lier works for wireless arrays and compressive wireless sensing [6,7].
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In [6], authors use audio codes and compression techniques to send the
full individual sensor acoustic data to a cluster head, which in turn deter-
mines source bearings using the maximum likelihood (ML) and least-
squares (LS) methods. In [7], power-distortion-latency trade-offsare
given for a compressive sensing scheme for sensor networks, which em-
ploys the compressive sensing framework as a universal encodingscheme
to send and recover signals from multiple distributed sensors.

When compared to [6, 7], ourcompressive wireless array approach
provides a wireless sensing strategy todirectly determine a sparse bear-
ing vector in the angle domain by exploiting the redundancies in the sen-
sor signals for the bearing estimation problem. In our approach, (i) the
inter-sensor messages may not recover the original acoustic data sent by
a sensor and we do not require any auxiliary signal reconstruction at the
processing node in contrast to [6,7], (ii) we may not be able to determine
the source signals even after determining their bearings, and (iii) the inter-
sensor messages require significantly smaller communication bandwidth
than [6] and smaller bandwidth than the scheme in [7]. We also do not
use the ML or LS methods in obtaining our bearing estimates.

The organization of the paper is as follows. Section 2 explains the
bearing estimation details of the wireless arrays using compressive sam-
pling ideas. Section 3 gives possible implementation and quantization
schemes for message passing among the sensors in the communications
channel. Section 4 shows field data results to demonstrate the perfor-
mance and effectiveness of the wireless arrays.

2. COMMUNICATION CONSTRAINED BEARING
ESTIMATION OF SPARSE SOURCES

2.1. Acoustic Data Observations

We discuss the bearing estimation ofK noncoherent sources in an isotropic
medium in the far field of a collection ofM sensors with known positions
ζ

i
= [xi, yi]

′ (i = 0, . . . , M − 1) on the ground plane. The far field of
a sensor collection is defined as the boundary of the source region after
which the propagating waves appear perceptively planar with respect to
the array aperture. For convenience, sensor0 is called a reference micro-
phone (RM) and is situated at the origin:ζ0 = [0, 0]′. We do not assume
that the number of sourcesK is known.

We denote the received signal at the RM asx0(t) =
P

K

k=1
sk(t) +

n0(t), which is a superposition ofK source signalssk(t) impinging at
bearingsθk (measured with respect to thex-axis) and the sensor noise
n0(t). Sensori observes the time delayed (or advanced) superposition
xi(t) =

P
K

k=1
sk(t + τi(θk)) + ni(t) of the source signals plus noise,

where the time delay at theith sensorτi(θ) of a source at bearingθ is
given by

τi(θ) =
1

c
ζ
′

i

�
cos θ

sin θ

�
, (1)

wherec is the speed of sound. Our objective in this paper is to deter-
mine the source bearings{θ1, . . . , θK} by sending the minimum amount
of information possible among the sensors. By determining the mini-
mum information necessary to reconstruct the bearings, we minimize the
inter-sensor message packet sizes so that we preserve sensor batteries and
minimize inter-sensor communication interference.

2.2. Compressive Sensing

We treat the source bearingsθ as an unknown vector inRN , whereN

is the resolution of the (uniformly) discretized bearing space, which re-
sides in[0, 2π). An adaptive discretization can be done for focusing
purposes. Within the bearing space, the bearings corresponding to the
sources have non-zero entries in their respective locations in the dis-
cretized bearing space, whose values are to be determined from the prob-

lem set up, whereas the zero values simply imply the absence of targets at
the corresponding bearings. Hence, our objective source bearingsvector
is modeled with aK-sparse vector in theN -dimensional angle domain
(N ≫ K), whosesparsity pattern is of interest.

Assume that we have digital samples of the source signals corre-
sponding toT seconds, sampled atFs sampling frequency. Define the
kth source vector as a concatenation of these samples:

sk(t0) = vec
n

sk(t)
���t=t0+ m

F s

; m = 0, . . . , ⌊TFs⌋ − 1
o

, (2)

wheret0 is the time origin and⌊TFs⌋ > N . For convenience, we set
t0 = 0 for the rest of the paper. Then, if we were to sample the observed
signal at a sensori, we would receive

xi = [0, . . . , 0, s1(τi(θ1)), 0, . . . , 0, sK(τi(θK)), 0, . . .]

× [0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . .]′ ,

= S̃iθ = Siθ,

(3)

whereS̃i : ⌊TFs⌋ × N is the source matrix andθ : N × 1 is our objec-
tiveK-sparse bearings vector. Assuming that the sources are noncoherent
(E{s′

ksl} = 0, ∀k, l), we can always replace zero column entries ofS̃i

to make its rankN . Denote one such matrix asSi, where rank(Si) = N .
Compressed sensing decreases the inefficiency of sampling atFs

by directly acquiring a compressed signal representation without going
through an intermediate stage of acquiring⌊TFs⌋ samples [4]. Consider
a linear measurement process on the (unobserved)xi vectors:

yi = φixi = φiSiθ = Ai(θ)θ, (4)

whereφ
i

: L × ⌊TFs⌋ is the measurement matrix andAi(θ) : L × N

is called the source steering matrix. When the source steering matrix
satisfies the restricted isometry property (RIP) [5], it is possible to show
thatθ can be recovered fromL ≥ αK log N

K
measurements whereα is

a small number [4, 5]. However, note that this requires the knowledge of
the source matrixSi, which is not known.

2.3. Estimation of Steering Matrices

Estimates of the source steering matrices can be determined using the
RM, which is required to take samples atFs. We form the estimate using
the delayed versions of the reference signal as follows:

Ŝi(θ) =

�
x0

�
τi

�
2π

N
(0)

��
, . . . , x0

�
τi

�
2π

N
(N − 1)

���
. (5)

Note that when the sought source angle matches the actual source direc-
tion, then the columns of the source steering matrix has the maximum
correlation, where the other sources act as non-coherent noise samples.
When the source steering matrix satisfies the RIP property, it is known
that the errors in the sparse vector estimates are well behaved under ad-
ditive perturbations of the measurements [4]. In [8], we further discuss
how each source can be modeled as additive noise in (4) and detail the
construction of the steering matrices as abasis pursuit strategy.

2.4. Bearing Estimation Problem

Determiningθ has exponential complexity inN as we need to search for
all the subsets ofN , which is a combinatorial problem. To determine the
source bearings, we solve the following convex optimization problem at
the RM, which serves as a proxy of the combinatorial solution:

θ̂ = arg min
θ

||θ||
1

such that
����A′(Y − Aθ)

����
∞

≤ ǫ, (6)

whereY = [y′

1, . . . , y
′

M
]′, A = ΦŜ, Φ = diag{φ1, . . . , φM

}, and

Ŝ = [Ŝ
′

1, . . . , Ŝ
′

M ]′, andǫ is a relaxation variable. To solve forθ, the
RM needs the compressive measurementsy

i
from the other sensors. Note



that the samplesy
i
’s are the compressive samples with respect toθ and

not with respect toxi. That is, it may or may not be possible to recon-
structxi given the measurementsy

i
. For our bearing estimation problem,

we use zero mean Gaussian random variables with unit variance to con-
struct the measurement matrixΦ. To solve forθ, we use the Dantzig
selector [9].

3. IMPLEMENTATION DETAILS

We assume that the sensor positions are determined by a calibration algo-
rithm, e.g., [10]. Since the wireless array aperture is expected to be less
than 10m for all practical purposes with the number of total microphones
not exceeding 10-20, all the communications can be made centralized by
using orthogonal coding schemes or can be achieved with a small number
of hops, and fairly accurate synchronization can be achieved among the
sensors. We assume that a measurement matrixΦ is predetermined and
each sensor has its knowledge.

For the array hardware, we envision a uniform microphone sensor
set with wireless communication capabilities, so that each microphone
can act as the RM if necessary. With this redundancy, a possible RM
bottleneck can be avoided in the future to increase robustness of the sys-
tem. When a microphone is not acting as the RM, it is in the compressive
sensing state to preserve battery and it is called a compressive micro-
phone (CM) in this state. The RM can be chosen randomly; however, it is
possible to use heuristics or active self-evaluation methods to choose the
best one in some sense. Duties of the RM include: (i) sampling acoustic
datax0 at Fs, (ii) forming the sparse source steering matrices (5) using
the knowledge of the sensor positions, (iii) receiving messages from the
CM’s and forming the data vectorY and the measurement matrixΦ,
and (iv) determiningθ by solving (6). These duties stipulate a digital
embedded system, which can be done with FPGA’s or other digital DSP
systems.

Full analog, mixed mode, or full digital implementation can be used
for the compressive state, depending on the final power consumption of
the implementation. In the full analog implementation, analog mixers can
be used to simulateφ to obtain the compressive datay in (4) [11], fol-
lowed by a simple zero-crossing detector. In this case, the data messages
arey = ±1. Surprisingly, it is still possible to obtain bearing estimates
from the solution of (6) (see Experiments). In the mixed mode implemen-
tation, an analog-to-digital (A/D) converter is used to sample the analog
mixer output. Different quantization levels can be used. In the full digital
implementation, the acoustic data is sampled with an A/D converter, then
digitally multiplied withφ. Special care must be taken in determining the
sampling frequency and the quantization levels for this case.

4. EXPERIMENTS

4.1. Acoustic Field Data Results

A uniform circular acoustic array with 10 microphones (9 microphones
on the perimeter with 1.44 meter radius and one at the center) is used to
collect the acoustic data for a five vehicle convoy at the Aberdeen Proving
Grounds. The acoustic data sampling rate isFs = 4410Hz. The convoy
consisted of two military Hummers and three commercial sports utility
vehicles, traveling on gravel on an oval track. Detection and tracking
of the commercial vehicles presented a difficult challenge because the
commercial vehicles were in between the two louder military vehicles,
hence they were acoustically suppressed. For this example, we used the
center microphone as the RM whereas the other 9 microphones are used
as CM’s. The array outputs bearing estimates every0.5 seconds.

Figures 1(c)-(f) illustrate the wireless array bearing estimation results
for different number of compressive samplesL and quantization levels,
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Fig. 1. (a) Time-frequency plot of the received acoustic data is shown.
The circles indicate the strongest two frequencies in the data under the
spatial aliasing frequency of 150Hz. (b) Minimum variance distortionless
response beamforming results on the two strongest frequencies shown in
(a). The tracks are smooth with a small amount of clutter. (c) The wire-
less array results withL = 15, each sent with64bits. The size of the dots
is proportional to the value in the solution ofθ. There is minimal clutter
when compared to the adaptive beamforming results in (b). (d) The wire-
less array results withL = 100, each sent with1bit (zero crossing). Note
that the clutter has increased when compared to the results in (c). (e) The
wireless array results withL = 30, each sent with1bit (zero crossing).
Note that the clutter has not increased too much when compared to the
results in (d). (f) The wireless array results withL = 10, each sent with
1bit (zero crossing). The clutter has increased when compared to (d) and
(e); however, the bearing tracks are still clear.

and compare them with a frequency adaptive minimum variance distor-
tionless response (MVDR) beamformer (Fig. 1(a)-(b)), which usesall
10-microphone data collected atFs. The MVDR beamformer uses the
strongest two peaks in the time-frequency spectra of the received sig-
nal as shown in Fig. 1(a) and detects the three strongest peaks in the
power vs. angle pattern. The compressive wireless array usesN = 360
and discretizes the bearing space uniformly into1◦ resolution grid. For
the relaxation variableǫ in the convex optimization problem, we use
ǫ = 0.5×

√
log N = 1.21 [9]. We report the wireless array results under

different test conditions below. In all the cases, a zero mean Gaussian
noise with standard deviation 10dB below the power of the compressive
samples is also added to the compressive samplesbefore quantization.

In Fig. 1 (c), each CM sends 15 compressive samples, each encoded
with 64bits. Ignoring the losses of communication overheads and gains
of coding schemes, this equates approximately1000bits/CM for 9 CM’s.
Figure 1 (d) shows the results when we use the compressive samples
L = 100 with 1bit quantization (zero crossing). The total communi-
cation load in this case is100bits/CM. When we further decrease the
number of compressive samples fromL = 30 → 10 with the same 1bit
quantization, corresponding to30bits/CM→ 10bits/CM, we see a grace-
ful decrease in the accuracy of bearing estimation and a moderate increase
in the clutter. Even with the clutter, the results of the compressive wire-
less array are quite useful since a random sampling consensus (RANSAC)
approach can be used to track the targets [12].
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Fig. 2. (Top) Aperture gain is illustrated for different aperture sizes. Re-
sults with1bit quantization of the CM outputs are marked with dots. (Bot-
tom) Multiple source bearing estimation results for random deployment.
The true source bearings are shown with the dashed vertical lines.

4.2. Random Deployment Results

To demonstrate the immediate performance gains with the compressive
wireless arrays, we collected vehicle drive-by data for 6 vehicles usinga
single microphone withFs = 4800Hz. The vehicles and their relevant
respective root-mean-squared (RMS) powers for the plots in this section
are 1) Nissan Frontier (4.33), 2) Chevy Impala (4.33), 3) Chevy Camaro
(4.03), 4) Isuzu Rodeo (2.84), 5) Volkswagen Passat (3.11), and 6) Honda
Accord (4.60).

Aperture Gains: To show the aperture gains from the compressive
wireless arrays, we simulated three scenarios illustrated in Fig. 2(a)-(c).
In Fig. 2(a)-(c), we use 9 CMs and randomly deploy them in1 × 1m2,
2×2m2, and5×5m2 aperture, and add an RM at the center. We then use
0.5 seconds of the vehicle data for vehicles #2 and #6 and simulated the
array data by placing the sources at20◦ and30◦ (both at 40m) range by
properly delaying each acoustic source by its distance to the microphones
(c = 340m/s). By usingL = 15 compressive samples, we determine
the sparseθ for 100 independent Monte Carlo runs, where the individual
CM positions vary. We then plot the average of the runs, which creates
illustrative histograms seen in Fig. 2(a)-(c). In the figures, we also show
results when the estimation is done with1bit quantization. Similar to
the previous section, a zero mean Gaussian noise with standard deviation
10dB below the power of the compressive samples is also added to the
compressive samples before quantization.

It is clear that as the aperture size increases with the same number of
sensors, the bearing resolution of the arrays increase, allowing the two tar-
gets to be separated. This separation is even clear, when only1bit is used
for each compressive sample in spite of the additional clutter. Since the
compressive wireless arrays are by design untethered, a random deploy-
ment strategy can be used to distribute them over larger apertures than
the ones conventionally used for UGS’es. Hence, they are envisioned to
perform better than conventional tethered arrays. Finally, it is also inter-
esting to note that the height of the histograms in Fig. 2(b)-(c), which give
clues about the relative source RMS powers 4.33 and 4.60, respectively.
Also, their shape resembles the Laplacian distribution as opposed to the
Gaussian distribution.

Multiple Source Localization: To demonstrate the steering capa-
bilities of our formulation, we simulated three scenarios illustrated in
Fig. 2(d)-(f), where we vary the total number of targets from 3 to 5 (allat

40m range). In Fig. 2(d)-(f), we use target configurations{#1, #3, #5},
{#1, #3, #4, #5}, and{#1, #2, #3, #4, #5}, respectively, and plot
theθ histograms for 100 independent Monte Carlo realizations of the ran-
dom sensor deployment on a5 × 5m2 aperture withL = 15. The target
bearings are given by{20◦, 35◦, 50◦, 60◦, 80◦}, respectively. Similar to
the previous section, a zero mean Gaussian noise with standard devia-
tion 10dB below the power of the compressive samples is also added to
the compressive samples before quantization. As the number of targets
increase, there is a gradual increase in clutter peaks; however, the results
are still encouraging even at 5 targets that are close in bearing. The height
of the histograms seem to be related to the relative source RMS powers.

5. CONCLUSIONS

We have demonstrated the feasibility of a wireless acoustic array to esti-
mate multiple source bearings by passing quantized compressive sensing
data among the sensors. In our solution, we exploit the sparsity of the
sources in the angle domain and obtain their sparsity pattern, which de-
termines the number of targets and their corresponding bearings. Since
the compressive samples are the minimum number of data samples re-
quired to reconstruct the bearing vector in the angle domain, our approach
use minimum possible communication bandwidth among the sensors. We
also showed that there is a significant redundancy in the individual data
of the sensors for the acoustic bearing estimation problem. We accom-
plished this by demonstrating that our wireless array scheme is quite ro-
bust against noise in the compressive samples and can even operate when
only the zero crossing information of the compressive samples is passed,
which cannot be used to recover the data of the sensors. We hope that
our results will further improve what is achievable by a wireless sensor
networks.
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