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Abstract—In this paper, we present an acoustic direction-of-
arrival (DOA) tracking system to track multiple maneuvering
targets using a state space approach. The system consists of
three blocks: beamformer, random sampling, and particle fil-
ter. The beamformer block processes the received acoustic
data to output bearing batches as point statistics. The ran-
dom sampling block determines temporal clustering of the
bearings in a batch to determine region-of-interests (ROIs).
Based on thetrack-before-detectapproach, each ROI indi-
cates the presence of a possible target. We describe three
random sampling algorithms called RANSAC, MSAC, and
NAPSAC to use in the random sampling block. The parti-
cle filter then tracks the targets via its interactions with the
beamformer and the random sampling blocks. We present a
computational analysis of the random sampling blocks and
show tracking results with field data.
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1. INTRODUCTION

In this paper, we discuss automated tracking of the direction-
of-arrival (DOA) angles of multiple targets using an acoustic
array in the presence of noise or interferers [1–6]. We present
three random sampling algorithms to temporally cluster bear-
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ing observations to form region-of-interests (ROI) to be used
by a particle filter tracker. The ROI processing is becoming a
popular method for trackers based on thetrack-before-detect
concept [7–10].

The ROI processing idea relies on the observation that tem-
porally consistent data, e.g., bearings, indicate the presence
of actual targets, when we assume that the clutter observa-
tions are uniformly distributed in the state space. Hence,
during tracking, each new ROI in the observed data can be
used to address a fundamental issue for target tracking al-
gorithms in a statistical framework: initialization. Unfortu-
nately, forming ROIs is a set covering problem, which is NP-
complete [11–13].

Hence, we present three robust and efficient random sam-
pling algorithms for ROI processing: RANSAC for random
sampling consensus, MSAC for m-estimator sampling con-
sensus, and NAPSAC for N-adjacent points sample consen-
sus. These algorithms are commonly applied to motion seg-
mentation problems in computer vision [14–22]. We show
the application of these algorithms to our multi target bearing
tracking problem. In addition, we discuss their computation
complexity and analyze their statistical behavior.

We also present a particle filter algorithm to track the DOA’s
of multiple targets, using an acoustic node that contains an
array of microphones with known positions. Each particle in
the filter is created by concatenating the state vector for each
target, called a partition. For example, the partition of the
kth target has a state that consists of the DOAθk(t) and the
DOA rate θ̇k(t) of the kth target. The total number of tar-
gets (or partitions)K is determined by a random sampling
block based on the ROI processing. Hence, givenK targets,
a particle hasK partitions where each target, and hence each
partition, is assumed to be independent. Target motions are
modeled as locally linear within an estimation period of du-
rationT .

In a particle filter, where the observations arrive in sequence,
the state probability density function is represented by dis-
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crete state samples (particles) distributed according to the un-
derlying distribution (as explained by the state space) either
directly or by proper weighting [23,24]. Hence, the filter can
approximate any statistics of the distribution arbitrarily ac-
curately by increasing the number of particles with proven
convergence results. In the particle filtering framework, the
data association problem is undertaken implicitly by the state
space model interaction. However, the particle filter suffers
from the curse of dimensionality problem, as the number of
targets increases [25]. To improve the efficiency of the algo-
rithm, various methods are proposed, such as the partitioning
approach [2,26], or other Bayesian approaches [27].

Our particle filter uses multiple DOA’s to determine the state
vector, based on an image template matching idea. We denote
the DOA collection as a batch. In our problem, a DOA image
is first formed when a batch of DOA observations are received
from a beamformer that processes the received acoustic data
atτ second intervals. Then, image templates for target tracks
are created using the state update function and the target parti-
tion state vectors. By determining the best matching template
(e.g., probable target track), the target state-vectors are esti-
mated. Because the observations are treated as an image, the
data association and DOA ordering problems are naturally al-
leviated. Moreover, by assuming that the DOA observations
are approximately normally distributed around the true target
DOA tracks, with constant DOA miss-probability and clutter
density, a robust particle filter tracker is formulated.

The paper is organized as follows. Section 2 explains the me-
chanics of the automated tracking system for multiple target
DOA tracking. Sections 3, 4, and 5 elaborate on the individ-
ual elements of the tracking system. Computer simulations
are shown in Sect. 6 to demonstrate the performance of the
algorithms.

2. TRACKER DESIGN

We construct the tracking system mechanics (i) to compen-
sate DOA estimation biases due to rapid target motion [3],
(ii) to result in higher resolution DOA estimates than just
beamforming [2–4], (iii) to be robust against changes in tar-
get signal characteristics, and (iv) to automatically determine
the number of targets. The tracker system consists of three
blocks as illustrated in Fig. 1. Details of the individual blocks
are given in the following sections. Below, we discuss the
elements of this design.

We note that the main objective of our tracker is to report
multiple target DOA’s at some periodT , after observing the
acoustic data at the node microphones. Quite often, target
DOA’s can change more than a few degrees during an esti-
mation period, e.g., due to rapid target motion. Hence, if we
were to just use conventional snapshot DOA estimation meth-
ods (e.g., MUSIC, MVDR, etc.) for tracking the targets, the
bearing estimates become biased, because the received datais
not stationary [28]. This is intuitive, because these methods
estimate an average of the target angular spread during their
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Figure 1. Tracker mechanics is demonstrated using three
basic blocks. The beamformer block monitors the received
acoustic signals to adapt to their frequency characteristics for
better bearing estimation. It calculates a batch of DOA’s that
form point statistics for the random sampling and particle fil-
ter blocks. The random sampling block searches for temporal
clusters in the bearing batch to determine region-of-interests
(ROIs). Consistent ROIs are declared as targets by the parti-
cle filter block. The particle filter estimates the tracking pos-
terior and can make various inferences (i.e., mean and mode
estimates).

estimation periods [3].

In general, locally linear motion models eliminate this bias
by simultaneously estimating the bearing with the target mo-
tion parameters for the estimation period ofT . Conceptually,
this is equivalent to aligning the received acoustic data with
the motion parameters so that the data becomes stationary for
bearing estimation purposes. But, this alignment process re-
lies heavily on the observation model and is computationally
costly because the high volume of the acoustic data used for
estimation. In this paper, we propose to use a beamformer
block in our system to buffer the variability in the observed
acoustic signals to create a compressed and invariant point
statistics for our tracker block [5,29].

Therefore, the beamformer block (Fig. 1) processes the
acoustic data, sampled atFs, at smaller intervals ofτ = T/M
(e.g.,M = 10), where the targets are assumed to be relatively
stationary (Fig. 2). The parameterM is called the batch size.
This reduces the number of acoustic data samples available
for processing, resulting in a sequence of noisier DOA esti-
mates. However, these noisier DOA estimates are smoothed
in the particle filter block, because a motion structure is im-
posed on the batch of DOA’s.

We use the target bearingθ and the bearing ratėθ in our state
vector to model thekth target (k = 1, . . . ,Kt, whereKt is
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the number of targets at timet) motion to illustrate the ideas
in this paper:

xk(t) =

[

θk(t)

θ̇k(t)

]

, (1)

where the DOA’s are measured counterclockwise with respect
to thex-axis. The state vector for the particle filter is a con-
catenation of these targetpartitions:

xt =
[

xT
1 (t) xT

2 (t) . . . xT
Kt

(t)
]T
. (2)

The state update function is locally constant velocity model
for each target on its bearing:

xk(t+ T ) = hT (xk(t)) + uk(t), (3)

whereuk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2

θ̇,k
} and

hT (xk(t)) =

[

θk(t) + θ̇k(t)T

θ̇k(t)

]

. (4)

In [4, 5], we discuss other state models to characterize mo-
tion. For our state vector, a batch of DOA’s whenM ≥ 2 is
sufficient for the state-observability [3,30]. Since the filter is
built on the compressed statistics which is also sufficient for
the state vector, it achieves a significant reduction in compu-
tational requirements.

0 T 2T 3T
Mτ

Time

DOA Missing data

ClutterDOA Batch

Figure 2. Observation model uses a batch of DOA mea-
surements, generated by the beamformer block. Note that the
DOA measurements are not necessarily ordered when they
are output from the beamformer. However, when the batch
of DOA’s are treated as a bearing vs. time image, there is a
natural ordering, which alleviates the multiple target tracking
by the particle filter.

When the received signal characteristics change, the particle
filter tracker formulation is not affected because the beam-
former block absorbs the variabilities in the acoustic signals.
In the literature, various trackers use similar state-space for-
mulations as in this paper [2–4]. The trackers presented
in [2, 3] directly employ the classical narrow-band observa-
tion model, where targets exhibit constant narrow-band fre-
quency characteristics [28, 31]. The tracker in [4] tries to
adapt to varying time-frequency characteristics of the target

t

t+ Tt+ τ

t+ (M − 1)τ
time

DOA

hθ
mτ (x(j))hθ

mτ (x(i))

Figure 3. The random sampling and particle filter blocks use
the state update function to create target track templates.In
the figure, the solid line represents the true DOA track. Black
dots represent the noisy DOA estimates. The dashed line and
the dotted line represent the DOA tracks for the two proposed
particlesi andj. These tracks are calculated using the state
update functionh. Visually, ith particle is a better match than
thejth particle; hence, its likelihood is higher.

signals, assuming that the varying frequencies are narrow-
band. The tracker in [6] also incorporates an amplitude
model for the signals. Because their probability density equa-
tions explicitly use an observation equation, these trackers are
hardwired to their observation model. Hence, a complete re-
work of the filter equations would be required to track tar-
gets with e.g., wideband signal characteristics (e.g., from [6]
to [32]).

σg

σg

σg

ROI Gate

Outliers

Figure 4. The random sampling block uses a gating oper-
ation around the created target track templates. Solid lineis
the true DOA track. The DOA observations are shown with
dots. Given a gate sizeσg, most DOA’s should fall into the
gate of the target track to declare a ROI.

The second block in Fig. 1 addresses a fundamental issue for
any target tracker: initialization and target detection. It is
a random sampling block that efficiently localizes region-of-
interests (ROI) in the calculated bearing batches to determine
the number of targets at each time. This block takes the bear-
ing batches from the beamformer block and determinesKt

through gating operation based on the target motions, as il-
lustrated in Figs. 3 and 4. The random sampling block de-
termines the ROI for each targetone at a time, similar to the
matching pursuit idea [33]. That is, it first converges on a
mode in the, possibly, multi-modal target posterior and sifts
out the corresponding DOA data. It then iterates to find other
modes until stopping criteria are met. This block creates new
partitions (targets) for the particle filter, which can delete its
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own partitions. Conceptually, this initialization idea here is
equivalent totrack-before-detectapproach used in the radar
community [9,10].

The final block is an independent partition particle filter
tracker that uses the generated ROI’s by the random sam-
pling plot to propose particles for efficiency [2]. Our parti-
cle filter does not use a Markov random field to penalize the
state update function as the targets approach each other (tar-
get interactions), since the target bearing may cross even if
the targets are not close in proximity. While calculating the
particle weights, the tracker uses the bearing batch data from
the beamformer block directly. The filter data-likelihood em-
ploys the joint probability density assignment approach when
targets are close to each other to better address their data in-
teractions [34, 35]. Note that the filter avoids any direct data
association thanks to the ROI processing by the random sam-
pling block.

The particle filter block does not constrain the number of tar-
getsKt that can be tracked by the filter. However, the number
of targets that can be tracked is theoretically bounded by the
number of microphones in the acoustic array [28]. Figure 1
also illustrates feedback paths (dashed lines) for guided sam-
pling or beamforming. Although not fully explored in this
paper, we note that when the number of targets increase (e.g.,
K=10), the particle filter tracker can provide guidance for the
random sampling and the beamformer blocks for further com-
putational efficiency.

3. BEAMFORMER BLOCK

Beamforming is the name given to a wide variety of array
processing algorithms that focus an array’s signal process-
ing capabilities in a particular direction [28]. Beamformers
use the collected acoustic data to determine target DOA’s and
are called narrow-band beamformers if they use the classi-
cal narrow-band array observation model [28, 31]. Beam-
formers are wideband if they are designed for target signals
with broadband frequency characteristics [36]. There are also
other beamformers that are designed for signals with time-
varying narrow-band frequency characteristics [37,38].

The beamformer block chooses a beamfomer for process-
ing the acoustic data depending on the local characteristics
of the acoustic signals. That is, given the observed acoustic
signal and its time-frequency distribution, we choose an op-
timal beamformer to calculate target DOA’s. For example,
we can choose multiple beamformers if the received acoustic
signal shows both narrow-band and wideband characteristics.
The output of the beamformeryt,f = {yt+mτ,f(p)}M−1

m=0 is a
DOA data cube withPm,f -highest DOA peaks of the beam-
former pattern (Fig. 2). In general, the number of DOA peaks
Pm,f at batch indexm and each frequency indexf should be
greater than or equal to the number of targetsK. In the sim-
ulations section, we fixPm,f = P but the derivations below
explicitly show the dependance onm andf . Note that the
input of the particle filter has the same structure regardless of

the target signal characteristics.

Finally, the choice of the parameterτ for beamforming is de-
termined by various physical constraints, including (i) target
frequency range, (ii) target speed, and (iii) a target’s affinity
to maneuver. For reasonable beamforming, at least two cycles
of the narrow-band target signals must be observed. This stip-
ulates thatτ > 2/Fmin, whereFmin is the minimum beam-
forming frequency for the target. Moreover, to keep the worst
case beamforming bias1 bounded for each DOA by an angle
threshold denoted byD, we approximately haveτ < 2D

θ̇max
,

whereθ̇max is the maximum allowed bearing rate. Lastly, the
target motion should satisfy the constant velocity assumption
during the output periodT . For ground targets,T = 1s is a
reasonable choice. Note that at least two DOA estimates are
necessary to determine the state vector. To improve the ro-
bustness of the tracker, we useM > 5 to decrease the prob-
ability that the state is not observable due to missing DOA’s.
Hence, the parameterτ is bounded by the following

2

Fmin

< τ < min

{

2D

θ̇max
,
T

M

}

. (5)

4. RANDOM SAMPLING FOR
REGION-OF-INTEREST PROCESSING

A region-of-interest (ROI) is defined as a cluster of any mea-
surement sequence in time that is likely to be generated by a
target (Fig. 5). The number of ROIs in a bearing batch is a
strong indicator of the number of targets. In this section, we
describe the application of three random sampling methods
to determine the number of targets in bearing data batches,
based on ROI processing. These three methods are named
RANSAC for random sampling consensus [14], MSAC for
m-estimator sampling consensus [19], and NAPSAC forN
adjacent points sample consensus [22]. We will show that
these algorithms provide more efficient ways of clustering the
data to initiate ROIs, when compared to other clustering ap-
proaches applied to similar tracking problems [7,8].

Determining the ROIs using the bearing batches as point
statistics becomes a challenging problem in the face of out-
liers and missing bearing observations. To solve this prob-
lem efficiently, each of the random sampling procedures use
a small number of bearing estimates as feasible and enlarges
this set with consistent data as much as possible while iterat-
ing. These algorithms are successfully used in many com-
puter vision problems for geometric motion segmentation,
model order selection, and multiple structure data regres-
sion [14–20]. In this section, we show how to apply these
algorithms for tracking multiple targets using point statistics.

In general, every possible sub set of data needs to be con-

1The bias is calculated by taking the angular average of the target track.
Hence, this bias also depends on the heading direction. The worst case bias
happens when the target heading and DOA sum up toπ. Moreover, it is also
possible to analytically find an expected bias by assuming uniform heading
direction, using a similar analysis done in [3].
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Figure 5. The circles are the DOA estimates in a batch.
We illustrate four ROIs in the figureRi (i = 1, . . . , 4). The
first three ROIs show a clustering of DOA sequences in time
that are likely to be generated by targets, when we assume
that the target bearings slowly change along the batch index.
The fourth ROIR4 is not likely to be a target since it has
lesser number of bearings in its gate than the other ROIs and
it covers a much larger bearing range in a short amount of
time.

sidered to determine a ROI. In the literature, this problem is
known as the set covering problem [11–13]. If we haveP

peaks for each batch of sizeM , thenω =
(

MP
M

)

cor-

respondences need to be considered for determining a ROI
with M samples. Furthermore, if there areK targets, then

a total ofΩ =
(

ω
K

)

≈ ωK (by Sterling’s formula) cor-

respondences also need to be considered. This calculation is
further complicated, when some ROIs have missing data. For
our problem:

• We first consider the minimum sufficient number of data
points and obtain a feasible solution. LetL denote the min-
imum number of bearing samples required to determine the
state vectorxk using (3). By extending the solution using

onlyL-points, we decrease the search size toω =
(

MP
L

)

.

• We note that determining ROIs is temporal estimation
problem, hence we only seek temporal correspondences.

Therefore, we only need to considerω = PL ×
(

M
L

)

.

• When the targets are separated in the angle space, then we
can determine ROIs one at a time by removing the bearing
points corresponding to the determined ROI without effecting
the data of the other targets.
• When targets are close and they are already being tracked,
the tracking information can be used to guide the ROI sam-
pling.
• When targets are close and they are not being tracked, no
specific identity is assigned to either target. Hence, an iden-
tity confusion during initialization is assumed to have no cost
and can be corrected by the tracker by incorporating more
temporal data.

With our assumptions, a greedy combinatorics algorithm can

determine multiple targets withΩ∗ = PL ×
(

M
L

)

× K

complexity. Below, we show that we can decrease the compu-
tational complexity of a greedy combinatorial algorithm byan

additional order of magnitude by allowing ourselves to miss
a ROI at a fractional probability. Note that, the probability of
missing the same target over a many consecutive batches ex-
ponentially goes to zero, as we gather more data. We further
discuss the failure modes of the random sampling algorithms
and also suggest improvements later.

RANSAC

Introduced by Fischler and Bolles in [14], RANSAC is a hy-
pothesis generation and verification algorithm for robust es-
timation. It repeatedly generates solutions using a minimal
set of data points and then tests the support of each solution
from the complete set of correspondences. For RANSAC, the
number of correspondences within the gate of the proposed
solution (i.e., track template in Figs. 3, 4, and 5) defines the
support of the putative correspondences.

The gate sizeσg determines the match acceptance and is usu-
ally chosen in a conservative way to minimize the number
of incorrect mismatches. Note that the matching process is
based only on proximity and and similarity. Hence, it is quite
likely to have many mismatches in the presence of clutter,
missed data, and presence of multiple targets, which are suf-
ficient to render any least squares estimator incapacitated.

To determine our state vector in (1), we only needL = 2
bearing estimates since two points are sufficient to determine
a line on a 2D-plane. Given a putative solution that is de-
termined by randomly chosenL-points (L≪ M ), RANSAC
algorithm counts the set ofinliers that fall into the gate of
the track template. Intuitively, if one of the chosen pointsis
an outlier, the line will not gain much support (e.g.,R4 in
Fig. 5). However, if the chosenL-points are inliers (e.g., any
two points withinRi, i = 1, 2, 3), a ROI is determined from
only one iteration.

Let I be the number of RANSAC iterations required to deter-
mine a ROI with probabilityp. Let us assume that in the data
there is only one target and the rest of the data are outliers.Let
ǫ denote the proportion of outliers and henceq = 1−ǫ denote
the probability that any selected point is an inlier. Then, after
I selections, the probability that all the selections are outliers
are given by

1 − p = (1 − qL)I . (6)

Hence, the number of iterations required to pick an inlier set
is given by

I =
log(1 − p)

log (1 − (1 − ǫ)L)
. (7)

Table 1 determines the number of RANSAC iterations re-
quired to ensure that a ROI is picked withp = .99 proba-
bility. In this example, we haveM = 10 batch samples with
P = 10 peaks,L = 2, and there is only one target.

To compare the complexity of the RANSAC’s operation, as-
sume that there is no missing bearings in the target track, and
hence there are 10 bearings corresponding to the target and
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Table 1. RANSAC IterationsI for p = .99

Sample size Proportion of Outliersǫ

L 50% 55% 60% 65% 70% 75% 80% 85% 90%
2 17 21 27 36 49 72 113 203 459
3 35 49 70 106 169 293 574 1363 4603
4 72 110 178 305 567 1177 2876 9095 46050
5 293 553 1123 2503 6315 18861 71954 404293 4605168

we have90 outliers, corresponding toǫ = .90. An exhaustive

search over all the bearings require
(

10
2

)

× 102 = 4500

cases to search, whereas RANSAC only considers 459 cases
to determine the ROI withp = .99 probability. This corre-
sponds to an order of magnitude improvement in computa-
tion. Moreover, when the targets have missing bearings, the
combinatorial approaches need to further process the clusters
to link them temporally [7, 8]. On the other hand, RANSAC
declares a ROI even with missing bearings since the support
is not affected much by a few missing bearings. The pseudo
code for the RANSAC algorithm is given in Table 2.

Table 2. RANSAC Algorithm

1. Randomly select L data points from the bearing batch data and
instantiate a solution xk using (3).

2. Determine the number of inlier points n that are within the σg

gate of the solution (for visualization, refer to Fig. 4).
3. If the number of inliers are above some threshold α, e.g.,

α = M − 1, re-estimate the solution xk using all the inlier points
using (3) and terminate.

4. If the number of inliers are less than the threshold ω, re-select a
new set of L-points randomly and repeat above.

5. After I trials, use the data set with the number of largest
consensus inlier set, and estimate the solution xk by using (3).

A few remarks are in order here. Note that the number of iter-
ationsI depends on the proportion of the outliers and not the
actual number of outliers. Therefore, the required computa-
tion is still manageable even if the number of outliers is large.
Moreover, increasing the number of samples used to instan-
tiate a solutionxk more than the number of the minimal set
is outweighed by the severe increase in the computation and
is not desired. Note that once the inlier set is extended, the
actual solution is found by using all the inliers.

To further save computation, it is natural to terminate the
RANSAC loop if the number of inlier points are above some
threshold, denoted asω. This threshold can be judiciously set
asα = ⌈ǫ∗M⌉, whereǫ∗ > .5 is the estimate of the worst
case proportion of the outliers. The worst case scenario is
that we have only one target and the rest of the data belongs
to clutter. Hence, if we haveP = 8 beamformer peaks and
M = 10 batch size, thenǫ∗ = 7/8, andα = ⌈7/8 × 10⌉ = 9
can be used to stop.

RANSAC implicitly assumes that the outliers form a uniform
distribution in the bearing space. This is clearly not the case

when we have multiple targets. However, the presence of
multiple targets actually implies that it is more likely to find
one target in one application of RANSAC to the batch when
we notice that we are not looking for a specific target at any
given application of RANSAC. Determination of any one tar-
get suffices. When we find a ROI in the batch, we delete the
bearings corresponding to the ROI and rerun RANSAC on the
residual batch data. In this subsequent iteration of RANSAC,
the number of outliers with respect to the number of targets
is reduced and hence it is easier to find a new target, if there
is any left.

A confusion issue arises when the bearing tracks of two tar-
gets are in close proximity: i.e., crossing or parallel bear-
ing data. We illustrate two cases for two targets crossing in
bearings, where RANSAC may result in two incorrect ROIs
R

′
1 andR

′
2. Most of the times, RANSAC may resolve these

cases. However, it is difficult to determine when it does not.
During tracking, a guidance from the particle filter is used to
resolve such cases. We further discuss how we can guide the
sampling algorithms when we discuss NAPSAC. These cases
are not important during initialization, since there is no need
to assign an identity during initialization.

RANSAC may result in a false alarm when the clutter points
are aligned according to the state update function in (3). For
our state vector, this happens when the clutter points approx-
imately form a line. Analytical derivation of the probability
that random points in the bearing batch forms a line can be
done. However, it is cumbersome and does not provide any
additional insight. In the simulations section, we show that
the false alarm probability is approximately linear with the
gate sizeσg . It also increases exponentially as the number of
beamformer peaksP increase and decreases exponentially as
the number of batch samplesM increase.

Finally, the output of RANSAC is well suited for the parti-
cle filter. The algorithm outputs multiple ROIs with detec-
tion probabilitiesκ, false alarm probabilities (corresponding
to a spurious ROI), and the miss data estimate in each ROI.
Hence, the RANSAC output can also be used in the proposal
function stage of the particle filter to better sample the multi
target posterior distribution.

MSAC

By using the redescending M-estimator [19, 21], a modest
computational benefit can be achieved by using MSAC: m-
estimator sample consensus. MSAC determines ROIs by
minimizing the following cost function:

JMSAC =
∑

all points i

ρ(e2i ), whereρ(e2) =

{

e2, e2 < σ2
g ;

σ2
g , e2 ≥ σ2

g .

(8)
ande is the distance of the points to the putative solution.

MSAC does not explicitly determine any inlier set until af-
ter its execution is over. Hence, its computational complexity
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Figure 6. When the bearing tracks of two targets approach
each other, RANSAC may confuse the ROIs. Most of the
times, RANSAC can correctly initialize the ROIs. However,
sometimes the tracks are confused. In those cases, track in-
formation from the particle filter can be used to resolve the
confusion, while sampling the ROIs.

is less than RANSAC, which specifically determines an in-
lier set and records its count. However, where we can use
an intuitive counting condition to stop RANSAC’s execution,
the MSAC stopping condition needs to use statistical argu-
ments. Note that the cost function is a summation of a chi-
squared distribution withM degrees-of-freedom, and a sum
of squared-uniform random variables. Although it is possible
to analytically determine a threshold corresponding to a given
confidence level, we also need to consider missing data cases.
Instead, we use the RANSAC’s stopping condition, based on
counting inliers, for MSAC in the simulations. The pseudo
code for the MSAC algorithm is given in Table 3

Table 3. MSAC Algorithm

1. Randomly select L data points from the bearing batch data and
instantiate a solution xk using (3).

2. Determine the cost function JMSAC using (8). Also determine the
number of inliers as in RANSAC.

3. If the number of inliers are above some threshold α, e.g.,
α = M − 1, re-estimate the solution xk using all the inlier points
using (3) and terminate.

4. If the number of inliers are less than the threshold ω, re-select a
new set of L-points randomly and repeat above.

5. After I trials, use the data set with the number of largest
consensus inlier set, and estimate the solution xk by using (3).

NAPSAC

In RANSAC or MSAC, we randomly sampleL points to in-
stantiate a solution. When the number of data points is large
or when we would like to sample multiple targetsjointly, e.g.,
two at a time, the probability of sampling a set of inliers de-
creases exponentially due to increase in the dimensionality of
the sampling problem. NAPSAC algorithm specifically ad-
dresses these issues by pseudo-randomly generating its hy-
potheses. NAPSAC stands for N-adjacent points sample con-
sensus [22].

When we have multiple targets in the bearing batches, the
corresponding target bearings lie on manifolds that are more
likely to adjacent to other inlier points in a ROI than to
the outliers or pseudo-outliers, corresponding to other ROIs.
Hence, if the first selected point is an inlier, the data points
that are close to it have higher probabilities of being inliers.
On the other hand, if an outlier point is selected, then the ad-
jacent points arelesslikely to be inliers. However, if, in fact,
there areK targets in the bearing batch, then there will be at
leastK regions, where sampling close to the initial random
sample improves over an unbiased random selection. This
advantage comes at the expense of more calculations.

Table 4. NAPSAC Algorithm

1. Randomly select 1-data point from the bearing batch data. Sort
all the remaining points in increasing Eucledian distance from this
point.

2. Use the absolute value of a Gaussian distribution with zero mean
and a standard deviation kσg , where k is a value between M/4
and M/2. Select a new point in the sorted list that is closest to
this random variable.

3. Repeat until L points are chosen and instantiate a solution xk

using (3).
4. Count the number of inliers (or alternatively determine the cost

function JMSAC using (8)).
5. If the number of inliers are above some threshold α, e.g.,

α = M − 1, re-estimate the solution xk using all the inlier points
using (3) and terminate.

6. If the number of inliers are less than the threshold ω, re-select a
new set of L-points as above.

7. After I trials, use the data set with the number of largest
consensus inlier set, and estimate the solution xk by using (3).

In Table 4, we list the pseudo code for NAPSAC. On line 2,
we show how to prioritize samples based on their proximity
to the originally chosen random point on line 1. This strat-
egy provides a guidance based on proximity. Other generic
guidance methods exist using RANSAC for computer vision
problems [39]. For our specific problem, when we are look-
ing for a new ROI corresponding to a target that is already
being tracked, we can exploit the tracking information. This
is achieved by weighting points according to their distances
to the updated track information. This way, the points that are
closer to the proposed track are chosen more often than oth-
ers while determining a ROI. Even if the target maneuvers,
its ROI can be easily easily determined since we are choosing
the points randomly based on proximity.

5. PARTICLE FILTER

In this section, the details of the particle filter block in Fig. 1
are discussed. We first discuss the observation equation and
then describe the joint probabilistic density associationprin-
ciple.

7



Observation Equation

The observationsyt,f = {yt+mτ,f(p)}M−1
m=0 consist of all the

batch DOA estimates from the beamformer block indexed by
m. Hence, the acoustic data of lengthT is segmented intoM
segments of lengthτ . The batch of DOA’s,yt,f , is assumed to
form an approximately normally distributed cloud around the
true target DOA tracks (Fig. 2). In addition, only one DOA
is present for each target at eachf or the target is missed.
Multiple DOA measurements imply the presence of clutter or
other targets. We also assume that there is a constant detec-
tion probability for each target denoted byκf , where depen-
dence onf is allowed. An additional partition dependency is
also allowed, i.e.,κf

k , since RANSAC may have a different
detection probability when it detects the targets one at a time
using a constant number of iterations.2

The particle filter observation model also includes a clut-
ter model because beamformers can produce spurious DOA
peaks as output (e.g., the sidelobes in the power vs. angle pat-
terns) [28]. To derive the clutter model, we assume that the
spurious DOA peaks are random with uniformspatialdistri-
bution on the angle space, and are temporally as well as spa-
tially independent. In this case, the probability distribution
for the number of spurious peaks is best approximated by the
Poisson distribution with a spatial density [35, 40]. More-
over, the probability density function (pdf) of the spurious
peaks is the uniform distribution on[0, 2π). However, since
the number of peaks in the beamformer output can be user
defined (P ), and that the beamformer power vs. angle pattern
has smoothness properties, we use the following pdf for the
spurious peaks:

p(θ|θ is spurious) =
γ

2π
, (9)

whereγ > 1 is a constant that depends on the maximum
number of beamformer peaksP , the beamformer itself (i.e.,
the smoothness of the beamformer’s steered response), and
the number of targetsK. Equation (9) implies that the natu-
ral space (or similarly volume) of the clutter is reduced by a
factor ofγ because of the characteristics of our specific sys-
tem.

We now derive the data-likelihood function using the joint
probabilistic data association arguments found in [35]. Sim-
ilar arguments for active contour tracking that is relevantto
this paper are found in [41]. Consider the output of one batch
periodym,f = yt+mτ,f(p), wherep = 0, 1, . . . , Pm,f for
eachf andm. The DOA’sym,f may belong to none, or some
combination, or all of the targets in the particle filter parti-
tions. Hence, we first define a notation to represent possible
combinations between the data and the particle filter parti-
tions to effectively derive the observation density.

2In addition, recognition/identification may have an impacton choice of
the acoustic frequencies. Hence, some targets may have a lower detection
probability at the recognized target frequencies. The partition dependence
of the detection probability can address this issue. It alsoallows the particle
filter to guide the beamformer block for improved detection.

Define a setIn that consists ofn-unordered combination
of all K-partitions of the particle filter state vector:In ∈
{KCn}, whereKCn is the set of alln-unordered outcomes
fromK possibilities. DefineKCn as the number of elements
of the setKCn. Hence, each element ofIn hasn numbers,
and there are a total ofKCn elements. For example, when
K = 3 and n = 2, then I2 = {{1, 2}, {1, 3}, {2, 3}},
each element referring to subset of the individual parti-
tions of the particle state vector. We refer to the individ-
ual elements of this set using the notationIn(j), where
j = 1, . . . ,KCn. Hence,I2(2) = {1, 3}. Then, denote
nxt(j) ∈ {xi(t)|i ∈ In(j), xi(t) ∈ xt} as a single realiza-
tion from the setIn. Using the same example,2xt(3) =
[

xT
2 (t), xT

3 (t)
]T

=
[

x̂T
1 (t), x̂T

2 (t)
]T

. Hence, the set
nx̂t(j) contains the same elements of the setnxt(j), re-
indexed sequentially from1, . . . , n.

We denoteπn,j(ym,f ) = p(ym,f |nxt(j)) as the probability
density function of the data, where onlyn-DOA’s belong to
the targets defined by the partitions ofnxt(j). Hence, when
n = 0, all data is due to clutter:

π0,1(ym,f ) =
( γ

2π

)Pm,f

(10)

The probability densityπn,j(ym,f ) can be calculated by not-
ing that (i) there arePm,f !/(Pm,f − n)! ordered ways of
choosing DOA’s to associate with then-subset partitions, and
(ii) the remaining(Pm,f − n)-DOA’s are explained by the
clutter. Therefore,

πn,j(ym,f ) =
(Pm,f − n)!

(

γ
/

2π
)Pm,f−n

Pm,f !
×

Pm,f
∑

p1 6=p2 6=...6=pn

n
∏

i=1

ψt,m,f

(

pi

∣

∣

∣
x̂i

)

,

(11)

wherex̂i is in nxt(j), and the functionψ is derived from the
assumption that the associated target DOA’s form a Gaussian
distribution around the true target DOA tracks:

ψt,m,f

(

pi

∣

∣

∣
xi

)

=
1√

2πσ2
θ
(m, f)

exp

{

−
(

hθ
mτ (xi(t)) − yt+mτ,f (pi)

)2

2σ2
θ
(m, f)

}

,

(12)

where the superscriptθ on the state update functionh refers
only to the DOA component of the state update andσ2

θ(m, f)
can be supplied by the beamformer block.

Note that the DOA distribution (12) is not a proper circular
distribution for an angle space. For angle spaces, the von
Mises distribution is used as a natural distribution [42]. The
von Mises distribution has a concentration parameter with
a corresponding circular variance. It can be shown that for
smallσ2

θ << 1 (high concentration), the von Mises distribu-
tion tends to the Gaussian distribution in (12) [43]. Because
the von Mises distribution has numerical issues for small
DOA variances, the Gaussian approximation (12) is used in
this paper. Hence, special care must be taken in the imple-
mentation to handle angle wrapping issues.
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The Gaussian in (11)ψ(·|·) are directly multiplied, because
the partitions are assumed to be independent. To elaborate,
considern = 2 andj = 3 from the example ofI2 above:

π2,3(ym,f ) ∝

Pm,f
∑

p1=1

Pm,f
∑

p2=1,p1 6=p2

ψt,m,f

(

p1

∣

∣

∣
x̂1

)

ψt,m,f

(

p2

∣

∣

∣
x̂2

)

∝

Pm,f
∑

p1=1

Pm,f
∑

p2=1,p1 6=p2

ψt,m,f

(

p1

∣

∣

∣
x2

)

ψt,m,f

(

p2

∣

∣

∣
x3

)

.

(13)

Hence, the densityπ2,3(ym,f ) is a Gaussian mixture that
peaks, when the updated DOA components of the partitions 2
and 3 (hθ

mτ (·)) are simultaneously close to the observed. Note
that Eqn. (13) guarantees that no measurement is assigned to
multiple targets simultaneously.

Given the densitiesπn,j , the observation density function can
be constructed as a combination of all the target association
hypotheses. Hence, by adding mixtures that consist of the
data permutations and the partition combinations, we derive
the observation density:

p(yt|xt) =

F
∏

f=1

M−1
∏

m=0

K
∑

n=0

κf
n,K

KCn

KCn
∑

j=1

πn,j(ym,f ). (14)

In Eqn. 14, the parametersκf
n,K (

∑

n κ
f
n,K = 1) are the el-

ements of a detection (or confusion) matrix. For example,
whenK = 2, κf

0,2 is the probability that no target DOA is

in the beamformer output, whereasκf
1,2 (κf

2,2) means that 1
(2) target DOA(’s) are present in the beamformer output at
eachf . These fixed values are provided by the random sam-
pling block. Moreover, when two partitionsk1 andk2 have
close DOA tracks and are about to cross, it is possible that
the beamformer’s Rayleigh resolution is not enough to out-
put two DOA’s for both targets. Then, the particle filter can
provide a guidance, by using the current state estimates, to
the beamformer and the random sampling blocks to resolve
those cases.

Particle Filter Proposal Function

To demonstrate the performance of the system, we use only
the state update function as the proposal function of the par-
ticle filter. We propose each target partition independently
to cope with the curse of dimensionality in sampling high di-
mensions. Note that once the proposal function is formulated,
the rest of the particle filter structure is well-defined: weight-
ing and resampling. In weighting stage, the approximate pos-
terior distribution is used when targets are sufficiently apart.
When they are close, we use the joint posterior.

Algorithm Details

Pseudo-code of the particle filter algorithm is given in Ta-
ble 5. The filter implementation employs an efficient resam-
pling strategy, named “deterministic resampling”, first out-
lined by Kitagawa [44]. This resampling strategy is preferred

because of (i) the efficient sorting of the particles and (ii)
the number of random number generations. The determin-
istic resampling strategy also has known convergence prop-
erties [44]. Faster resampling schemes without convergence
proofs are also available [45] and these could make a differ-
ence in the filter computation, especially whenK = 1.

Table 5. Particle Filter Tracker Pseudo-Code

Given the observed datayt,f = {yt+mτ,f (p)}M−1
m=0 in [t, t+ T ), do

1. Fori = 1, 2, . . . , N
• Fork = 1, 2, . . . ,K

samplex(i)
k

(t) ∼ p(x
(i)
k

(t)|x(i)
k

(t− T )).

• Formx
(i)
t =

[

x
(i)
1 (t), x

(i)
2 (t), . . . , x

(i)
K

(t)
]T

.

2. Calculate the weights

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t ),

wherep(yt|x(i)
t ) is fully joint observation density, given by Eqn. (14).

3. Normalize the weights:

w
(i)
t =

w∗
(i)
t

∑

i w
∗
(i)
t

.

4. Make estimation:E{f(xt)} =
∑N

i=1 w
(i)
t f(x

(i)
t ).

5. Resample the particles:
• Heapsort the particles in a ascending order according to their

weights:x(i)
t → x̃

(i)
t .

• Generateω ∼ U [0, 1).
• For j = 1, 2, . . . , N

a. u(j) = j−ω
N

,

b. Findi, satisfying
∑i−1

l=1 w̃
(i)
t < u(j) ≤

∑i
l=1 w̃

(i)
t ,

c. Setx(j)
t = x̃

(i)
t .

Finally, the partitions are managed by the specific interaction
between the particle filter and the random sampling block.
New partitions are introduced into the particle filter, using the
distribution supplied by the random sampling block. The par-
ticle filter deletes partitions at either the proposal stageor af-
ter estimation, when there are not enough bearings within the
gate of the mode estimate. Lastly, note that our implementa-
tion of the particle filter does not make partition associations
such as partitionsplit or merge. We leave these decisions to a
higher level fusion algorithm in the sensor network.

6. SIMULATIONS

Demonstration of the Random Sampling Block

Figures 7-13 show the performance of the random sampling
algorithms under varying conditions. Each figure is created
by a Monte-Carlo run of size 1000. Based on these figures,
the authors subjectively rank the algorithms in the following
order in usefulness: 1) RANSAC, 2) MSAC, and 3) NAP-
SAC. Although we were expecting better performance from
NAPSAC, the assumptions of NAPSAC are not matched by
our data. MSAC performs arguably better than RANSAC
in terms of root-mean-square error and false alarm proba-
bility. However, its results are not as intuitive as RANSAC,
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which is based on the number of inliers as opposed to their m-
estimator statistics. In the next subsection, we show how to
extend the RANSAC idea to cope with bearing observations
corresponding to multiple frequencies.
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(a) RANSAC
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(c) NAPSAC

Figure 7. The number of iterations to converge to the true
number of targets is shown for (a) RANSAC, (b) MSAC, and
(c) NAPSAC.
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Figure 9. The false alarm rate of each of the algorithms
exponentially decay to zero as we increase the number batch
samplesM .
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Figure 10. As we increase the number of peaksP , we allow
more clutter into the random sampling algorithms. Hence, the
false alarm rate shows an increasing trend asP increases. In
this example, the threshold for declaring a target isM − 1,
whereM = 10. Hence, the false alarm rates are lower than
the ones shown in Fig. 8.

Field Data Results

A uniform circular acoustic array with 8 microphones with 1
meter radius is used to collect the acoustic data for a five ve-
hicle convoy at the Aberdeen Proving Grounds. The acoustic
data sampling rate wasFs = 1024Hz. The convoy consisted
of two military Hummers (HMMV) and three commercial
sports utility vehicles (SUV), traveling on gravel on an oval
track. Detection and tracking of the commercial vehicles pre-
sented a difficult challenge because the commercial vehicles
were in between the two louder military vehicles, hence they
were acoustically suppressed (Fig. 14). Hence, this presented
an opportunity to test our tracking system. Our results for
different beamformer outputs are shown in Fig. 15.

One of the main problems while processing the field acous-
tic data is getting reliable DOA estimates in multi target sce-
narios. We observed that the beamformer would only output
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Figure 11. We compare the average run times of each of
the algorithms with (solid lines) and without a stopping con-
dition (dashed lines) in their iterations. Without the stopping
condition, the algorithm runs a predetermined number of iter-
ations. For the solid lines, we let the algorithms run a full 200
iterations. For the dashed lines, the algorithms stopped them-
selves when they found a ROI with number of inliers greater
than or equal toM − 1 with M = 9. The stopping condi-
tion allows us to save computation with no penalty. Also, the
average run times exponentially increases with the number of
iterations.
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Figure 12. The variation of the run times are demonstrated.
(a-c) Without stopping condition. (d-f) With stopping condi-
tion.
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Figure 13. The estimation performance of the random sam-
pling algorithms are compared. It is seen that RANSAC and
MSAC performs similarly. NAPSAC performs the worst.
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Figure 8. (a-c) The detection probability (solid lines) and the false alarm probabilities (dashed lines) are shown for the random
sampling algorithms for varying gate sizeσg. Note that for this particular case, the bearing data noise is changed between 1
to 10 degrees to show the effect of the model mismatches. Our threshold for accepting a ROI is at leastM/2 + 1 = 6 peaks.
(d-f) The receiver operating characteristics (ROC) is shown. In general, ROC curves are always concave and non-decreasing by
construction. Hence, some of the ROC curves in the plots exhibit uncharacteristic behaviors. Possible reasons are the mismatch
of the gate size and the bearing variance, and the presence ofclutter.

DOA estimates corresponding to a subset of the targets. Af-
ter careful investigation, it was determined that the acoustic
signatures of the weak targets were being suppressed by the
louder ones. To detect more targets, we modified the beam-
former to use up to 10 frequencies and to also select several
peaks in the steered frequency response. The beamformer
also used multiple snapshots of data. These modifications
result in the ability to detect silent targets; however, it sub-
stantially increased the amount of clutter.

We modified the random sampling block to cope with the
presence of multiple observations per target. Moreover,
since the number of peaks could change from one data set
to another, we formulated adaptive thresholds to accept the
RANSAC ROI output and declare a target. A number of mea-
sures are taken. The first measure is to put a minimum bound
on the number of batch indexes, in which inliers are found.
This is to ensure the DOA estimates are spread over the en-
tire batch of data as one would expect from an actual tar-
get. A value of 85% of the number of batch indexes is used.
The next measure is to put a lower limit on the total number
of inliers found by the RANSAC block. Hence, we assume
that the maximum number of targets our system would track
is less than the number of microphones in the acoustic ar-
ray and compute the number of DOA estimates per target in
a scenario with the maximum number of targets. The third

measure is an upper limit on the gradient of the line found
by RANSAC. After taking into consideration real world con-
straints of vehicle motion and observing the field data, it was
determined that a change in more than 6 degrees per batch
index would not be considered a target. Similar thresholds
were used to decide when to delete targets.
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Figure 14. Time-frequency plot of the acoustic signal is
shown. The dots are the narrow-band frequencies used by
the beamformer block to determine candidate target bearings.

Our system was able to robustly deal with the clutter and cor-
rectly track the convoy as can be seen in Fig. 15. There are a
few spurious targets due to the persistence of the beamformer
sidelobes. However, these sidelobes have a well understood
characteristics and it is possible to detect targets that corre-
spond to the power leakage due to the sidelobes. For the parti-
cle filter, we used 2500 particles since we did not incorporate

11



the ROI processing in our proposal stage. As future work, we
will incorporate the ROI processing to increase the efficiency
of our particle tracker. The gate size is judiciously chosento
be 9 degrees. The gate size can also be chosen adaptively by
using a bank of random sampling blocks. We are currently
investigating how to statistically and automatically infer the
results of such random sampling banks.

7. CONCLUSIONS

In this paper, we demonstrated the application of RANSAC,
MSAC, and NAPSAC algorithms for processing region-of-
interests to track multiple targets using bearing measure-
ments. We showed that each of these algorithms are well
suited for ROI processing in conjunction with a tracker.
Among the random sampling algorithms, we determined that
RANSAC is the most useful because of its performance and
its flexibility to also handle multi frequency target tracking
case. Our tracking results show significant promise in the ROI
processing algorithms proposed in this paper since a simple
bootstrap particle filter could handle a difficult convoy sce-
nario.
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Figure 15. (a) The MUSIC beamformer results are shown for the 10 strongest frequencies, where we only picked the highest
peak in each power vs. angle pattern. Corresponding RANSAC (b) and particle filter results (c) for the bearing batches. (d)
The MUSIC beamformer results are shown for the 5 strongest frequencies. This time, we used the 4 highest peaks in each
power vs. angle pattern. Corresponding RANSAC (e) and particle filter results (f) for the bearing batches. (c) The MUSIC
beamformer results are shown for the 10 strongest frequencies. This time, we used the 4 highest peaks in each power vs. angle
pattern. Corresponding RANSAC (h) and particle filter results (i) for the bearing batches. Note that the actual number oftargets
is 5.
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