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ABSTRACT this transmission is achieved in a wireless setting, the sensor batteries

Joint . f touts | th fornud can be quickly depleted and array elements may cause communication
oInt processing of sensor array outputs IMproves € perioruapee o forence among themselves as they send relatively large data pack-

rameter estimation and hypothesis testing problems beyond the sumlgt Compared to wireless proximity sensors, arrays are harder to set
the individual sensor processing results. When the sensors havedtiagh p and deploy as they require special deploymlent mechanisms. it add
sampling rates, arrays are tethered, creating a disadvantage for@heir o “pecayse of their wired nature arrays tend to have relatively small
ployment and also limiting their aperture size. In this paper, we OleveloBpe’rtures as unattended ground sénsors (UGS), diminishing their main
the signal processing algorithms fqr ran_domly dep_loye_lble wirele_ss s€ idvantage derived from aperture gains. Hence, tﬁere is a cleafareed

sor arrays that are severely constrained in communication bandwieth. wireless design for arrays to overcome the disadvantages of the tethere

focus on the ac_:oustlc bearing estimation problem ant_JI show that wh ray designs to further push the frontiers of what is achievable spsen
the target bearings are modeled as a sparse vector in the angle sp orks

functions of the low dimensional random projections of the microphone ) ) ) o )
signals can be used to determine multiple source bearings as a solution N this paper, we discuss théxbearing estimation of multiple acous-
of an¢;-norm minimization problem. Field data results are shown wherdIC SOUrces with a set of sensors using a wireless channel under ioindw

only 10bits of information is passed from each microphone to estimat&onstraints. Typical examples of sources are sniper fire, humastépo
multiple target bearings. and speech signals, vehicle signals, and chirp signals. We employ the

) ) ) ) ~ recentresults in compressive sensing theory, which state that exkagt r
Index Terms— Array signal processing, acoustic bearing estimation,ery of sparse sources may be obtained with high probability from highly

compressive sensing, wireless sensor networks under-sampled data in the Nyquist-Shannon sense (see [4] andéhe ref
ences therein). A signal is callegarse if it contains only a small num-
1. INTRODUCTION ber of non-zero components within some transform domain. We demon-

strate the feasibility of wireless arrays for bearing estimation when low
Wireless communication technologies have revolutionized the informadimensional random projections of the signals from (possibly randomly)
tion gathering and processing systems by enabling a large number distributed single microphone sensors are used as inter-sensomge®ssa
simple sensors to coordinate among themselves to tackle larger sensiexgr the communication channel.

problems in a bandwidth constrained and distributed manner [1]. Inthe \ve treat the target bearings as a sparse vector in a discretized bearing
quintessential application of target localization, the research trend in thghace and applg; -norm minimization with the Dantzig selector [5] as a
sensor networks literature has subsequently shifted from sensomkstwo proxy to a combinatorial optimization problem to obtain multiple source
of a small number of bearing-capable arrays to sensor networksgef Ia pearings. For acoustic bearing estimation, we assume that the individual
number of proximity-capable sensors. In contrast, recent resulenin s sensor locations are knowanpriori; however, the number of sources is
sor network design suggest that when constrained with the same budggét assumed. We explain how the array steering matrix for a sparsé set
a sensor network consisting of only arrays can significantly outperforndources in the angle domain is formed for bearing estimation and how the
the average localization performance of the cheaper proximity seimsors muyltiple target bearings are calculated using the random projections of
spite of their sheer number per capita [2]. the signals from multiple microphones, which constitute the compressive
For arrays, array signal processing is used to enhance the signal-igamples of the target bearings. We note that these projected samples are
noise ratio beyond that of a single sensor’s output for parameter estimgsed directly to calculate the target bearings without any auxiliary signal
tion [3]. To realize the gains from the joint processing of array outputs, a reconstruction as they may not recover the microphone signals directly.
rays are characteristically tethered since the output data from eadr sengve also give possible implementation schemes for the proposed wireless
in the array generally requires a high bandwidth for transmission. Whegystem. Although we focus on bearing estimation with acoustic signals
~ Corresponding author (e-mail: volkan@umiacs.umd.edu) #Peeithrough for acoustic surveillance and teleconferencing, the results can belexten

collaborative participation in the Advanced Sensors Cdngua sponsored by the for other types of s_ources. ) )
U. S. Army Research Laboratory under the Collaborative Teldyy Alliance Our approach is fundamentally different in many ways from the ear-
Program, Cooperative Agreement DAAD19-01-02-0008. lier works for wireless arrays and compressive wireless sensing.[6,



https://core.ac.uk/display/147961912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In [6], authors use audio codes and compression techniques to send thm set up, whereas the zero values simply imply the absence of targets at
full individual sensor acoustic data to a cluster head, which in turn detetthe corresponding bearings. Hence, our objective source beagotgs
mines source bearings using the maximum likelihood (ML) and leastis modeled with aK'-sparse vector in thé&/-dimensional angle domain
squares (LS) methods. In [7], power-distortion-latency trade-afes (N > K), whosesparsity pattern is of interest.

given for a compressive sensing scheme for sensor networlksh wm- Assume that we have digital samples of the source signals corre-
ploys the compressive sensing framework as a universal encediegne  sponding tol" seconds, sampled &, sampling frequency. Define the
to send and recover signals from multiple distributed sensors. kth source vector as a concatenation of these samples:
When compared to [6, 7], owmompressive wireless array approach
provides a wireless sensing strategydizectly determine a sparse bear- sk(to) = Vec{sk(t) ‘t:tﬁﬂ sm=0,...,|TFs] - 1} ; @

ing vector in the angle domain by exploiting the redundancies in the sen
sor signals for the bearing estimation problem. In our approach, (i) thg
inter-sensor messages may not recover the original acoustic dataysen

a sensor and we do not require any auxiliary signal reconstructior at th
processing node in contrast to [6, 7], (i) we may not be able to determine~ ®i = [0, ..., 0, s1(7:(01)), O, ..., 0, sk (7(fK)), O, .. ]

the source signals even after determining their bearings, and (iii) the inter- x[0,...,0,1,0,...,0,1,0, ..., (3)
sensor messages require significantly smaller communication bandwidth —50-S06

than [6] and smaller bandwidth than the scheme in [7]. We also do not ‘ v
use the ML or LS methods in obtaining our bearing estimates. whereS; : |TFs| x N is the source matrix anfl : N x 1 is our objec-

The organization of the paper is as follows. Section 2 explains théve K -sparse bearings vector. Assuming that the sources are nonebhere
bearing estimation details of the wireless arrays using compressive sar{s}s;} = 0, Vk, ), we can always replace zero column entrieSeof
pling ideas. Section 3 gives possible implementation and quantizatio® make its rankV. Denote one such matrix &, where rankS;) = N.
schemes for message passing among the sensors in the communicationsCompressed sensing decreases the inefficiency of samplifgy at
channel. Section 4 shows field data results to demonstrate the perfasy directly acquiring a compressed signal representation without going

wheret, is the time origin and TF's| > N. For convenience, we set
= 0 for the rest of the paper. Then, if we were to sample the observed
signal at a sensar we would receive

mance and effectiveness of the wireless arrays. through an intermediate stage of acquir{igF's | samples [4]. Consider
a linear measurement process on the (unobsemgdgctors:
2. COMMUNICATION CONSTRAINED BEARING Yy, = ¢,z = $;5:0 = A;(0)0, 4)

ESTIMATION OF SPARSE SOURCES where¢, : L x |TF's| is the measurement matrix act}(0) : L x N

is called the source steering matrix. When the source steering matrix
satisfies the restricted isometry property (RIP) [5], it is possible to show
We discuss the bearing estimationfofnoncoherent sources in an isotropicthat 8 can be recovered froh > oK log % measurements whereis
medium in the far field of a collection df/ sensors with known positions a small number [4,5]. However, note that this requires the knowletige o
¢; = [zi, v/’ 6 =0,...,M — 1) on the ground plane. The far field of the source matrix§;, which is not known.

a sensor collection is defined as the boundary of the source region after

which the propagating waves appear perceptively planar with respect 3 - Estimation of Steering Matrices

the array aperture. For convenience, sefidercalled a reference micro-

phone (RM) and is situated at the origify, = [0, 0]’. We do not assume Estimates of the source steering matrices can be determined using the

2.1. Acoustic Data Observations

that the number of sourcéds is known. RM, which is required to take samplesft. We form the estimate using
We denote the received signal at the RMiaét) = S°r_, s (t) +  the delayed versions of the reference signal as follows:

no(t), which is a superposition ok source signalsy (¢) impinging at . - -

bearingsd,. (measured with respect to theaxis) and the sensor noise 5:(0) = {mo (Tz' (* (0)>) RN (Ti (W (N - 1)))} O]

no(t). Sensori observes the time delayed (or advanced) superposition h hen th h | hes th |
zi(t) = Zk:l si(t + 73(01)) + na(¢) of the source signals plus noise, Note that when the sought source angle matches the actual source direc

where the time delay at théh sensorr; (0) of a source at bearing is tion, thgn the columns of the source steering matrix has the_ maximum
given by correlation, where the qther sources act as non-coherent nq@e&m

1 cos When the source steering matrix satisfies the RIP property, it is known

/ . .
7i(0) = =¢; { sin 0 } , 1) that the errors in the sparse vector estimates are well behaved under ad
ditive perturbations of the measurements [4]. In [8], we further discu

wherec is the speed of sound. Our objective in this paper is to detethow each source can be modeled as additive noise in (4) and detail the
mine the source bearing$, . .., 0x } by sending the minimum amount  construction of the steering matrices asaais pursuit strategy.
of information possible among the sensors. By determining the mini-
mum information necessary to reconstruct the bearings, we minimize t
inter-sensor message packet sizes so that we preserve senswdatie
minimize inter-sensor communication interference. Determiningd has exponential complexity iV as we need to search for
all the subsets oV, which is a combinatorial problem. To determine the
source bearings, we solve the following convex optimization problem at
the RM, which serves as a proxy of the combinatorial solution:

é:argmeinHOHl such that||A"(Y — A0)||__ <, (6)

@4. Bearing Estimation Problem

2.2. Compressive Sensing

We treat the source bearingsas an unknown vector iRY, where N

is the resolution of the (uniformly) discretized bearing space, which re-
sides in[0,27). An adaptive discretization can be done for focusing ) )
purposes. Within the bearing space, the bearings corresponding to théereY = [y Loyl A = @8, @ = diag{e,, ..., by}, and
sources have non-zero entries in their respective locations in the di$ = [Sl,.. SM] ande is a relaxation variable. To solve fé, the
cretized bearing space, whose values are to be determined from the pr&RM needs the compressive measuremgnfsom the other sensors. Note
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that the sampleg,’s are the compressive samples with respe@ tnd
not with respect tac;. That is, it may or may not be possible to recon-
structz; given the measuremenygs. For our bearing estimation problem,
we use zero mean Gaussian random variables with unit variance to cor
struct the measurement matrdx. To solve for@, we use the Dantzig
selector [9].
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3. IMPLEMENTATION DETAILS
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We assume that the sensor positions are determined by a calibration alg_,,,
rithm, e.g., [10]. Since the wireless array aperture is expected to e lesg
than 10m for all practical purposes with the number of total microphonesz*”
not exceeding 10-20, all the communications can be made centralized £ ., :
using orthogonal coding schemes or can be achieved with a small numbt o
of hops, and fairly accurate synchronization can be achieved ameng th
sensors. We assume that a measurement métiscpredetermined and
each sensor has its knowledge. . . . . .
For the array hardware, we envision a uniform microphone sensd:r'g' 1‘_ @) Tlmg-frequency plot of the received ?COPS“C data is shown.
set with wireless communication capabilities, so that each microphonEn€ circles indicate the strongest two frequencies in the data under the
can act as the RM if necessary. With this redundancy, a possible RIGpPatial aliasing frequ_ency of 150Hz. (b) Minimum variance dls_tortl_onless
bottleneck can be avoided in the future to increase robustness of the sy§SPonse beamforming results on the two strongest frequencies sow
tem. When a microphone is not acting as the RM, it is in the compressiv&). The tracks are smooth with a small amount of clutter. (c) The wire-
sensing state to preserve battery and it is called a compressive miciess array results with = 15, each sent witlé4bits. The size of the dots
phone (CM) in this state. The RM can be chosen randomly; however, it iis proportional to the value in the solution @f There is minimal clutter
possible to use heuristics or active self-evaluation methods to choose tiWien compared to the adaptive beamforming results in (b). (d) The wire
best one in some sense. Duties of the RM include: (i) sampling acoustiess array results with = 100, each sent with bit (zero crossing). Note
datax, at F%, (ii) forming the sparse source steering matrices (5) usinghat the clutter has increased when compared to the results in (c). (e) The
the knowledge of the sensor positions, (i) receiving messages from thgireless array results with = 30, each sent with bit (zero crossing).
CM's and forming the data vectdr and the measurement matdX,  Note that the clutter has not increased too much when compared to the
and (iv) determiningd by solving (6). These duties stipulate a digital resuylts in (d). (f) The wireless array results with= 10, each sent with

eml;)edded system, which can be done with FPGAs or other digital DSyt (zero crossing). The clutter has increased when compared tadd) a
systems.

Full analog, mixed mode, or full digital implementation can be use
for the compressive state, depending on the final power consumgtion o
the implementation. In the full analog implementation, analog mixers can
be used to simulaté to obtain the compressive dagain (4) [11], fol-
lowed by a simple zero-crossing detector. In this case, the data message
arey = =+1. Surprisingly, it is still possible to obtain bearing estimatesand compare them with a frequency adaptive minimum variance distor-
from the solution of (6) (see Experiments). In the mixed mode implementionless response (MVDR) beamformer (Fig. 1(a)-(b)), which wuses
tation, an analog-to-digital (A/D) converter is used to sample the analog0-microphone data collected &t. The MVDR beamformer uses the
mixer output. Different quantization levels can be used. In the full digitaStrongest two peaks in the time-frequency spectra of the received sig-
implementation, the acoustic data is sampled with an A/D converter, thef@l s shown in Fig. 1(a) and detects the three strongest peaks in the
digitally multiplied with ¢. Special care must be taken in determining thePOWer vs. angle pattern. The compressive wireless array/Nises360
sampling frequency and the quantization levels for this case. and discretizes the bearing space uniformly ibtaesolution grid. For
the relaxation variable in the convex optimization problem, we use
e = 0.5 xv/log N = 1.21 [9]. We report the wireless array results under
different test conditions below. In all the cases, a zero mean Gaussian
noise with standard deviation 10dB below the power of the compressive
samples is also added to the compressive sanbpferse quantization.
A uniform circular acoustic array with 10 microphones (9 microphones
on the perimeter with 1.44 meter radius and one at the center) is used to In Fig. 1 (c), each CM sends 15 compressive samples, each ehcode
collect the acoustic data for a five vehicle convoy at the Aberdeen Ryovinwith 64bits. Ignoring the losses of communication overheads and gains
Grounds. The acoustic data sampling rat&js= 4410Hz. The convoy  of coding schemes, this equates approximatéljobits/CM for 9 CM’s.
consisted of two military Hummers and three commercial sports utilityFigure 1 (d) shows the results when we use the compressive samples
vehicles, traveling on gravel on an oval track. Detection and trackind. = 100 with 1bit quantization (zero crossing). The total communi-
of the commercial vehicles presented a difficult challenge because tlwation load in this case i$00bits/CM. When we further decrease the
commercial vehicles were in between the two louder military vehiclesnumber of compressive samples frdm= 30 — 10 with the same 1bit
hence they were acoustically suppressed. For this example, we used theantization, corresponding 89bits/CM— 10bits/CM, we see a grace-
center microphone as the RM whereas the other 9 microphones are udatidecrease in the accuracy of bearing estimation and a moderatasecre
as CM’s. The array outputs bearing estimates e@e¥yseconds. in the clutter. Even with the clutter, the results of the compressive wire-
Figures 1(c)-(f) illustrate the wireless array bearing estimation resultiess array are quite useful since a random sampling consensus (RANS
for different number of compressive samplesind quantization levels, approach can be used to track the targets [12].
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d(e); however, the bearing tracks are still clear.

4. EXPERIMENTS

4.1. Acoustic Field Data Results



40m range). In Fig. 2(d)-(f), we use target configuratio#sl , #3, #5},
{#1, #3, #4, #5}, and{#1, #2, #3, #4, #5}, respectively, and plot
the® histograms for 100 independent Monte Carlo realizations of the ran-
dom sensor deployment orbax 5m? aperture withl = 15. The target
4 bearings are given b{20°, 35°,50°,60°, 80° }, respectively. Similar to
“ A S the previous section, a zero mean Gaussian noise with standard devia-
(©) 5 x 5m? tion 10dB below the power of the compressive samples is also added to
the compressive samples before quantization. As the number of targets
01 — increase, there is a gradual increase in clutter peaks; howeversthtsre
Pl are still encouraging even at 5 targets that are close in bearing. The heig
of the histograms seem to be related to the relative source RMS powers.
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5. CONCLUSIONS
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We have demonstrated the feasibility of a wireless acoustic array to esti-
mate multiple source bearings by passing quantized compressivegsensin
data among the sensors. In our solution, we exploit the sparsity of the
) o . ) sources in the angle domain and obtain their sparsity pattern, which de-
Fig. 2. (Top) Aperture gain is illustrated for different aperture sizes. Re-termines the number of targets and their corresponding bearings. Since
sults with1bit quantization of the CM outputs are marked with doBot{  the compressive samples are the minimum number of data samples re-

tom) Multiple source bearing estimation results for random deploymentduired to reconstruct the bearing vector in the angle domain, our agiproa
The true source bearings are shown with the dashed vertical lines. ~ US€ Minimum possible communication bandwidth among the sensors. We
also showed that there is a significant redundancy in the individual data
of the sensors for the acoustic bearing estimation problem. We accom-
plished this by demonstrating that our wireless array scheme is quite ro-
bust against noise in the compressive samples and can even opleeate w
only the zero crossing information of the compressive samples isghasse
To demonstrate the immediate performance gains with the compressiwhich cannot be used to recover the data of the sensors. We hope that

wireless arrays, we collected vehicle drive-by data for 6 vehicles wsing our results will further improve what is achievable by a wireless sensor
single microphone with, = 4800Hz. The vehicles and their relevant Networks.

respective root-mean-squared (RMS) powers for the plots in this sectio
are 1) Nissan Frontier (4.33), 2) Chevy Impala (4.33), 3) Cheuyp&a
(4.03), 4) Isuzu Rodeo (2.84), 5) Volkswagen Passat (3.ht))6aHonda
Accord (4.60).

Aperture Gains: To show the aperture gains from the compressive
wireless arrays, we simulated three scenarios illustrated in Fig. 2(a)-(c).
In Fig. 2(a)-(c), we use 9 CMs and randomly deploy them irn 1m?,

2 x 2m?, and5 x 5m? aperture, and add an RM at the center. We then use
0.5 seconds of the vehicle data for vehicles #2 and #6 and simulated thgs]
array data by placing the sources2af and30° (both at 40m) range by
properly delaying each acoustic source by its distance to the microphone#]
(¢ = 340m/s). By usingL = 15 compressive samples, we determine
the sparsé@ for 100 independent Monte Carlo runs, where the individual [5]
CM positions vary. We then plot the average of the runs, which creates
illustrative histograms seen in Fig. 2(a)-(c). In the figures, we alsa sho
results when the estimation is done withit quantization. Similar to
the previous section, a zero mean Gaussian noise with standard deviation
10dB below the power of the compressive samples is also added to the
compressive samples before quantization. !

It is clear that as the aperture size increases with the same number g
sensors, the bearing resolution of the arrays increase, allowing thertwo ta[8]
gets to be separated. This separation is even clear, when loihig used
for each compressive sample in spite of the additional clutter. Since thefg]
compressive wireless arrays are by design untethered, a rangay-de
ment strategy can be used to distribute them over larger apertures th?B]
the ones conventionally used for UGS’es. Hence, they are envisioned to
perform better than conventional tethered arrays. Finally, it is also inter-

4.2. Random Deployment Results
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