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Abstract—n this paper, we present an acoustic direction-of-ing observations to form region-of-interests (ROI) to bedis
arrival (DOA) tracking system to track multiple maneuverin by a particle filter tracker. The ROI processing is becoming a
targets using a state space approach. The system consistspofpular method for trackers based on tteek-before-detect
three blocks: beamformer, random sampling, and partiele filconcept [7—10].

ter. The beamformer block processes the received acoustic

data to output bearing batches as point statistics. The rarFFhe ROI processing idea relies on the observation that tem-
dom sampling block determines temporal clustering of theporally consistent data, e.g., bearings, indicate theemes
bearings in a batch to determine region-of-interests (ROIs of actual targets, when we assume that the clutter observa-
Based on thdrack-before-detecapproach, each ROI indi- tions are uniformly distributed in the state space. Hence,
cates the presence of a possible target. We describe threering tracking, each new ROI in the observed data can be
random sampling algorithms called RANSAC, MSAC, andused to address a fundamental issue for target tracking al-
NAPSAC to use in the random sampling block. The parti-gorithms in a statistical framework: initialization. Umfo-

cle filter then tracks the targets via its interactions wite t nately, forming ROIs is a set covering problem, which is NP-
beamformer and the random sampling blocks. We presenteomplete [11-13].

computational analysis of the random sampling blocks and

show tracking results with field data. Hence, we present three robust and efficient random sam-
pling algorithms for ROI processing: RANSAC for random
sampling consensus, MSAC for m-estimator sampling con-
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1 INTRODUCTION t it tite e e aieaie e 1 sus. These algorithms are commonly applied to motion seg-

2 TRACKERDESIGN.....coiiiiiiiiiiiiiiinnn, 2 Mmentation problems in computer vision [14-22]. We show

3 BEAMFORMERBLOCK .............ccoivii.... 4 the appl|cat|on ofthese a!gorlthms tp our mult|.target bugar_
tracking problem. In addition, we discuss their computatio

4 RANDOM SAMPLING FOR REGION-OF-INTEREST complexity and analyze their statistical behavior.

PROCESSING ...\ 4

S5 PARTICLEFILTER........ooooiiii 7 We also present a particle filter algorithm to track the DOA's

B SIMULATIONS . o\ttt ittt i 9 of multiple targets, using an acoustic node that contains an

7 CONCLUSIONS ..ttt e eeans 12 array of microphones with known positions. Each particle in

8  ACKNOWLEDGEMENTS. . ..o 12 thefilter is created by_ concatenating the state vec.:t.or foln ea
target, called a partition. For example, the partition af th

1. INTRODUCTION kth target has a state that consists of the DQ#¢) and the

DOA rate )y (t) of the kth target. The total number of tar-
In this paper, we discuss automated traCking of the dirpetio gets (or partitionsyf is determined by a random Samp“ng
of-arrival (DOA) angles of multiple targets using an acaust plock based on the ROI processing. Hence, giketargets,
array in the presence of noise or interferers [1-6]. We prtese 3 particle hags partitions where each target, and hence each
three random sampling algorithms to temporally clusterbea partition, is assumed to be independent. Target motions are
modeled as locally linear within an estimation period of du-
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crete state samples (particles) distributed accordinggaib-
derlying distribution (as explained by the state spacdieeit
directly or by proper weighting [23, 24]. Hence, the filtenca
approximate any statistics of the distribution arbitsasikc-
curately by increasing the number of particles with proven
convergence results. In the particle filtering framewohie t
data association problem is undertaken implicitly by tlaest
space model interaction. However, the particle filter ssffe Y
from the curse of dimensionality problem, as the number of
targets increases [25]. To improve the efficiency of the algo
rithm, various methods are proposed, such as the partitjoni
approach [2, 26], or other Bayesian approaches [27]. 1‘
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Our particle filter uses multiple DOA's to determine the stat Y
vector, based on an image template matching idea. We denote ] , 01(t) Orc, ()
i . Particle Filter Block [ 1 } [ Kt }
the DOA collection as a batch. In our problem, a DOA image O1(t) | | Ok, (1)
is first formed when a batch of DOA observations are received

from a beamformer that processes the received acoustic daﬁ‘gure 1. Tracker mechanics is demonstrated using three

att second intervals. Then, image templates for target tracks_~ . . .
) : . asic blocks. The beamformer block monitors the received
are created using the state update function and the tanget pa L . g
acoustic signals to adapt to their frequency charactesiir

tion state vectors. By determining the best matching te“?p'a better bearing estimation. It calculates a batch of DO/Ax th

(e.g., probable target track), the target state-vect@eaii- prm point statistics for the random sampling and partidie fi

mated. Because the observations are treated as an image, [ .
s . erblocks. The random sampling block searches for temporal
data association and DOA ordering problems are naturally al

; ) 7 “clusters in the bearing batch to determine region-of-esesr
leviated. Moreover, by assuming that the DOA observatlon?ROIS). Consistent ROIs are declared as targets by the parti
are approxma_tely normally dlstrlb_uted arounq_ the trugear cle filter block. The patrticle filter estimates the trackirasp
DOA tracks, with constant DOA miss-probability and clutter terior and can make various inferences (i.e., mean and mode
density, a robust particle filter tracker is formulated. estimates) o

The paper is organized as follows. Section 2 explains the me-
chanics of the automated tracking system for multiple targe
DOA tracking. Sections 3, 4, and 5 elaborate on the individ-estimation periods [3].
ual elements of the tracking system. Computer simulations
are shown in Sect. 6 to demonstrate the performance of thé@ general, locally linear motion models eliminate thissbia
algorithms. by simultaneously estimating the bearing with the target mo
tion parameters for the estimation periodlafConceptually,
2. TRACKER DESIGN this is equivalent to aligning the received acoustic daté wi

the motion parameters so that the data becomes statiomrary fo

We construct the tracking system mechanics (i) to compengering estimation purposes. But, this alignment process r
sate DOA estimation biases due to rapid target motion [3]jies heavily on the observation model and is computatignall

(i) to result in higher resolution DOA estimates than just o1y hecause the high volume of the acoustic data used for
beamforming [2-4], (iii) to be robust against changes in tar ggtimation. In this paper, we propose to use a beamformer
get signal characteristics, and (Iv) to automatically d&tge ey jn our system to buffer the variability in the observed

the number of targets. The tracker system consists of threg.stic signals to create a compressed and invariant point
blocks as illustrated in Fig. 1. Details of the individuadbks  g;asistics for our tracker block [5,29].

are given in the following sections. Below, we discuss the

elements of this design. Therefore, the beamformer block (Fig. 1) processes the

acoustic data, sampledA&t, at smallerintervals of = T'/M

We note that the main objective Qf our tracker is.to report(e_g_,M — 10), where the targets are assumed to be relatively
multiple target DOA's at some peridtl, after observing the  gationary (Fig. 2). The parametf is called the batch size.

acou'stic data at the node microphones. Quite often, targgi,js requces the number of acoustic data samples available
DOAs can change more than a few degrees during an esti, orocessing, resulting in a sequence of noisier DOA esti-

mation period, e.g., due to rapid target motion. Hence, if Wgates  However, these noisier DOA estimates are smoothed

were to just use conventional snapshot DOA estimation methy, yhe particle filter block, because a motion structure is im
ods (e.g., MUSIC, MVDR, etc.) for tracking the targets, theposed on the batch of DOAs.

bearing estimates become biased, because the receivesl data

not stationary [28]. This is intuitive, because these mésho \ye se the target bearirigand the bearing ratéin our state
estimate an average of the target angular spread during thgja tor to model the:th target = 1,..., K;, wherek, is



DOA

the number of targets at tint¢ motion to illustrate the ideas
in this paper:
_ | Ok(D)
Ik(t) - |: Gk(t) :| ’ (1)

where the DOA's are measured counterclockwise with respect
to thez-axis. The state vector for the particle filter is a con-

catenation of these targeartitions t4+T
t — time
T [ —

xe=[al(t) =3(t) ... 2k, ()] . (2) ¢ t+(M-1r

. ) Figure3. The random sampling and particle filter blocks use
The state update functlon_ is locally constant velocity niodee gtate update function to create target track templédtes.
for each target on its bearing: the figure, the solid line represents the true DOA track. Blac
- dots represent the noisy DOA estimates. The dashed line and
et +T) = hr (z0(t)) + us(?), (3) the dotted line represent the DOA tracks for the two proposed
whereuy (t) ~ N (0,%,) with £, = diag{o2,,02 , } and particles: andj. These tracks are ca!culated using the state
w0k update functiorh. Visually,ith particle is a better match than
e (on(1)) — O (t) + ék(t)T | " the jth particle; hence, its likelihood is higher.
0 (t)
) ) signals, assuming that the varying frequencies are narrow-
In [4, 5], we discuss other state models to characterize Moyand. The tracker in [6] also incorporates an amplitude
tion. For our state vector, a batch of DOAs whgh > 2is  model for the signals. Because their probability densityaeq
built on the compressed statistics which is also sufficient f h5rgwired to their observation model. Hence, a complete re-
the state vector, it achieves a significant reduction in a®mp ork of the filter equations would be required to track tar-
tational requirements. gets with e.g., wideband signal characteristics (e.gmfj6]
to [32]).

>~ DOA Batch ‘\ Clutter R

— } ‘ } ‘ ‘ »Time Figure 4. The random sampling block uses a gating oper-

< M7 — ation around the created target track templates. Solidigine
0 T 2T 3T the true DOA track. The DOA observations are shown with
Figure 2. Observation model uses a batch of DOA mea-dots. Given a gate size,, most DOAs should fall into the
surements, generated by the beamformer block. Note that thgate of the target track to declare a ROI.
DOA measurements are not necessarily ordered when they
are output from the beamformer. However, when the batcfThe second block in Fig. 1 addresses a fundamental issue for
of DOA's are treated as a bearing vs. time image, there is any target tracker: initialization and target detection.isl
natural ordering, which alleviates the multiple targetkinag  a random sampling block that efficiently localizes regidn-o
by the particle filter. interests (ROI) in the calculated bearing batches to déterm
the number of targets at each time. This block takes the bear-
When the received signal characteristics change, thecfgarti ing batches from the beamformer block and determiligs
filter tracker formulation is not affected because the beamthrough gating operation based on the target motions, as il-
former block absorbs the variabilities in the acoustic algn  lustrated in Figs. 3 and 4. The random sampling block de-
In the literature, various trackers use similar state-sgac  termines the ROI for each targete at a timesimilar to the
mulations as in this paper [2—-4]. The trackers presentedhatching pursuit idea [33]. That is, it first converges on a
in [2, 3] directly employ the classical narrow-band observa mode in the, possibly, multi-modal target posterior antssif
tion model, where targets exhibit constant narrow-band freout the corresponding DOA data. It then iterates to find other
guency characteristics [28, 31]. The tracker in [4] tries tomodes until stopping criteria are met. This block creates ne
adapt to varying time-frequency characteristics of thgdar partitions (targets) for the particle filter, which can delgs

3



own partitions. Conceptually, this initialization idearbés  the target signal characteristics.
equivalent totrack-before-detecapproach used in the radar
community [9, 10]. Finally, the choice of the parametefor beamforming is de-
termined by various physical constraints, including (it
The final block is an independent partition particle filter frequency range, (ii) target speed, and (iii) a target'sdfi
tracker that uses the generated ROI's by the random sante maneuver. For reasonable beamforming, at least twosycle
pling plot to propose particles for efficiency [2]. Our parti of the narrow-band target signals must be observed. Tlpis sti
cle filter does not use a Markov random field to penalize thailates that > 2/ F;,, whereF,;, is the minimum beam-
state update function as the targets approach each other (thorming frequency for the target. Moreover, to keep the wors
get interactions), since the target bearing may cross dven case beamforming bia®ounded for each DOA by an angle
the targets are not close in proximity. While calculating th threshold denoted by, we approximately have < g—D,
particle weights, the tracker uses the bearing batch daa fr g

- - Sath wheredmay is the maximum allowed bearing rate. Lastly, the
the beamformer block directly. The filter data-likelihoad-e target motion should satisfy the constant velocity assionpt

ploys the joint probability density assignment approackemvh during the output period’. For ground targets’ — 1s is a
targets are close to each other to better address theirata i a550nable choice. Note that at least two DOA estimates are
teractions [34, 35]. Note that the filter avoids any diredgda hecessary to determine the state vector. To improve the ro-
association thanks to the ROI processing by the random sam;,ciness of the tracker. we uaé > 5 to decrease the prob-

pling block. ability that the state is not observable due to missing DOA's

L _ Hence, the parameteris bounded by the following
The particle filter block does not constrain the number of tar

getsK that can be tracked by the filter. However, the number 2 < mm{g T } 5)
of targets that can be tracked is theoretically bounded &y th Finin '

number of microphones in the acoustic array [28]. Figure 1
also illustrates feedback paths (dashed lines) for guided s
pling or beamforming. Although not fully explored in this
paper, we note that when the number of targets increase (e.g.
K=10), the particle filter tracker can provide guidance f&¢t A region-of-interest (ROI) is defined as a cluster of any mea-
random sampling and the beamformer blocks for further comsurement sequence in time that is likely to be generated by a

Omax’ M

4. RANDOM SAMPLING FOR
REGION-OF-INTEREST PROCESSING

putational efficiency. target (Fig. 5). The number of ROIs in a bearing batch is a
strong indicator of the number of targets. In this sectioa, w
3. BEAMFORMER BLOCK describe the application of three random sampling methods

to determine the number of targets in bearing data batches,
ased on ROI processing. These three methods are named
ANSAC for random sampling consensus [14], MSAC for

Beamforming is the name given to a wide variety of array
processing algorithms that focus an array’s signal preces
ing capabilities in a particular direction [28]. Beamfomse

use the collected acoustic data to determine target DOAls anmd'.e stlm?tor. stampllnglconsensus [192],2an3vNAP_‘”SArC]Z North ¢
are called narrow-band beamformers if they use the classis jacent points sample consensus [22]. We will show tha

cal narrow-band array observation model [28, 31]. Beam_hese algorithms provide more efficient ways of clusterireg t

formers are wideband if they are designed for target signal ata tﬁ |n|t|ate|. Rdotls, \_/vh_:en ;:omkpared t(;)lother ;I%Ste”ng ap-
with broadband frequency characteristics [36]. There e a proaches applied to similar tracking problems (7, 8].

other beamformers that are designed for signals with timel-3 termining the ROI ing the bearing batch int
varying narrow-band frequency characteristics [37, 38]. etermining the S using n€ bearing balches as poin
statistics becomes a challenging problem in the face of out-

The beamformer block chooses a beamfomer for proces%i-ers and missing bearing observations. To solve this prob-

ing the acoustic data depending on the local characteisticc " efficiently, each of t_he ran_dom sampllng_procedures use
of the acoustic signals. That is, given the observed acustt §ma|| nl_meer O.f bearing estimates as fea5|ple and. eqlarges
signal and its time-frequency distribution, we choose an Opthls set with consistent data as much as possible whiletitera

timal beamformer to calculate target DOAs. For example,mgt‘erThg.so en al?ggg:?: f?) rre Seuocrﬁifrs'r:u:lr):oltj'zidslg mi?t/a(t:'(c))rr?-
we can choose multiple beamformers if the received acoustig*€" vision p 9 ; : 9 on,

signal shows both narrow-band and wideband charactesr.isticmOdel order selection, and multiple structure data regres-
The output of the beamformet. ; — {ye.mr.;() M—1ig 5 sion [14-20]. In this section, we show how to apply these
) - < mT,

DOA data cube withP,, ;-highest DOA peaks of%:é) beam- algorithms for tracking multiple targets using point sthtis.

former pattern (Fig. 2). In general, the number of DOA peak
P, ¢ at batch indexn and each frequency indgxshould be
gre:?\ter than _OI’ equal_to the number of targ«_itsln the sim- 1The bias is calculated by taking the angular average of tlyettarack.
ulations section, we fi¥’,, ; = P but the derivations below Hence, this bias also depends on the heading direction. dhet wase bias
explicitly show the dependance on and f. Note that the happens when the target heading and DOA sum up tdoreover, it is also

: : ! possible to analytically find an expected bias by assumirfgum heading
input of the particle filter has the same structure regasdiés direction, using a similar analysis done in [3].

ﬁn general, every possible sub set of data needs to be con-



2m Bearing o J Ry additional order of magnitude by allowing ourselves to miss
— -7 a ROl at a fractional probability. Note that, the probabitf
e o Ry missing the same target over a many consecutive batches ex-
R //’/ ponentially goes to zero, as we gather more data. We further
o erow2-%o-o9 Ry discuss the failure modes of the random sampling algorithms

and also suggest improvements later.

0 RANSAC
Batch Index Introduced by Fischler and Bolles in [14], RANSAC is a hy-
Figure 5. The circles are the DOA estimates in a batch.Pothesis generation and verification algorithm for robust e
We illustrate four ROIs in the figur®; (i = 1,...,4). The timation. It repeatedly generates solutions using a mihima

first three ROIs show a clustering of DOA sequences in timeset of data points and then tests the support of each solution
that are likely to be generated by targets, when we assuriéOM the complete set of correspondences. For RANSAC, the
that the target bearings slowly change along the batch indexUmber of correspondences within the gate of the proposed
The fourth ROIR., is not likely to be a target since it has Solution (i-e., track template in Figs. 3, 4, and 5) defines th
lesser number of bearings in its gate than the other ROIs argHPPOrt of the putative correspondences.

it covers a much larger bearing range in a short amount of ) _ )
time. The gate sizer, determines the match acceptance and is usu-

ally chosen in a conservative way to minimize the number

of incorrect mismatches. Note that the matching process is
sidered to determine a ROI. In the literature, this problem i based only on proximity and and similarity. Hence, it is quit
known as the set covering problem [11-13]. If we hdve likely to have many mismatches in the presence of clutter,
peaks for each batch of sizef, thenw = ( ™ ) cor- missed data, and presence of multiple targets, which are suf

= M - . . .
respondences need to be considered for determining a RCBF'em to render any least squares estimator incapacitated

with M samples. Furthermore, if there aké targets, then . .
P w 9 To determine our state vector in (1), we only neled= 2

a total of 2 = ( K ) ~ wi (by Sterling’s formula) cor-  pearing estimates since two points are sufficient to determi
respondences also need to be considered. This calculationd line on a D-plane. Given a putative solution that is de-
further complicated, when some ROIs have missing data. Faermined by randomly chosdirpoints (L < M), RANSAC
our problem: algorithm counts the set afliers that fall into the gate of

the track template. Intuitively, if one of the chosen poiists
« We first consider the minimum sufficient number of dataan outlier, the line will not gain much support (e.gR4 in
points and obtain a feasible solution. Liedenote the min-  Fig. 5). However, if the choseh-points are inliers (e.g., any
imum number of bearing samples required to determine thewo points withinR;, i = 1,2, 3), a ROl is determined from
state vectorr; using (3). By extending the solution using only one iteration.

MP

only L-points, we decrease the search size te ( I ) _ . _
« We note that determining ROIs is temporal estimationLef” be the number of RANSAC iterations required to deter-

problem, hence we only seek temporal correspondence%'neaRm with probability. Let us assume that in the data
M there is only one target and the rest of the data are outliets.

Therefore, we only need to consider= P x ( L e denote the proportion of outliers and hemce 1— ¢ denote

« When the targets are separated in the angle space, then g probability that any selected point is an inlier. Thetera
can determine ROIs one at a time by removing the bearing selections, the probability that all the selections ardienst
points corresponding to the determined ROl without effégti - are given by

the data of the other targets. l-p=(1- qL)I_ (6)

« When targets are close and they are already being tracked,

the tracking information can be used to guide the ROI samHence, the number of iterations required to pick an inli¢r se

pling. is given by
« When targets are close and they are not being tracked, no = log(1 —p) @)
specific identity is assigned to either target. Hence, an-ide ~log(1—(1—e)l)

tity confusion during initialization is assumed to have stc Table 1 determines the number of RANSAC iterations re-

?enrgp%argl t(;ztgorrected by the tracker by incorporating mor((aquired to ensure that a ROI is picked with= .99 proba-

bility. In this example, we havé/ = 10 batch samples with

. . . . . P = 10 peaks,L = 2, and there is only one target.

With our assumptions, a greedy combinatorics algorithm can P L y 9
; ; A * M . .

determine multiple targets with* = P* x ( L ) x K To compare the complexity of the RANSAC's operation, as-

complexity. Below, we show that we can decrease the compusume that there is no missing bearings in the target track, an

tational complexity of a greedy combinatorial algorithmdsy  hence there are 10 bearings corresponding to the target and



Table 1. RANSAC lterations/ for p = .99 when we have multiple targets. However, the presence of
multiple targets actually implies that it is more likely todi
[ Sample size | Proportion of Outliers: ] one target in one application of RANSAC to the batch when
50% 55% 60% 65% 70% 75% 80% 85% 90% . . ape
T 2 [ [ [ a2 | I3 203 x5 We notice that we are not looking for a specific target at any
%ot | i | ae | s | awr | sme | e | aww | given application of RANSAC. Determination of any one tar-
22 1 o | um | 28 | Goo | ool | rom | o | 2% get suffices. When we find a ROI in the batch, we delete the
bearings corresponding to the ROl and rerun RANSAC on the
residual batch data. In this subsequent iteration of RANSAC

. 10 5 the number of outliers with respect to the number of targets
search over all the bearings requ<re2 x 107 = 4500 ig reduced and hence it is easier to find a new target, if there
cases to search, whereas RANSAC only considers 459 casgsany left.

to determine the ROI witlp = .99 probability. This corre-
sponds to an order of magnitude improvement in computaa confusion issue arises when the bearing tracks of two tar-
tion. Moreover, when the targets have missing bearings, thgets are in close proximity: i.e., crossing or parallel bear
combinatorial approaches need to further process thesttust ing data. We illustrate two cases for two targets crossing in
to link them temporally [7, 8]. On the other hand, RANSAC pearings, where RANSAC may result in two incorrect ROIs
declares a ROI even with missing bearings since the suppoft’ andR),. Most of the times, RANSAC may resolve these
is not affected much by a few missing bearings. The pseudgases. However, it is difficult to determine when it does not.
code for the RANSAC algorithm is given in Table 2. During tracking, a guidance from the particle filter is used t
resolve such cases. We further discuss how we can guide the
sampling algorithms when we discuss NAPSAC. These cases
Table2. RANSAC Algorithm are not important during initialization, since there is reeed
to assign an identity during initialization.

[GEENANN Il

we haved0 outliers, corresponding to= .90. An exhaustive

1. Randomly select L data points from the bearing batch data and RANSAC may result in a false alarm when the clutter points

instantiate a solution z;, using (3). are aligned according to the state update function in (3). Fo
2. Determine the number of inlier points n that are within the oy our state vector, this happens when the clutter points appro
gate of the solution (for visualization, refer to Fig. 4). . . . L -
3. If the number of inliers are above some threshold o, e.g., imately form a line. Analytical derivation of the probabyli
a= J\/([ )— 1,dre-estimate the solution x;, using all the inlier points that random points in the bearing batch forms a line can be
using (3) and terminate. it ;
4. If the number of inliers are less than the threshold w, re-select a don.e.' Howev.er' itis Cumb.ersom.e and do.es not provide any
new set of Z-points randomly and repeat above. additional insight. In the simulations section, we showt tha
5. After I trials, use the data set with the number of largest the false alarm probability is approximately linear witteth

consensus inlier set, and estimate the solution x;, by using (3). gate sizeyg. It also increases exponentially as the number of

beamformer peak® increase and decreases exponentially as
the number of batch samplég increase.

A few remarks are in order here. Note that the number of iterfinally, the output of RANSAC is well suited for the parti-
ations/ depends on the proportion of the outliers and not thegle filter. The algorithm outputs multiple ROIs with detec-
actual number of outliers. Therefore, the required computation probabilitiess, false alarm probabilities (corresponding
tion is still manageable even if the number of outliersigéar  to a spurious ROI), and the miss data estimate in each ROI.
Moreover, increasing the number of samples used to instan{ence, the RANSAC output can also be used in the proposal
tiate a solutionr;, more than the number of the minimal set function stage of the particle filter to better sample thetmul
is outweighed by the severe increase in the computation angrget posterior distribution.

is not desired. Note that once the inlier set is extended, the

actual solution is found by using all the inliers. MSAC

To further save computation, it is natural to terminate theBY Using the redescending M-estimator [19, 21], a modest

RANSAC loop if the number of inlier points are above some 0Mputational benefit can be achieved by using MSAC: m-
threshold, denoted as This threshold can be judiciously set €Stimator sample consensus. MSAC determines ROIs by
asa = [¢*M], wheree* > .5 is the estimate of the worst Minimizing the following cost function:

case proportion of the outliers. The worst case scenario is ]

2 2 2
- 2 2\ e-, e <o y
that we have only one target and the rest of the data belonggsac = Z p(e?), wherep(e?) = { 03 2> U%

to clutter. Hence, if we hav® = 8 beamformer peaks and all points i ’ )
M =10 batch size, thes* = 7/8, anda = [7/8 x 10] =9 (8)
can be used to stop. ande is the distance of the points to the putative solution.

RANSAC implicitly assumes that the outliers form a uniform MSAC does not explicitly determine any inlier set until af-
distribution in the bearing space. This is clearly not thgeca ter its execution is over. Hence, its computational complex



When we have multiple targets in the bearing batches, the
corresponding target bearings lie on manifolds that areemor
likely to adjacent to other inlier points in a ROI than to
the outliers or pseudo-outliers, corresponding to othelsRO
Hence, if the first selected point is an inlier, the data moint
that are close to it have higher probabilities of being irslie

On the other hand, if an outlier point is selected, then the ad
jacent points aréesslikely to be inliers. However, if, in fact,
there arek targets in the bearing batch, then there will be at
Figure 6. When the bearing tracks of two targets approacHeastK regions, where sampling close to the initial random
each other, RANSAC may confuse the ROIs. Most of thesample improves over an unbiased random selection. This
times, RANSAC can correctly initialize the ROIs. However, advantage comes at the expense of more calculations.
sometimes the tracks are confused. In those cases, track in-

formation from the particle filter can be used to resolve the

confusion, while sampling the ROIs.
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Table 4. NAPSAC Algorithm

is less than RANSAC, which specifically determines an in-
lier set and records its count. However, where we can us

. .. . " . ? Randomly select 1-data point from the bearing batch data. Sort
an intuitive counting condition to stop RANSAC's execution y P J

all the remaining points in increasing Eucledian distance from this

the MSAC stopping condition needs to use statistical argu-
ments. Note that the cost function is a summation of a chi#
squared distribution witld/ degrees-of-freedom, and a sum
of squared-uniform random variables. Although it is polkesib
to analytically determine a threshold corresponding tosami

confidence level, we also need to consider missing data.cases
Instead, we use the RANSAC's stopping condition, based on
counting inliers, for MSAC in the simulations. The pseudo >

3.

point.

Use the absolute value of a Gaussian distribution with zero mean
and a standard deviation koy, where k is a value between M /4
and M /2. Select a new point in the sorted list that is closest to
this random variable.

Repeat until L points are chosen and instantiate a solution x,
using (3).

Count the number of inliers (or alternatively determine the cost
function Jysac using (8)).

If the number of inliers are above some threshold «, e.g.,

code for the MSAC algorithm is given in Table 3

Table 3. MSAC Algorithm

L

Randomly select L data points from the bearing batch data and
instantiate a solution z;, using (3).

Determine the cost function Jysac using (8). Also determine the
number of inliers as in RANSAC.

If the number of inliers are above some threshold «, e.g.,

a = M — 1, re-estimate the solution . using all the inlier points
using (3) and terminate.

If the number of inliers are less than the threshold w, re-select a
new set of L-points randomly and repeat above.

After I trials, use the data set with the number of largest
consensus inlier set, and estimate the solution x;, by using (3).

NAPSAC

In RANSAC or MSAC, we randomly samplg points to in-
stantiate a solution. When the number of data points is larg
or when we would like to sample multiple targg@mtly, e.g.,
two at a time, the probability of sampling a set of inliers de-
creases exponentially due to increase in the dimensigrmudilit
the sampling problem. NAPSAC algorithm specifically ad-

a = M — 1, re-estimate the solution ;. using all the inlier points
using (3) and terminate.

If the number of inliers are less than the threshold w, re-select a
new set of L-points as above.

After I trials, use the data set with the number of largest
consensus inlier set, and estimate the solution x;, by using (3).

6.

7.

In Table 4, we list the pseudo code for NAPSAC. On line 2,
we show how to prioritize samples based on their proximity
to the originally chosen random point on line 1. This strat-
egy provides a guidance based on proximity. Other generic
guidance methods exist using RANSAC for computer vision
problems [39]. For our specific problem, when we are look-
ing for a new ROI corresponding to a target that is already
being tracked, we can exploit the tracking information. sThi

is achieved by weighting points according to their distance
to the updated track information. This way, the points that a
closer to the proposed track are chosen more often than oth-
ers while determining a ROI. Even if the target maneuvers,
its ROI can be easily easily determined since we are choosing
fhe points randomly based on proximity.

5. PARTICLE FILTER
In this section, the details of the particle filter block irgFi

dresses these issues by pseudo-randomly generating its hgre discussed. We first discuss the observation equation and
potheses. NAPSAC stands for N-adjacent points sample corthen describe the joint probabilistic density associatian-

sensus [22].

ciple.



Observation Equation Define a setZ,, that consists of:.-unordered combination
of all K-partitions of the particle filter state vectof;, €
kC,}, wherexC, is the set of alln-unordered outcomes
rom K possibilities. Define¢C,, as the number of elements
of the setxC,,. Hence, each element @f, hasn numbers,
and there are a total gfC,, elements. For example, when
K = 3andn = 2, thenZ, = {{1,2},{1,3},{2,3}},

The observationg; = {y:+m-.r(p)}2/ =3 consist of all the

batch DOA estimates from the beamformer block indexed b
m. Hence, the acoustic data of len@ths segmented intd/
segments of length. The batch of DOASsy, ¢, is assumed to
form an approximately normally distributed cloud arounel th

true target DOA tracks (Fig. 2). In addition, only one DOA each element referring to subset of the individual parti-

IS present for each target at _eaﬁ for the target is missed. tions of the particle state vector. We refer to the individ-
Multiple DOA measurements imply the presence of clutter or : . o
. ual elements of this set using the notati®p(;j), where
other targets. We also assume that there is a constant detec-
. = : = 1,...,kC,. Hence,Z5(2) = {1,3}. Then, denote
tion probability for each target denoted kY, where depen- _ _ . : .
; - o - wxe(J) € {zi(t)]i € Zu(4),z:(t) € x¢} as a single realiza-
dence ory is allowed. An additional partition dependency is !
. o . tion from the setZ,,. Using the same examplex;(3) =
also allowed, i.e.r;, since RANSAC may have a different T 1T . T
detection probability when it detects the targets one ana ti [?2 (1), z5(t)]" = [21(1), #3(1)] . Hence, the set
using a constant number of iteratichs. n»X:(j) contains the same elements of the set(j), re-
indexed sequentially from, ..., n.

The particle filter observation model also includes a clut- , N

ter model because beamformers can produce spurious DOWe denoter, ;(yum. 1) = p(ym.slnx:(j)) as the probability
peaks as output (e.g., the sidelobes in the power vs. angle p&€nsity function of the data, where onlyDOAS belong to
terns) [28]. To derive the clutter model, we assume that th&he targets defined by the partitions,pé; (j). Hence, when

spurious DOA peaks are random with unifospatialdistri- 7 = 0, @ll datais due to clutter:
bution on the angle space, and are temporally as well as spa- 5\ Prs
tially independent. In this case, the probability disttibo 70,1(Ym,f) = (%) (10)

for the number of spurious peaks is best approximated by the

Poisson distribution with a spatial density [35, 40]. More- The probability densityt,, ;(y.,r) can be calculated by not-
over, the probability density function (pdf) of the spurou ing that (i) there areP,, ¢!/(F,, s — n)! ordered ways of
peaks is the uniform distribution df, 27). However, since choosing DOA' to associate with thesubset partitions, and
the number of peaks in the beamformer output can be usdi) the remaining(F,, ; — n)-DOAs are explained by the
defined @), and that the beamformer power vs. angle patterrflutter. Therefore,

has smoothness properties, we use the following pdf for the I
(Pp,y —n)! (v/2m) ™

spurious peaks: T (Y p) = o y
p(0]0 is spuriou$ = 2l, 9) P, n (11)
" Z Hﬂjt,m,f (Pi ji)v
wherey > 1 is a constant that depends on the maximum P1#paF...F#py =1

number of beamformer pealky the beamformer itself (i.e., herei is i , dthe f o is derived f h
the smoothness of the beamformer’s steered response) ant eres; 1 in nXi(7), an t_e unctiony, Is derived from the .
. o ' “assumption that the associated target DOA's form a Gaussian

the number of target&’. Equation (9) implies that the natu- . .. . )

L . distribution around the true target DOA tracks:
ral space (or similarly volume) of the clutter is reduced by a
Iactor of~ because of the characteristics of our specific sys- . (p. x) 1 {_ (R (@1(D) = Yosmr.s (1)) }
em. o f | Pi|Ti ;

T VamaZ(m f) 203(m, f)
12
We now derive the data-likelihood function using the joint where the superscripton the state update functidnrefers
probabilistic data association arguments found in [35i0-Si  only to the DOA component of the state update aftin, f)
ilar arguments for active contour tracking that is relev@ant can be supplied by the beamformer block.
this paper are found in [41]. Consider the output of one batch
periody,, .t = Yitmr¢(p), Wherep = 0,1,..., P, s for  Note that the DOA distribution (12) is not a proper circular
eachf andm. The DOAsy,, ; may belong to none, or some distribution for an angle space. For angle spaces, the von
combination, or all of the targets in the particle filter part Mises distribution is used as a natural distribution [42heT
tions. Hence, we first define a notation to represent possibleon Mises distribution has a concentration parameter with
combinations between the data and the particle filter partia corresponding circular variance. It can be shown that for
tions to effectively derive the observation density. smallo? << 1 (high concentration), the von Mises distribu-
tion tends to the Gaussian distribution in (12) [43]. Beeaus
2|n addition, recognition/identification may have an impantchoice of ~ the von Mises distribution has numerical issues for small
the acoustic frequencies. Hence, some targets may haveea istection  DQOA variances, the Gaussian approximation (12) is used in
probability at the recognized target frequencies. Theitartdependence . . . .
this paper. Hence, special care must be taken in the imple-

of the detection probability can address this issue. It alovs the particle ) TS
filter to guide the beamformer block for improved detection. mentation to handle angle wrapping issues.




The Gaussian in (11)(-|-) are directly multiplied, because because of (i) the efficient sorting of the particles and (ii)

the partitions are assumed to be independent. To elaboratine number of random number generations. The determin-

considem = 2 andj = 3 from the example of, above: istic resampling strategy also has known convergence prop-
, . erties [44]. Faster resampling schemes without converyenc

Z Z Vo s (p1 ‘m) Yo s (pz‘iﬂg) proofs are also available [45] and these could make a differ-

2,3(Ym.s) ence in the filter computation, especially wh&n= 1.

p1=1po=1,p1#p2

an 7nf

<Y D Uims (p1‘£v2) Vtm.f (p2‘x3) Table5. ParticleFilter Tracker Pseudo-Code
p1=1p2=1,p1#p2
(13)

Hence, the densityrs 5(y.,,r) is @ Gaussian mixture that Given the observed dagg, ; = {Ytmr, s (P) Y=g in[t,t +T), do
peaks, when the updated DOA components of the partitions > Ff”Fg”i E 12 N_ K
and 3 (2, _(-)) are simultaneously close to the obsgrved._ Note sampler () (1) ~ p(z,”;:) (t)lef) (t—T)).
that Eqn. (13) guarantees that no measurement is assigned to Forma(® — [ 400 0 @17
multiple targets simultaneously. « Fomx;”) = | 4" (0), 27 (0),. ., (0]
2. Calculate the weights
Given the densities,, ;, the observation density function can w* " = w® plyelx{D),
be constructed as a combination of all the target assoniatio @) s N _ o
hypotheses. Hence, by adding mixtures that consist of the wherep(y:|x, ) is fully joint observation density, given by Eqn. (14).

. - L . 3. Normalize the weights:
data permutations and the partition combinations, we deriv

the observation density: L i)
Wi « (1)
F M-1 K 2wty
p(yexe) = H H Z Z Tn,j (Ym, f (14) 4. Make estimationE{ f(x¢)} = EN 1wy )f(x( ))
=1 m=0 n=0 KCn J=1 5. Resample the particles:
. Heapsort the particles in a ascending order according to the
In Eqn. 14, the parameteﬁ:{ PO nn x = 1) are the el- weights:x;") — ("),

. Generateu u[o 1).
ements of a detection (or confu5|0n) matrix. For example, | Forj=1.2. N

whenK = 2, 55,2 is the probability that no target DOA is 5 L) — ime

in the beamformer output, wherea$, (13 ,) means that1  b. Finds, satisfyingyi=} (" < u®) < i , a”,

(2) target DOA(’s) are present in the beamformer output at ¢, setx!”) = %",

eachf. These fixed values are provided by the random sam-

pling block. Moreover, when two partitiorls andk, have

close DOA tracks and are about to cross, it is possible thafEinally, the partitions are managed by the specific intéwact
the beamformer’s Rayleigh resolution is not enough to outbetween the particle filter and the random sampling block.
put two DOA's for both targets. Then, the particle filter can New partitions are introduced into the particle filter, usihe
provide a guidance, by using the current state estimates, wistribution supplied by the random sampling block. The par
the beamformer and the random sampling blocks to resolvécle filter deletes partitions at either the proposal stagaf-

those cases. ter estimation, when there are not enough bearings witlein th
gate of the mode estimate. Lastly, note that our implementa-
Particle Filter Proposal Function tion of the particle filter does not make partition assooradi

To demonstrate the performance of the system, we use onﬁ/l.JCh as partitiosplit or merge We leave these decisions to a

the state update function as the proposal function of the par 'gher level fusion algorithm in the sensor network.
ticle filter. We propose each target partition indepengentl
to cope with the curse of dimensionality in sampling high di-
mensions. Note that once the proposal function is formd|ate Demonstration of the Random Sampling Block
the rest of the particle filter structure is well-defined: gidt
ing and resampling. In weighting stage, the approximate pos
terior distribution is used when targets are sufficientlarap
When they are close, we use the joint posterior.

6. SIMULATIONS

F|gures 7-13 show the performance of the random sampling
algorithms under varying conditions. Each figure is created
by a Monte-Carlo run of size 1000. Based on these figures,
the authors subjectively rank the algorithms in the follogyi
order in usefulness: 1) RANSAC, 2) MSAC, and 3) NAP-
SAC. Although we were expecting better performance from
Pseudo-code of the particle filter algorithm is given in Ta-NAPSAC, the assumptions of NAPSAC are not matched by
ble 5. The filter implementation employs an efficient resam-our data. MSAC performs arguably better than RANSAC
pling strategy, named “deterministic resampling”, first-ou in terms of root-mean-square error and false alarm proba-
lined by Kitagawa [44]. This resampling strategy is prederr  bility. However, its results are not as intuitive as RANSAC,

Algorithm Details

9



which is based on the number of inliers as opposed to their m-
estimator statistics. In the next subsection, we show how to .

. . . . 010
extend the RANSAC idea to cope with bearing observations % T RANSAC
corresponding to multiple frequencies. E —~NAPSAC
c
7 ﬂ::) """"
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(a) RANSAC (b) MSAC (c) NAPSAC Figure 11. We compare the average run times of each of

the algorithms with (solid lines) and without a stopping -con
Figure 7. The number of iterations to converge to the truedition (dashed lines) in their iterations. Without the iy
number of targets is shown for (a) RANSAC, (b) MSAC, and condition, the algorithm runs a predetermined number of ite
(c) NAPSAC. ations. For the solid lines, we let the algorithms run a faD2
iterations. For the dashed lines, the algorithms stoppemith

:_m ::m Zm selves when they found a ROI with number of inliers greater
& & & than or equal ta\/ — 1 with M = 9. The stopping condi-
3 tion allows us to save computation with no penalty. Also, the
average run times exponentially increases with the nunfber o
Ve S Ve iterations.
(2) RANSAC (b) MSAC (c) NAPSAC

Figure 9. The false alarm rate of each of the algorithms
exponentially decay to zero as we increase the number batch
samplesi/. :
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Figure10. As we increase the number of peakswe allow ¢ g g
more clutter into the random sampling algorithms. Hence, th 5 . N N )
false alarm rate shows an increasing trend@screases. In ol o I T I L R c
this example, the threshold for declaring a targetis— 1, 10070 i AR 360160 10070 a0 AR 30160 5o o 58 160 %0
whereM = 10. Hence, the false alarm rates are lower than (d) RANSAC (e) MSAC (f) NAPSAC

the ones shown in Fig. 8. . o )
Figure12. The variation of the run times are demonstrated.

Field Data Results (a-c) Without stopping condition. (d-f) With stopping cand

. . . _ . ) tion.
A uniform circular acoustic array with 8 microphones with 1

meter radius is used to collect the acoustic data for a five ve-
hicle convoy at the Aberdeen Proving Grounds. The acoustic
data sampling rate was, = 1024Hz. The convoy consisted

of two military Hummers (HMMV) and three commercial * : :

sports utility vehicles (SUV), traveling on gravel on an bva <, <, <

track. Detection and tracking of the commercial vehicles pr  : 4 £ £

sented a difficult challenge because the commercial vehiclez % z | g

were in between the two louder military vehicles, hencethey . . | . . ] [ . _ _ _ |

. . . 1erat|ons 1erat|ons 1erat|ons
were acoustically suppressed (Fig. 14). Hence, this pteden
(a) RANSAC (b) MSAC (c) NAPSAC

an opportunity to test our tracking system. Our results for

different beamformer outputs are shown in Fig. 15. Figure 13. The estimation performance of the random sam-
pling algorithms are compared. It is seen that RANSAC and

One of the main problems while processing the field acousmSAC performs similarly. NAPSAC performs the worst.

tic data is getting reliable DOA estimates in multi target-sc

narios. We observed that the beamformer would only output

10
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Figure8. (a-c) The detection probability (solid lines) and the éaddarm probabilities (dashed lines) are shown for the rando
sampling algorithms for varying gate sizg. Note that for this particular case, the bearing data nsisstanged between 1
to 10 degrees to show the effect of the model mismatches. Hoestiold for accepting a ROl is at leddt/2 + 1 = 6 peaks.
(d-f) The receiver operating characteristics (ROC) is shaw general, ROC curves are always concave and non-déudns
construction. Hence, some of the ROC curves in the plotdbédmcharacteristic behaviors. Possible reasons areigmaich

of the gate size and the bearing variance, and the presectdtef.

DOA estimates corresponding to a subset of the targets. Afmeasure is an upper limit on the gradient of the line found
ter careful investigation, it was determined that the attous by RANSAC. After taking into consideration real world con-
signatures of the weak targets were being suppressed by tls&raints of vehicle motion and observing the field data, i wa
louder ones. To detect more targets, we modified the beandetermined that a change in more than 6 degrees per batch
former to use up to 10 frequencies and to also select severadidex would not be considered a target. Similar thresholds
peaks in the steered frequency response. The beamformeere used to decide when to delete targets.

also used multiple snapshots of data. These modifications
result in the ability to detect silent targets; however ub-s
stantially increased the amount of clutter.

We modified the random sampling block to cope with the
presence of multiple observations per target. Moreover,
since the number of peaks could change from one data set
to another, we formulated adaptive thresholds to accept the
RANSAC ROI output and declare a target. A number of mea-

sures are taken. The first measure is to put a minimum boun'r_:i

on the number of batch indexes, in which inliers are found. gure 14.  Time-frequency plot of the acoustlc.S|gnaI IS
I . shown. The dots are the narrow-band frequencies used by
This is to ensure the DOA estimates are spread over the e

tire batch of data as one would expect from an actual tar?he beamformer block to determine candidate target besring

get. A value of 85% of the number of batch indexes is used,

The next measure is to put a lower limit on the total numberOur system was able to robustly deal With the clutter and cor-
of inliers found by the RANSAC block. Hence, we assumerectly track the convoy as can be seen in Fig. 15. There are a

that the maximum number of targets our system would traclﬁew spurious targets due to the persistence of the beamforme
is less than the number of microphones in the acoustic ars_idelobes. However, these sidelobes have a well understood

ray and compute the number of DOA estimates per target iﬁharacterlstms and it is possible to detect targets thakeo

a scenario with the maximum number of targets. The thiroSpond to the power leakage due to the sidelobes. For the parti
cle filter, we used 2500 particles since we did not incorporat

11



the ROI processing in our proposal stage. As future work, we
will incorporate the ROI processing to increase the efficjen
of our particle tracker. The gate size is judiciously chosen
be 9 degrees. The gate size can also be chosen adaptively
using a bank of random sampling blocks. We are currentl
investigating how to statistically and automatically infbe
results of such random sampling banks.

7. CONCLUSIONS [9]

In this paper, we demonstrated the application of RANSAC,
MSAC, and NAPSAC algorithms for processing region-of-

interests to track multiple targets using bearing measure-
ments. We showed that each of these algorithms are well0]

suited for ROI processing in conjunction with a tracker.

Among the random sampling algorithms, we determined that
RANSAC is the most useful because of its performance and
its flexibility to also handle multi frequency target tracgi

case. Our tracking results show significant promise in the RO

processing algorithms proposed in this paper since a simple

bootstrap particle filter could handle a difficult convoy sce

nario.
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