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ABSTRACT

We address vehicle classification and mensuration problems using acous-
tic and video sensors. In this paper, we show how to estimate a vehicle’s
speed, width, and length by jointly estimating its acoustic wave-pattern
using a single passive acoustic sensor that records the vehicle’s drive-by
noise. The acoustic wave-pattern is approximated using three envelope
shape (ES) components, which approximate the shape of the received
signal’s power envelope. We incorporate the parameters of the ES com-
ponents along with estimates of the vehicle engine RPM and number of
cylinders to create a vehicle profile vector that forms an intuitive dis-
criminatory feature space. In the companion paper, we discuss vehicle
classification and mensuration based on silhouette extraction and wheel
detection, using a video sensor. Vehicle speed estimation and classifica-
tion results are provided using field data.

Index Terms— Object recognition, pattern recognition, acoustic ap-
plications, acoustic signal processing, intelligent sensors

1. INTRODUCTION

Vehicle classification and motion parameter estimation using signals re-
ceived at passive sensors are classical signal processing problems [1–8].
Traditionally, these two problems are treated separately. In this paper, we
address how to jointly estimate a vehicle’s motion parameters and classi-
fication features, using a single acoustic microphone. This problem has
applications in distributed sensor networks and traffic monitoring [5,8,9].

When a single acoustic microphone is used, wave propagation effects
can determine the source movements based on the assumptions that the
vehicle A) is a point source [6,7], B) has stationary signal characteristics
that admit a model such as an autoregressive moving average (ARMA)
model [7], or C) produces a pure tone [6]. These assumptions are only
partially satisfied in practice and the speed estimation algorithms based
on these assumptions do not perform as expected when applied to field
data. In fact, they all exhibit a negative speed estimation bias [10].

On the other hand, the acoustic vehicle classification algorithms con-
centrate on the frequency spectra of the vehicles, without explicitly ex-
ploiting the directionality of vehicle noise [1–4]. The frequency spec-
tra of training signals are somewhat judiciously segmented to provide
features, where discriminant functions [1], neural networks [3, 4], and
Bayesian methods [2] are used for classification. In contrast, Forren and
Jaarsma [8] aim to classify vehicles with an array of microphones based
on their axle detections by exploiting the tire noise generated by vehicles.
They use signal correlations among three known microphones under as-
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sumption A to independently estimate the vehicle speed to improve their
classification results.

In this paper, we first describe the spectral and spatial content of vehi-
cle signals and recast the estimation problem in [6,7] as a spatial acoustic
pattern recognition problem parameterized by vehicle speed and classi-
fication features such as vehicle wheelbase length, width, and tire pro-
file. We calculate the received signal’s power envelope and approximate
it using three envelope shape (ES) components. The ES components spa-
tially decompose the total vehicle noise into parts that also account for
tire interference effects, tire horn effects, and air turbulence effects. For
estimation, we introduce a vehicle profile vector that characterizes the ES
components and also includes the engine revolutions per minute (RPM)
and the number of cylinders to characterize the vehicle engine. The ve-
hicle profile vector constitutes a fingerprint of the vehicle that can be
estimated using the vehicle’s drive-by noise without any training data. In
the companion paper [11], this acoustic vehicle profile vector is extended
to also include a subset of complimentary video fingerprint information.

2. VEHICLE SIGNAL’S SPECTRAL AND SPATIAL CONTENT

A vehicle’s acoustic signal consists of a combination of various noise
signals generated by the engine, the tires, the exhaust system, aerody-
namic effects, and mechanical effects (e.g., axle rotation, break pads, and
suspension). Hence, the spectral content of a vehicle’s signal includes
wideband processes as well as harmonic components. It also has a spatial
distribution because the noise sources are at different locations on the ve-
hicle. The mixture weighting of these spectral components at any given
location depends on the vehicle’s speed, whether the vehicle is accelerat-
ing, decelerating, turning, and whether the vehicle is in good mechanical
condition. In general, one can approximate a vehicle’s signal as consist-
ing of four noise components:

Engine Noise: The noise from an internal combustion engine con-
tains a deterministic harmonic train and a stochastic component similar
to the human speech [12, 13]. The stochastic component is wide-band in
nature. The deterministic component is caused by the fuel combustion in
the engine cylinders and has more power than the stochastic component.
The lowest deterministic tone is called the cylinder fire rate f0 = χ/120,
defined as the firing rate of any one cylinder in the engine, where χ is the
RPM of a vehicle. The strongest tone in the engine noise is called the
engine fire rate F0, and F0 = f0 × p, where p is the number of cylinders.

Tire Noise: The term tire noise is defined as the noise emitted from
a rolling tire as a result of its interaction with the road surface. The tire
noise is the main source of a vehicle’s total noise after 50km/h. It con-
sists of two components: vibrational noise and air noise [14]. The vibra-
tional component is caused by the contact between the tire threads and the
pavement texture. Its spectrum is most dominant between 100− 1000Hz
frequency range. The air noise is generated by the air being sucked-in or
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forced out of the rubber blocks of a tire and is dominant in the frequency
ranges between 1000 − 3000Hz. In the driving direction of the vehicle,
the road and the tire forms a geometrical structure that amplifies the noise
generated by the tire-road interaction [14, 15]. This effect is called the
horn effect and has a directional pattern [15].

Exhaust Noise: The exhaust system consists of the exhaust man-
ifold, catalytic converter, resonator, exhaust pipe, muffler, and the tail
pipe. The system goes from the engine compartment to the back of the
car generating the exhaust noise. The exhaust noise has the same harmon-
ics frequency structure as the engine and additional tail pipe resonances
that occur at fundamental frequency of fe = c/(2l), where l is the tail
pipe length and c is the speed of sound [16].

Air Turbulence Noise: Vehicle induced turbulence can become an
important factor in the overall perceived loudness of a vehicle as the
vehicle speed increases. This noise is due to air flow generated by the
boundary layer of the vehicle and is prominent immediately after the ve-
hicle passes by the sensor. The turbulence noise depends on the vehicle
aerodynamics as well as the ambient wind speed and orientation [17].

3. JOINT ESTIMATION OF SPEED AND SPATIAL ACOUSTIC
PATTERNS

3.1. Envelope Shape Components

To determine a vehicle’s speed v using acoustic observations from a sin-
gle microphone, we jointly estimate the vehicle’s spatial acoustic pattern.
We denote any component that makes up a vehicle’s spatial acoustic pat-
tern as an envelope shape (ES) component. We use the reciprocity theo-
rem derive the ES components in the microphone reference frame [18].
For simplicity, we model the ES components using three piecewise con-
stant functions in dB scale with respect to the microphone bearing ϕ as
illustrated in Fig. 1. We make the connection between the ES components
and the received signal power in the following subsections.

The first ES component ργ(ϕ) in Fig. 1 models the signal interference
due to the front and rear tires, which can be modeled as dipole sources.
This component explains the perturbation in the envelope function of the
vehicle acoustic drive-by signals around ϕ = 18◦. The tire interference
decreases between the bearings γ1 and γ2, increasing the first component
to δγ,1. The angles γi are related to the tire track length of the vehicle W
(dipole separation) through an interference term [10].

After the drive-by, the tire interference increases between the bear-
ings γ′

2 and γ′
1, decreasing the first ES component to δγ,2. The parameter

δγ,2 is usually close to zero. We note that the component ργ(ϕ) varies
in a nonsymmetric fashion with respect to ϕ. The asymmetry is due to
the movement of the car: because of the reference frame change, any an-
gle defined in the vehicle reference frame, denoted by φ, is related to the
angles in the microphone frame, denoted ϕ, through an aberration rela-
tion [19]. Hence, by assuming a symmetric interference pattern for the
front and rear tires of the car based on constant car width, one can relate
the following angle parameters where κ = γ1 and γ2:

tan
π − κ′

2
=

�
1 − v/c

1 + v/c

�
tan

κ

2
. (1)

The second ES component ρθ(ϕ) is due to the horn effect [15]. In the
observed signal envelope, at the microphone bearing θ1 the horn effect
amplification of the farthest front tire from the microphone starts to go
down until the bearing θ2 to δθ,2, when the horn effect of the closest rear
tire to the microphone also drops. The differential angle θ2 − θ1 is a
good indicator of the vehicle wheelbase, which can be used to compare
the relative size of vehicles. To convert the angle difference into actual

size, we use the following approximate relationship

ym
cos θ1

− L =
ym

cos θ2
, (2)

where L is the wheelbase length. After the vehicle CPA, the horn effect
amplifies the tire noise between bearings θ′2 and θ′1, which are related to
θ1 and θ2 also by the abberration relation (1) (i.e., κ = θi).

Finally, the third ES component ρψ(ϕ) is a composite component that
incorporates (i) engine noise, (ii) exhaust system noise, (iii) interference
pattern of the tires on the side of the car, and (iv) the noise caused by
the air turbulence. To keep the number of ES components manageable,
we approximate the composite interference pattern as a step function that
rises from 0dB to δψ between bearings ψ1 and ψ2. When this approxima-
tion becomes poor, δθ,2 of the second ES component ρθ(ϕ) compensates.
We found that the angle difference ψ2 − ψ1 is also an indicator of the
vehicle length. Hence, (2) is also used to relate the angles in the third
interference component to the vehicle wheelbase length L.

3.2. Vehicle Profile Vector

To jointly determine the speed and the vehicle’s spatial acoustic pattern,
we use the vehicle profile vector λ, which is defined as follows:

λ =
�

λv λϕ λδ λf
�
, where (3)

λv =
�
S v W L

�
, λϕ =

�
ϕ0 γ1 θ1 ψ1

�
,

λδ =
�
δγ,1 δγ,2 δθ,1 δθ,2 δψ

�
, and λf =

�
χ p

�
.

(4)
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Fig. 1. The microphone bearing reference orientation is defined as the
moving direction of the vehicle. Then, a vehicle’s spatial acoustic pat-
tern can be approximated by three ES components in ϕ. The first
component ργ is due to the signal interference from the front and rear
tires. The second component ρθ explains the variation as the micro-
phone comes out of the horn-effect area of the tires. The third com-
ponent ρψ is an approximate component that accounts for a composite
engine/exhaust/tire/turbulence noise effect around the vehicle CPA.
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Fig. 2. Dipole geometry. When the dipole sources are correlated, the
resulting wave propagation effect on the received signal power is not a
superposition of individual monopole effects.

The vector λv consists of the physical parameters of the vehicle such as
the loudness S, speed v, tire track length W , and the vehicle wheelbase
length L. The vector λϕ has the initial vehicle bearing ϕ0 and the angles
that define the ES components along with λδ , which contains the ampli-
tude attenuations and amplifications for the ES components. Lastly, the
vector λf has the RPM χ and the number of cylinders p of the vehicle.

3.3. Amplitude Observations

Let s(t) be a zero-mean i.i.d. acoustic signal emitted by the monopole
source. To simplify the results, we concentrate on the following special
case, where the Fourier transform of the source signal is assumed to be
bandlimited as follows:

|S(Ω)| =

�
S, Ω1 ≤ Ω ≤ Ω2, W = Ω2 − Ω1;
0, otherwise.

(5)

When the source signal has a spatial extent, it is crucial to consider
interference effects while estimating the speed. To demonstrate the in-
terference effects, consider a dipole source moving along the x-axis as
illustrated in Fig. 2. In this case, the received signal is the sum of the two
source signals that are assumed to be coherent:

z[n] =
�
i=1,2

1

ri[n]
s

�
βi[n]

n

Fs
− ri[n]

c

�
, (6)

where βi(t) (i = 1, 2) is the Doppler shift factor of each monopole source
in the dipole. Under the far field assumptions [20], one can approximate
ri ≈ r and βi ≈ β as shown in Fig. 2.

We define the power envelope function by using τ -discrete samples
of z[n] as follows:

E [nτ ] = E(t)
���
t= nτ τ

F s

=

�		
 1

τ

n+τ−1�
m=n

|z[m]|2, (7)

where subscript τ under the sample index n implies that the samples of
the continuous function are calculated at every τ/Fs second. The param-
eter τ is chosen so that the DFT coefficients used to calculate the power
function at τ -samples apart are statistically uncorrelated, and hence, each
sample of E [nτ ] (nτ = 0, . . . , Nτ − 1) is also statistically uncorrelated.

Assuming that the noise acting on the microphone signal z[n] is zero-
mean additive white Gaussian noise with variance σ2

u, we relate the enve-

lope observations to the vehicle profile vector as follows:

E2[nτ ] ≈ Aλ[nτ ]e
2mτ +

σ2
u

τ
wτ ,

Aλ[nτ ] =
C

β[nτ ]r2[nτ ]

�
i=γ,θ,ψ

10ρi(ϕ[nτ ])/10, C =
S2FsW

2πτ

(8)

where Aλ[nτ ] is the directional power variation, emτ is an i.i.d. multi-
plicative noise on the signal amplitude (m ∼ N �

0, σ2
m


), wτ is an i.i.d.

additive Chi2τ noise (chi-squared distribution with τ degrees of freedom)
that is also independent of mτ , and

β[nτ ] = 1 +
v

c
cosϕ[nτ ],

r[nτ ] =

�
(vτ/Fs)

2 + r2[nτ − 1] − 2 (vτ/Fs) r[nτ − 1] cosϕ[nτ − 1],

ϕ[nτ ] = ϕ[nτ − 1] + sin−1

�
vτ

Fsr[nτ ]
sinϕ[nτ − 1]

�
.

(9)

When a constant false alarm rate detector such as in [5] is used, the Chi2
noise can be ignored and the following cost function can minimized to
determine the maximum likelihood estimate of λ:

λML = arg min
λ

J(λ), J(λ) =

Nτ−1�
nτ =0

�
log E [nτ ] − 1

2
logAλ[nτ ]

�2

.

(10)

3.4. Frequency Observations

The spectral content of a vehicle exhibits directional variation, making
it difficult to use the Doppler effects of the vehicle motion to determine
speed. We emphasize that this directional variation is not due to the mo-
tion of the vehicle but it is due to tire noise effects, which are stochastic in
nature. The useable frequency tracks for speed estimation are generated
by the engine because the frequency modulation effects can be observed
in the deterministic component of the engine noise. These determinis-
tic engine frequencies span the 0 − 250Hz range at nominal RPM’s. At
moderate vehicle speeds (30 − 50mph), the full Doppler shift swings F0

approximately %6, also corresponding to an RPM change of the same
percentage (Δχ ≈ 200). Hence, if a driver changes the car’s RPM by 50
during the vehicle drive-by, there will be a %25 error in F0 when one as-
sumes a constant frequency source. We emphasize that this RPM change
is unnoticeable on the dashboard of the vehicle and is likely to happen.
On the other hand, the effect of the same RPM change on the total car
loudness is negligible. Therefore, determining a probability density func-
tion for the vehicle profile vector by fitting a Doppler shift function to the
engine and tire frequency tracks is an unreliable approach [7].

On the other hand, the spectral harmonic content can be used to de-
termine λf of the vehicle profile vector. Moreover, conditioned on λv
estimate, it possible to further refine λf by compensating for the Doppler
shifts. Estimation of χ can be done accurately using harmonic analysis
methods [21]. In our estimation, we use the power spectral density of the
acoustic signal to determine λf . Details can be found in [21].

4. A VEHICLE PROFILING EXAMPLE

To demonstrate the ideas, data was collected with Fs = 48KHz at a two-
way street with an omnidirectional microphone, emplaced 1.5m off the
ground on a pole at the sidewalk. The distance of the microphone pole to
the center of the street is 7.4m. A video camera is also used for estimation,
whose results are discussed in the companion paper.
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Fig. 3. (a,d) Observed envelope exhibits significant variations as ex-
plained by our model (solid lines). (b,e) Estimated ES components are
shown. (c,f) The log-likelihood surface of the vehicle dimensions.

Figure 3 gives two sample estimation results using recorded acoustic
signals of a Chevy Impala and Nissan Maxima drive-by’s. More acous-
tic processing results can be found in the second part in [10, 11]. For
this example, the envelope estimates are obtained using τ = 480 sam-
ples. The vehicles’ distances to the camera are (5.8, 4.1)m, respectively.
The vehicle speeds are estimated as (18.68, 4.14)m/s by the video cam-
era and (18.60, 4.49)m/s by the acoustic method described in this pa-
per. In contrast, the acoustic method outlined in [7] estimates the vehicle
speeds as (15.05, 3.46)m/s (dashed lines in Fig. 3(a,d)) consistent with
the negative bias noted in their paper. Other vehicle profile vector pa-
rameters are estimated as C = (12.6, 6.34), L = (2.58, 2.58)m, W =
(1.75, 1.50)m, χ = (3300, 3150), and p = (6, 4). We note that the man-
ufacturer’s specifications for the vehicle dimensions are L = (2.8, 2.7)m
and W = (1.58, 1.53)m. The vehicle engines are also known to have
(6, 4)-cylinders. We use the inverse of the log-likelihood surface Hes-
sian at the mode (Fig. 3(c)) to estimate the variance of the acoustic es-
timation performance for the vehicle dimensions. For these examples,
σW ≈ (17.3, 8.9)cm, whereas σL ≈ (31.1, 19.0)cm.

5. CONCLUSIONS

We presented a method that can estimate a vehicle’s motion parameters
and classification features by formulating the problem as a joint speed and
acoustic pattern estimation problem. We achieve this estimation using the
vehicle profile vector that encodes the directional variation of the vehicle
acoustic pattern. The vehicle profile vector enables a signal processor to
better address the vehicle classification and mensuration problem using
acoustic signals since it results in vehicle dimensions as well as unbiased
speed and loudness estimates [10].

6. REFERENCES

[1] H. Wu, M. Siegel, and P. Khosla, “Vehicle sounds signature recog-
nition by frequency vector principal component analysis,” in IEEE
Instr. and Meas. Tech. Conf., St. Paul, MN, 18–20 May 1998.

[2] M. E. Munich, “Bayesian subspace methods for acoustic signature
recognition of vehicles,” in EUSPICO, Vienna, Austria, 2004.

[3] S. Sampan, Neural fuzzy techniques in vehicle acoustic signal clas-
sification, Ph.D. thesis, Virginia Polytechnic Ins., VA, 1997.

[4] L. Liu, Ground vehicle acoustic signal processing based on biolog-
ical hearing models, Ph.D. thesis, Institute of Systems Research,
UMD, College Park, MD, 1999.

[5] M. Duarte and Y-H. Hu, “Vehicle classification in distributed sensor
networks,” Journal of Parallel and Distributed Computing, vol. 64,
pp. 826–838, 2004.

[6] B. G. Quinn, “Doppler speed and range estimation using frequency
and amplitude estimates,” J. Acoust. Soc. Am. , vol. 98, pp. 2560–
2566, November 1995.

[7] C. Couvreur and Y. Bresler, “Doppler-based motion estimation for
wide-band sources from single passive sensor measurements,” in
ICASSP 1997, 21–24 April 1997.

[8] J. F. Forren and D. Jaarsma, “Traffic monitoring by tire noise,”
in Proc. IEEE Conf. on Intelligent Transportation System, Boston,
MA, Nov 1997, pp. 177–182.

[9] S. Kumar, F. Zhao, and D. Shepherd, “Collaborative signal and in-
formation processing in microsensor networks,” IEEE Signal Pro-
cessing Magazine, vol. 19, pp. 13–14, 2002.

[10] V. Cevher, R. Chellappa, and J. H. McClellan, “Vehicle
speed estimation using acoustic wave patterns,” under revi-
sion at IEEE Transactions on Signal Processing, available at
http://www.umiacs.umd.edu/users/volkan/Speed Estimation.pdf.

[11] V. Cevher and et al., “Joint acoustic-video fingerprinting of
vehicles, part II,” submitted to ICASSP 2007, available at
http://www.umiacs.umd.edu/users/volkan/javf2.pdf.

[12] S. A. Amman and M. Das, “An efficient technique for modeling
and synthesis of automotive engine sounds,” IEEE Transactions on
Industrial Electronics, vol. 48, pp. 225–234, February 2001.

[13] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals, Prentice-Hall, 1978.

[14] U. Sandberg and A. J. Ejsmont, Tyre/road noise reference book,
Infomex, SE-59040 Kisa, Sweden, 2002.

[15] R. A. G. Graf, C. Y. Kuo, A. P. Dowling, and W. R. Graham, “On
the horn effect of a tyre/road interfacepart I: experiment and com-
putation,” J. of Sound and Vib., vol. 256, pp. 417–431, 2002.

[16] J. G. Lilly, “Engine exhaust noise control,” available online at
http://www.ashraeregion7.org.

[17] R. E. Eskridge and J. C. R. Hunt, “Highway modeling. Part I: pre-
diction of velocity and turbulence fields in the wake of vehicles,”
American Meteorological Society, vol. 79, pp. 387–400, 1979.

[18] Lord Rayleigh, The Theory of Sound, Macmillan, London, 1877.

[19] E. Einstein, “On the electrodynamics of moving bodies,” Annalen
der Physik, vol. 17:891, 1905.

[20] L. J. Ziomek, “Three necessary conditions for the validity of the
Fresnel pahse approximation for the near-field beam pattern of an
aperture,” IEEE Journal of Oceanic Engineering, vol. 18, pp. 73–
76, 1993.

[21] B. Boashash and P. O’Shea, “A methodology for detection and clas-
sification of some underwater acoustic signals using time-frequency
analysis,” IEEE Trans. on ASSP, vol. 38, pp. 1829–1841, Nov 1990.


