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Abstract—T his paper presents the design characterization ofifetime [2].
a heterogeneous sensor network with the goal of geolocation
accuracy. It is assumed that the network exploits sensor man the sensor network research literature, the network man-
agement to conserve node usage. Each available node modafiement problems concern themselves for developing strate-
ity is a bearings-only sensor of varying capability. The opti-gies to self-organize a set of available sensors for optimal re-
mal mixture of modalities is discussed under the constraint o§ource allocation, e.g., [3], [4], [5], [6], [7], [8]. The solution
the overall network cost. Finally, simulations verify the the- of this problem is quite important because the effective life-
ory and demonstrate design choices for a network consistinime of an already deployed sensor network can be increased
of two modes analogous to acoustic arrays and cameras. by saving sensor batteries via using clever schemes of sensor
selection, information hand-off, and efficient data compres-
Keywords—Sensor networks, sensor fusion, Poisson poingion- In [9], we investigate an optimal resource allocation
process problem on randomly deployed sensor networks for position
tracking. Our focus is the the network build strategy (NBS),
which determines the number of sensors of different types to
TABLE OF CONTENTS deploy from a sensor pool that offers a distinct cost vs. per-
formance trade-off for each type of sensor. We formulate the
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NBS problem as a constrained optimization problem, whose
2 SENSORMODELS........ocovvviniiiiiiinnnnn, 2 objective is to minimize the position uncertainty under a lim-
3 SENSORNETWORK THEORY .................. 3 jted budget by determining a build strategy. Hence, the re-
4 SENSOR NETWORK DESIGN CHARACTERIZA - sults of the NBS problem is complimentary to the sensor net-
TION oottt e e e e e 4 work management literature that concentrates on a choice of
B SIMULATIONS ittt ettt iie e 7 asubset of already deployed sensors in the field to maximize
6 CONCLUSIONS v ooeoe o, 11 Dbattery life while simultaneously minimizing the location un-

certainty.

In this paper, using similar assumptions to [9], we focus on
1. INTRODUCTION the design of a random heterogeneous sensor netwqu whgn
only a constant number of sensors are used for position esti-
The paradigm of the network of inexpensive sensors dismation. This is a practical situation because it is proven that
tributed geographically over a large region promises to proa small subset of sensors is always competitive with the full
vide improved surveillance capabilities for a number of ap-network in localization performance [10]. We assume that
plications [1]. Each sensor node on its own consists of thehere arel” possible sensor types, i.e. modalities. For this pa-
sensor to collect measurements, a radio to share data wifer, it is assumed that all sensor types collect target bearing
other nodes, a microprocessor to process and fuse data inti9easurements within the ground plane, i.e., azimuth angle to
information and a battery to provide the necessary power fothe target. The difference among modalities is the field of
the hardware to work. Alone, a sensor node is only able taiew (FOV), accuracy, environmental robustness and mone-
gain limited inference about objects of interest, i.e., targets, inary cost of the sensors. When the FOV is limited (less than
the surveillance region. By sharing data over the sensor neB6(?), the sensor will only be able to see the target and col-
work, each node is able to gain much better inference abougct a bering measurement when the target moves within the
the scene. In many applications, the sensor network must ofine-of-sight of the sensor. Because of energy limitations, a
erate in a clandestine manner where the nodes are disperseghsor node has no capability to pan and tilt in order change
via airdrop or cannon fire. Therefore, the physical size of eaclits orientation to bring a target within line-of-sight. The accu-
node is limited, and it is impossible to maintain the nodesracy of the sensor is related to the expected error between the
and replenish batteries. Therefore, the nodes must operaggeasured bearing and actual bearing. A sensor may not be
under severe energy constraints to maintain a long effectivable to collect useful measurements during certain environ-
mental conditions; thus, it may lack environmental robust-
1-4244-0525-4/07/$20.0@/2007 IEEE. ness. Finally, there is always a budget for the network, and
IEEEAC paper #1687, Version 3, Updated Dec 1, 2006 the cheaper a sensor type, the more nodes that one can include



in the network. never detects a false target. When a node detects the target,
it provides a bearing measurement where the error follows an
The design goal for this paper is to optimize the geolocaadditive white Gaussian noise (AWGN) model. The nodes
tion performance of the randomly deployed sensor networlare always working, but conditions may exist where the some
for any point well inside the deployment region. The designnodes are unable to provide meaningful measurements. The
choices are the number of senors that comprise each typeireless communication channels between nodes are always
The design constraint is the overall cost of all the nodes comeperating perfectly. Using these assumptions, this section ex-
prising the network. The geolocation performance is baseglains the salient parameters that describe the sensing behav-
on the fact that while the network is tracking targets, it is us-ior of any node. The section wraps up by describing parame-
ing sensor management to control the node usage. The seters that could serve as analogs for acoustic arrays and cam-
sor management approaches use the predicted target/node geas.
ometry to determine the best subset of nodes in terms of ex-
pected geolocation accuracy [3], [4], [11], [5], [6], [7], [8]. Generic Model

As shown in [4], it is possible to implement the node selec-At a given snapshot of time, the sensor node collects a bear-

tion over a decentrglized architecture_ [12]. In general, thef g measurement that is representative of the current bearing
analysis of geolocation performance with sensor managemer(ﬁbetween the node and the target. More precisely, the mea-

can become unruly. For the analysis to be tractable, this pa- . ; . .
: A C - surement is a noisy version of the retarded beagihgvhere

per considers a simplified management technique: selection . . .
. retarded bearing refers to the fact that there is a propagation

of the two normalized closest nodes to the target. The nor- ; . .
A . delay between the time the target emits the signal that the
malization is based upon the accuracy of the modality of the . . X )
articular node node is measuring. Therefore, the node is actually collecting
P ' data consistent with a bearing from a retarded time. Thus, the

The paper presents theory applicable to an arbitrary numbebrearlng measurement AWGN model is

T of sensor types and includes simulations that focus on two =" +n, (1)
sensor types that serve as analogs to acoustic arrays and cam-

eras. The acoustic arrays are robust omni-directional senorgheren ~ N(0,0?), ¢* is the retarded bearing, andis
while the cameras are more accurate but also more expensitize bearing root mean squared (RMS) error. The RMS bear-
and less environmentally robust. For instance, under fogging erroro represents the measurement accuracy of the node,
conditions, one can still use the microphones but not the cannd this value impacts the localization accuracy of integrating
eras. The simulations consists of generating random configuneasurements from multiple nodes.

rations of sensor networks and Monte Carlo evaluation of ex-

tended Kalman filter (EKF) trackers. The simulations verify If the target is not movingg* corresponds to the bearing to
when the theory is accurate and show how to determine thtéhe target at the current time, i.¢); = ¢. For a constant
number of sensors for each modality given the overall netvelocity target [13],

work budget. v

¢* = ¢ + arcsin (f sin(¢ — 1/1)) , (2)
The paper is organized as follows. Section 2 discusses ¢
the sensor model parameters. Then, Section 3 reviews tgherev andy is the speed and heading of the target, respec-
Cramer-Rao lower bound (CRLB) for bearings-only target lo-tively, andc is the propagation speed of the signal being mea-
calization, sensor selection and the statistics for the node Igiured. The tracking simulations take into account the prop-
cations relative to the target. This review provides the backadation delay using (2). However, the error analysis for the
ground which is used in Section 4 to present a new theoryg€nsor networks assumes tigat = ¢ in the AWGN model
to characterize localization performance as a function of th&iven in (1).
design parameters. Section 4 also discusses the general op-
timization problem to determine the best design parameterd.he sensor is fixed on the ground with an orientationof
Then, simulations are provided in Section 5 to validate thel he normalized FOV of the sensordswhere0 < o < 1.
theory and to illustrate good design choices for sensor netlhis means that the sensor is able to see a target and report a
works. Finally, Section 6 provides concluding remarks and®€aring measurement if

discussions of future directions of research. 16" — o
— <o ®)

™

2. SENSOR M ODELS
o ) If « = 1, the sensor is omni-directional and always reports a
The paper makes a number of simplifying assumptions so thah,aasurement. The FOV in units of degreestig°a.
the analysis is tractable. First, it is assumed that calibration
and synchronization issues can be ignored. Nodes may havg,e enyironmental conditions may prevent the sensors from
limited FOV and lack the ability to change their orientation collecting useful measurements. This phenomena is modeled

to obtain a better vi_ev_v Qf the_ta_rget. Next, each node aIwayBy the operational probability,,. Therefore, there is a prob-
detects the target, if it lies within the FOV of the node, a”dability of 1 — p,, that the sensor is can not be operational
op .



The final parameter is the unit cost of the sensor. Wetep-  and bearing between the target and #k node. Note that
resent the cost of the sensor. The cost of the sensor constrains< r; < ro < ... < ry. Finally, the bearing RMS error
how many nodes of a particular modality can be employed irfor the i-th node iso;. In this paper, the magnitude of is
the sensor network. dictated by the corresponding sensor type foritttenode.

Acoustic Arrays Localization

An array of microphones can determine the target bearing bizocalization refers to the collection of bearings-only mea-
considering the time delays, i.e., phase differences, betweesurements over multiple nodes to estimate the position of
the microphone. Because target typically emit harmonics, itishe target. For any unbiased localization estimator, it is well
advantageous to apply a wideband direction of arrival (DOA)known that the mean squared error (MSE) is bounded below
algorithm, e.g., [14], [15]. As shown in [13}; is in the or- by the Cramer-Rao lower bound (CRLB) [16]. This bound
der of 3 to 4 degrees. Therefore, we model acoustic arrayis derived from the Fisher information matrix (FIM). For the
with ¢ = 5°. The simulations take into account the time re- localization estimator using bearings-only measurements, the
tardation factor given by (2) by setting the speed of sound a&IM is [17]

c ~ 347 m/s. Furthermore, the circular arrays are omnidi- 5 )

rectional so thaty = 1. Finally, we suspect that the acous- J — Z 21 . [ s bi —sin qbé Ccos ¢; . (5)

tic arrays will always provide useful measurements when the ien, Giri Lo s i cos P cos” ¢

cameras can see the targets. Therefpges= 1. Finally, the

unit cost of the acoustic array is normalized to a value of onavhere N, is the set of nodes that are actively collecting
monetary units, i.e( = 1. and sharing measurements for the given snapshot. Thus, the

CRLB for the localization MSE is

Cameras e(N,) = trace{J 7'}, (6)
Cameras determine the bearing by detecting which pixel in- trace{J}

cludes the target. The size of the pixels, i.e., instantaneous = det{d} (7)
FOV (IFOV), is determined by the FOV divided by the num-

ber of pixels comprising the length and width of the imagery.where

The FOV varies depending on the design of the optics. We trace{J} = Z 21 - (8)
consider two values for the FOM = 4 (30°) ando = £ ien., Ol

(120°). We assume that bearing error is in the order of twiceand 3]

the IFOV. By considering that the narrow FOV camera con-

tains about 240 pixels per dimension, then a reasonable value 1 sin?(¢; ,

of for the bearing error isr = 0.25°. We assume that det{J} = 5 Z Z M ©)
the wider FOV camera contains more pixels to maintain this i€ENa JEN, Pt

value ofo. The simulations ignore the time retardation fac- For the the CRLB to be finite, the active $&t must contain
tor in (2) because the speed of light is so large. There arg,q o more nodes with different bearings to the target. Oth-
conditions when the cameras can not collect measurementg, ..o the determinant of the FIM given by (9) is zero. In

but the microphones can, e.g., foggy weather. Therefore, {f,ing scenarios, it is possible for one node to be active at a
reasonable fop,, < 1. This paper analyzes the effect of dif- g j e |A7,| = 1, because the current measurement is be-

ferent values op,, < 1. Finally, we assume in this paper that j, integrated with measurements at previous times to form a

cameras are ten times more expensive than microphones, L8411 rank posteriori FIM [3]
¢ = 10 monetary units.

The expression for the position error in (7) represents the ge-
3. SENSOR NETWORK THEORY ometrical dilution of precision (GDOP) measure used in [11]
The section provides the background theory to develop thér node selection. As shownin [11], [17], [18], [19], [20], (7)
performance characterization for the sensor network desigrs consistent with the expected MSE for the maximum likeli-
The network consists d¥ sensors distributed uniformly over hood single snapshot geolocation approach. In fact, the FIM
alarge 2D region on the ground of are4 so that the sensor also represents the inverse covariance update in the informa-

density is tion form of the EKF tracker [3]. In short, (7) is representa-
N tive of the actual errors of practical localization estimators. It
A= A (4) s also convenient to consider the root mean squared (RMS)
The network is tracking a target that is well inside the phys-Iocallzatlon error
ical boundaries of the network. Without loss of general- p(No) = V/e(N,). (10)

ity, the target is located at the origin of the coordinate sys-

tem, and the nodes are indexed in ascending distance to tAéne simulations will provide results in terms of the RMS er-
target. The polar coordinates for the nodes are labeled asr because the corresponding units are natural (in terms of
(riy ;) fori = 1,..., N, wherer; and ¢; are the distance length).

3



Normalized Closest Sensor Management Therefore, a very good approximation to the ordered squared

- . r2fori —
To conserve energy, the sensor manager determines Whigﬁstances tothetarget, = rifori =1,..., k, whenk < N

nodes will be active for a given snapshot. A good sensof

manager should balance localization accuracy with energy re (51 o) = (TN e~k forsp > ... > s >0,
guirements such as communications via the radios. The “norf Y 0 otherwise,
malized closest” sensor manager is a simple approach to se- (14)

lect the active setV,, of N, nodes with small localization and the polar angles; are approximately uniform. Further-

MSE as given by (7). Actually, the calculation of the MSE more, the marginal distribution for; is approximated by a

requires one to already know the location of the target relaGamma distribution

tive to the target. In practice, the sensor manager performs (mA)?
f(si) = {

Ni—1_,—7As; .
the node selection while tracking the target, and the predicted G-ni(s1) e for s; > 0,
target state is used to estimate the polar coordinates for the 0 otherwise.

nodes. Figure 1 compares the distribution of the ordered squared dis-
. ) i tances described by the Gamma distribution to empirically
The “normalized closest” approach selects Mgnodes cor-  ganerated histograms. The histograms were created by real-
responding to the smallest normalized distances to the targg ing 1000 different configuration oN = 100 nodes uni-
formly distributed over a circular region of radius 100m and
then sorting the squared distances to the center of the region.
The justification for the selection approach is because the |Oglearly, \é\{heng < N ,Fthehh|stogr%r£ns matgh_up W'tr;] the
calization MSE is bounded below by [3] amma distributions. For the caseiof 50 andi = 100, the
Gamma distributions are too heavy tailed to be represented

4 by the histograms of;.
>
s(Na) 2 trace{J} (12)

(15)

fi = 0;T;. (ll)

4., SENSOR NETWORK DESIGN
The lower bound can be achieved when the nodes essentially CHARACTERIZATION

surround the target. For the case of two nodes, this means t ﬁ . o
rLne sensor network design characterization refers to the re-

the two lines of sight between the nodes and the target aI £ 1h dian localizati funci £ th
orthogonal. The normalized closest approach assumes th 1on of the median localization €rror as a function ot the
esign parameters, i.e., the number of sendgréor types

the node/target geometry is favorable so that the MSE is ne . L -
getg y 1,---,T. To derive the characterization, the first subsec-

its lower bound. Then, maximization of the MSE entails thei_: ¢ " fthe h work. Th
minimization of the trace of the FIM, which is accomplished lon focuses on Ine case of theé homogeneous network. Tnen,

by selecting the nodes with small normalized distances to thg]e second subsection _extends the resplt_s to_ the general h_et-
target. erogeneous case and discusses the optimization of the median

error under the cost constraint.

While the bearing error; varies by node, it is generally con-
stant over node type. In this paper, the bearing error is fixe
for given sensor model (see Section 2). For the sake of mathFhe sensor network consists of nodes of typdiose bearing
ematical tractabilityN, = 2. Note that the MSE diverges to RMS error isc;. The normalized FOV of the nodes ds.
infinity for IV, = 1 since the determinant of the FIM is zero. Given thatN, nodes are uniformly distributed over a region
From (7), (8) and (9) it can be shown that the MSE for theof area 4, then the node density is given by = N;/A.
two normalized closest nodes is Over any patch inside the deployment region of aPesuch
that P < A, the nodes form an approximate/2-Poisson
— 2. (13) point process. Furthermore, the orientation of the nodes are
sin”(¢1 — ¢2) uniformly distributed ovef0, 2r). Thus, the probability that
the target is within the FOV of any node, i.e., (3) is satisfied, is
ay as long as the target is well inside the deployment region.
In other words, the set of nodes that can see the target are
Given that the sensors are uniformly distributed over the deformed by retaining nodes from a 2-D Poisson point process
ployment region of areal, the locations of the sensors over of density\ = p; with probability«,. As a result, the line-of-
any patch of ared inside this region such tha? <« A  sight nodes also form a 2-D Poisson point process of density
approximates a 22 Poisson point process with density A = psoq [21].
[21]. For any point inside the 2» Poisson point process, the
squared ordered distances to that point have the same joifihe calculation of the distribution of the localization MSE
density as the arrival times of a Poisson process with intenwith sensor management (see (13)) requires the joint dis-
sity v = wA [22]. In addition, the polar angles between the tribution of the normalized squared distances and the polar
arbitrary and the ordered sensors are independent identicalgngles. As stated earlier, the distances are statistically in-
distributed (i.i.d.) with a uniform distribution ovef, 27). dependent from the polar angles, and the polar angles are

yomogeneous Network

i+ 75

5(Na) =

Network Geometry
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Figure 1. Comparison of Gamma distributions (theory) to empirical histograms (Monte Carlo) for the ordered squared dis-
tances to any arbitrary point inside a sensor networks{(afb) ss, (c) s3, (d) s10, (€) s50, and (f) s100-

i.i.d. with a uniform probability distribution function (pdf) the expected value aof(N,) or p(N,) is not finite. This is

over [0,2). The joint distribution for the squared ordered due to the fact of the high likelihood that the two selected
distances is given by (14) whepe= p;ay. The distribution  nodes will exhibit a poor geometry with respect to the tar-
for the squared orderatbrmalized distances is obtained by get, i.e., comparable line-of-sight vectors to the target. Even

considering the following change of variables, though the high tail of the distribution af or p affects the
~ " calculation of a meaningful mean, one can still compute a fi-
S = T (16)  nite median value. As shown in Appendix A, the cumulative
= oZs;. (17)  distribution function (CDF) for the localization MSE is
It can easily be shown that the joint distribution%fis also F.(g) = G(jise), (19)
given by (14), but now = £:3%., In the sequel, we refer to
' where -
(67
iy = /~Lt2t (18) G(z)=1-28 (5) + B (x), (20)
O
as thenormalized line-of-sightlensity of the homogeneous and 1 /7 .
networkt, because, one can view the normalized squared dis- B(z) = ;/ eSO (21)
tances as being generated from a Poisson point process of 0
density ji,. Under the assumption that the sensors form al'he median value of is
Poisson point process of densjty, the dilation of the line- 1)
of-sight sensors about the target by a factorrpfactually mediafs(N,)} = G~7(0'5)7 (22)
produces the Poisson point process of density Mt
2
_ (-1) T4

Now that the distribution of the components comprising the = G (O'5>,utat’ (23)

expression for localization MSE with sensor management is
characterized, one can calculate the statistics for the localizavhere G~ (.) is the inverse function ofG(-) and
tion MSE in (13). Unfortunately, as shown in Appendix A, G(—1(0.5) ~ 1.86.
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The CDF of localization RMS erras is simply determined to a constraintK’. A reasonable design objective is to mini-
by substituting (10) in the CDF for the localization MSE in mize the median MSE given in (30) given the cost constraint.
(29), Dividing both size of (31) by the ared leads to the cost
Fy(p) = G(jfiep?), (24)  constraint in terms of node density. When all sensors types
are always operational, minimization of (30) is equivalent to

and the median of the RMS localization error is maximization of its reciprocal so that the objective with the

G=1(0.5) 3 constraints is a linear program
mediaf{p(N,)} = (ﬂ) ; (25) T
t
JiRYe”
1.36390, arg max ot (32)
¥ Vmar (20) ettt =0
given
Heterogeneous Network w1 > 0,
The network consists of' types of bearings-only sensor
nodes covering a deployment region of aréa The RMS > 0
bearing error, normalized FOV and population for ththn br =
node type iy, oy, and Ny, respectively. At this point, we T < K 33
assume that all sensors types are operational under all condi- ZC”“ = A (33)

tions, i.e.,p,,; = 1. When viewing the subnetwork of nodes

consisting of only type, the analysis of the previous sub- The solution of any linear program lies on one of the ver-
section applies. That is each subnetwork can be viewed asties of the simplex formed by the constraints [23, Ch. 8.1].
Poisson point process of densjtywhere the normalized tar- For this linear program, the vertices of the simplex include
get distances are dictated by the dengitgiven in (18). The only one nonzerq:;. In other words, the optimal network
heterogeneous network is simply the aggregate of the subnés a homogenous network consisting of sensor typeorre-
works formed by nodes of typefor ¢ = 1,...,T, and the  sponding to the largest conceivable normalized density, i.e.,
additive property of Poisson process applies [21]. As a resulthe density that meets the cost constraint,

the normalized target distances are being generated from the 1K a,

normalized density [l = max — LA (34)
t Ut

(27)

=

Il
[M]=
Ez

When all the sensor types are operational, the solution is sim-
ple because the nodes are collecting the same form of infor-
peQ (28) mation about the targets. One simply chooses the sensor types
o2 that provides the most accurate form of this information. Re-
placing any set of nodes with another type simply degrades
When all sensors types are always operational, the CDF for the quality of the information. The more interesting case is
andp is still (19) and (24), but wherg is substituted fofi;. ~ when some sensor types are not always operational. Then, a

\*
Il
-

Il
N

o~
Il

1

Finally, the median for the localization MSE is cheaper less accurate but more robust node may actually pro-
vide utility vis-a-vis the more expensive node. Lgtbe a
) G- )(0 5) . . . i
media{c(N,)} = , (29)  binary variable that represents whether sensor typ@per
Zt | B ationalo; = 1 or noto; = 0. Then, for the general case that

7 Dot < 1, the CDF for the localization RMS error is
and the median for the RMS localization error is

o1=1 or=1
) G(—l)(05) % Fp(p) = ZZO Z:1P(017"'70T) ! (35)
mediafp(No)} = | =7 —ar | (30) o or

- o((e)e)

The overall cost of the of the network is the sum the cost O(Nhere
each component of type

T P(Olv"'7 Hpo t 1_p09t (liot)’ (36)
c=3 6N, (31) "
t=1

The CDF for the localization MSE is obtained by simply sub-
The goal of the network designer is to determine the best mistitutinge for p? in (35), and median statistics fprandes are
of sensors types so that the overall cost is less than or equaasily obtained from the CDFs.



The pitfall with the partially operational model that leads to 1600,
(35) is that is assumes that one sensor modality becomes
nonoperational independent of another. In practice, design-
ers choose node modalities to complement each other. In
other words, when conditions are poor for one modality, they
should be OK for another one. A better model is that the oper-
ational probability of nodes types are correlated. This will be
a subject of future work. The simulations focus on the spe-
cific case of the analog of acoustic array and camera nodes
whose first order models are described in Section 2.

800

Y (meters)
o
§

Lett = 1 andt = 2 correspond to the acoustic and camera -800
nodes, respectively. Then, the localization RMS error CDF in
(35) simplifies to

Fplp) = pop2G ((% + 7”3(52) P2) (37) %00 800 0 800 1600

+(1 = pop,2)G ((”é—?) p2> . X (meters)

Figure 2. Example of random sensor configuration of 100

The median RMS localization error is thé that solves acoustic arrayss) and 10 cameras/{) with the target located
in the center. One camers)(has line-of-sight to the target.

« (0% 7
pop.2G (<“;2 L ”(2722> p*2> (38)  The brighter colored nodes represent the selected nodes.

1 2
H10 *2 1
+(1— G =3 ; i
(1= pop2) (( o1 > P ) 2 1 = 15 nodes/km. Alternatively, one could design a hetero-

geneous network where the acoustic and camera densities are

11 = 150 — 10y and o = y, respectively, fo < y < 15.

The normalized FOV of the camerasdg = % Given the

the minimization problem is not a linear program. For two design c_hara;:tenzat!on presented in S_ectlon 4 and t_he r_’nod-
X els provided in Section 2, the theoretical RMS localization

sensor modalities, there is one degree of freedom i;eor . - N .

i . : ! error for “normalized closest” hode selection is computed us-
ue. In the simulations, we illustrate how the median RMS., . . . . L
localization error changes over this degree of freedom. ing (38). This formulais valid for any point well inside the

support of the network. To verify the theory, we generated
10,000 random configurations for each value of the degree of
freedomy andp,, ». Then, we sorted the normalized distances
In this section, we confirm the design characterization presquared to the a center of the region and employed (10) and
sented in Section 4 against Monte carlo simulations. Th€13) to determine the instantaneous RMS localization error.
first set of simulations generate random configurations of th&inally, we calculated the median error over all 10,000 con-
nodes by uniformly distributing them over a circular region figurations. Figure 3 provides the results of both the theory
of radius 1.6km. Furthermore, the orientation of the cameraand the Monte Carlo simulations.
are uniformly distributed ovej0, 27). An example of such
a random configuration for 100 acoustic arrays & 12.5 Figure 3(a) provides the localization error versus node density
nodes/km) and 10 cameragi¢ = 1.25 nodes/km) is shown  curves for various values of, ». The figure shows very good
in Figure 2. The 8” and “v” symbols represent the acoustic agreement between the theory and the simulations. When
and camera nodes, respectively. The target is located at thg,» = 1, the error curve is monotonically decreasing as the
center of the region. When the target is within the FOV oferror camera density increases. The design characterization
the camera, a small cross-bar is added to thesymbol to  in Section 4 indicates that this curve must be monotonic (ei-
form a “v” symbol. This cross-bar represents the lens of thether decreasing or increasing) because a heterogeneous net-
camera. Therefore, one can infer which camera nodes haweork can not lead to minimum error. For our models, it
line-of-sight to the target based on their orientation. The figturns out that the best design choice when the cameras can
ure also shows the nodes selected by the “normalized closestlways make measurements is to deploy the 120 cameras that
management method as the brighter color symbols. are within budget. The,,» = 1 case also represents the
achievable performance conditioned on the fact that the cam-
We consider the case where a budget of 1200 monetary unitgas are operational. On the other hand, whgn = 0, the
is available to build a sensor network to cover the circu-error curve is monotonically increasing because as the cam-
lar region of radius 1.6 km. Therefore, one could designera density increases, the cameras are providing no assistance
a homogenous network of 1200 acoustic nodes with denfor localization. As a result, the density of the useful acous-
sity u = 150 nodes/km or 120 camera nodes with density tic nodes is simply decreasing and performance is degrading

Again, the designer can search for the densjiidert = 1, 2
that minimizep? under the constraints for cost and positive
densities (see (33)). Unlike the simple case fhgt = 1,

5. SMULATIONS
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Figure 3. Median RMS localization error as a function of admissible number of camera and acoustic nodes under different
conditions for the operational probability of the cameras: (a) Varigus (b) pe,2 = 0.5, (C) po,2 = 0.6, and (d)p,,2 = 0.7.

(see (26)), and when; = 0, then the median value diverges For the given sensor parameters, it turns out that the median

to infinity because no sensors are available to localize the taerror for u; = 150 (or uz = 0) is less than the median er-

get. Clearly, if the cameras are not useful, the best design ior for 43 = 0 (or 2 = 15) as long ag,,2 < 0.66. In

to deploy the 1200 acoustic arrays that are within budget. Thether words, the error curve has a higher valugiat= 0

Pop2 = 0 curve also represents the worst case performancehan it does whem; = 150. Whenp,,» > 0.66, the me-

i.e., when the cameras are unable to make useful measurdian error foru; = 150 is greater than the error far;, = 0.

ments. As discussed in the previous paragraph, the error curves in
Figure 3(a) must be monotonic f@g, 2 = 0 or p,,2 = 1.

The design decisions become more interesting wheg However, one can see in the figure that error curves are not

Pop2 < 1. It can be shown that wheh < p,,» < 0.5, then  monotonic as long as the operational probability is within two

the median RMS localization error diverges to infinityias  threshold$) < 7 < p,2 <7 < 1.

goes to zero. Onge,, » exceeds 0.5, the median error is finite

asyu; goes to zero, and 3s,» goes to one, the median lo- Figures 3(b), (c), (d) provide the specific error curves for the

calization error aji; = 0 is decreasing with respect tg, o. cases thap,,» = 0.5, pp2 = 0.6, andp,,» = 0.7, re-



Table 1. Nearly optimal design ranges that meet the 1200 gpyise, it is colored in a dull red. When a node is selected
monetary unit budget for various valuesjgfs. for a given snapshot, a dotted line protrudes from the node to
the estimated target location. The graphs in the figure indi-

| ps2 || Acoustic Arrays | Cameras | cate that the EKF is effectively estimating the target location
05 Ny : 1200 < 680 Ny 0«52 at each point in time. Whenever, a camera can see the tar-
p1: 150 < 85 p2: 065 get, the camera is chosen because the bearing RMS error is
0.6 Ny : 1100 < 510 Ny: 10 < 69 so small much smaller for the cameras (0.26rsus 5).
pr: 138 < 64 pe2: 1.3+ 8.6
0.7 Np: 780« 130 Ny: 42 < 107 For the next set of simulations, the budget is 300 mone-
: u1: 98+ 16 p2 i 5.3« 13.4 tary units so that an admissible network design will con-

tain Ny = 300 — 10y acoustic nodesy; = 150 — 5y
nodes/kni) and N, = y camera nodeg, = 3y nodes/km)
for 0 < y < 30 over the 2 kmd region. The probability that
spectively. The vertical axes for these figures accentuate thde cameras collect useful information is septp, = 0.6.
dynamic range of these specific curves as compared to Figrirst, we first consider the case that the camera have a wide
ure 3(a). All three curves have a minimum that correspondsield of view ay = % (120°). For each value of the degree
to a heterogeneous network solution. Fortunately, the miniof freedomy, fifty random network configurations were gen-
mum is not very “sharp” so that nearly optimal performance iserated, and the EKF tracks the target over 100 Monte Carlo
achievable over a range of densities. For instance, the reasofalization for a given network configuration. Each track pro-
able ranges for the design parameters are provided in Tableyides 100 estimated target positions for a total 10,000 RMS
for these three values @f, . The curves in Figures 3(b)-(d) |ocalization error values per configuration, or 500,000 val-
represent the typical performance of the network taking intaues per a design posibility. Figure 5(a) plots the median
account the times when the cameras are providing and ngMs localization error versus the admissible node densities.
providing data. For the specific times that the cameras are (drhe figure also includes the median error predicted via (38).
are not) collecting data, then thg o = 1 (0rp,,2 = 0) curve  The two curves have the same shape, but they do not overlap
in Figure 3(a) represents the typical performance. because they represent slightly different quantities. Specif-
ically, the theory represents the “median” over all possible
The simulations that generated Figure 3 did not actually rumode/target geometries of the “average” error for a particu-
any localization technique. They simply computed (13) basedhr node/target geometry. On the other hand, the simulations
upon the geometry of the realization of the random networkprovide a median over geometries and random realization for
configuration. Furthermore, these simulations always placeghat geometry. Figure 5(b) shows the same plots of the same
the target at the center of the deployment region. The next s@lvo curves except that a constant factor of 2.3 m is added
of simulations consider the case of a moving target travelingo the simulated results. Remarkably, the two curves agree
at constant velocity of magnitude 10 m/s through a rectanguin shape and in dynamic range. The suggestion by theory to
lar deployment region of size 1km 2km. The initial loca-  chooseN; = 140 acoustic nodesif = 70 nodes/km) and
tion of the target is determined by the standard nonlinear least, = 16 camera nodes#$ = 8 nodes/km) is confirmed to
squared method described in [13], [17] that represents thBe reasonable by the simulations.
maximum likelihood estimator for the AWGN model given
by (1) wheng* = ¢ for each node [17]. Then, a bearings- The next set of simulations considers cameras with narrower
only EKF tracker continues to estimate the target position aFQvs. Specifically, the FOV of the camerasig= % (30°).
each snapshot time. At each snapshot of the tracking, thRgain, the median RMS localization error is computed over
“normalized closest” method selects the two nodes collect the o Monte Carlo runs of an EKF tracker for each of 50 dif-
measurement to be fed into the EKF tracker. The EKF emferent random configurations. Figure 6 provides the resulting
ploys the discrete white noise acceleration model with projocalization error versus node density curves. This time, the
cess noise, = 5 m/s* [24]. The specific details about the theory did not match the simulations as well as it did for the
bearing-only EKF tracker can be found in [3]. wider FOV camera. The simulated error grows too quickly
for the larger camera densities. The reason for the discrep-
Figure 4 illustrates how the tracking of the target and selecancy is due to the limited number of camera nodes relative
tion of nodes at various snapshots of time for a heterogeto the FOV inside the finite deployment region. The the-
neous network. This particular network consists of 50 acousory assumes an infinite deployment region. For any value
tic (o) and 10 cameraV) nodes. The FOV of the cameras is of 0 < y < 30, there is a high probability that a camera node
ay = 15 (30°). Again, when the target is within the FOV of does not see the target. The theory assumes that there is al-
the camera, a cross-bar is added to the Symbol to form  ways a node that sees the target. The expected distance of the
the *v” symbol to represent the camera. The target is movnode to the target is simply pushed out as the FOV becomes
ing from the left to the right. The graphs in the figure indicatenarrower. It can be the case that the normalized distafices
the state of the nodes for various collection snapshots of timgeor ; = 1,2 of the narrow FOV camera nodes are still ex-

Overall, the EKF is tracking target for 100 snapshots. Wherteeded by those of the acoustic nodes even though there is
the camera can see the target, it is colored in a bright red; oth-
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Figure 4. lllustration of sensor selection and localization for
a heterogeneous network of 50 acoustir dnd 10 camera
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Figure 5. Median RMS localization error over EKF tracking
as a function of admissible number of camera and acoustic
nodes when the cameras’ normalized FOW4s= % and the
deploymentregion is 1km 2km: (a) Simulation and theoret-
ical results, and (b) median shifted simulated and theoretical
results.

a high probability that the actual distaneedor the camera
nodes exceed the dimensions of the finite region. This is case
in Figure 6, and when the camera density increases, the the-
ory becomes too optimistic.

We reran the simulations of the narrow FOV cameras for a
larger deployment region. For these simulations, the region
is now 2km x 4km, and the budget has increased to 1200
monetary units. The admissible network design now con-
tains Ny = 1200 — 10y acoustic nodesiy = 150 — 5y
nodes/km) and N, = y camera nodesi, = £y nodes/kn)

for 0 < y < 120 over the 8 km region. The range of admis-
sible densities is exactly the same as in Figure 6. Figure 7(a)
plots the median RMS localization error versus node density

(V) nodes during EKF tracking. Cameras with line-of-sight ¢, 1ot simulated and theoretical results. Figure 7(b) plots
to the target are represented by th& Symbol.

the same two curves except that a constant value of 3 m is
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added to the simulated results. Clearly, the shape and dy-
namic range of the two curves are in agreement. The de-
ployment region of areas 8 Knis large enough to avoid the
finite effects of a camera FOV of 30 Finally, the simula-
tions confirm that the design df; = 810 acoustic nodes
(11 = 101 nodes/km) and N, = 39 camera nodesy = 4.9
nodes/km) is reasonable.

RMS Position Error (m)

6. CONCLUSIONS

0 5 10 15

This paper presents a first order theory to determine typ- Camera Density (nodes/km’)
ical localization errors when a heterogeneous network of
bearings-only nodes are localizing a target using a sensor (b)

management strategy to conserve node usage, i.e., energy.
The “normalized closest” sensor management approach Eigure 7. Median RMS localization error over EKF traCking
considered in order for the analysis to be tractable. The mea®s & function of admissible number of camera and acoustic
error actually diverges because of the high probability thafiodes when the cameras’ normalized FOWis = 15 and
the closest approach provides a poor geometry. Thereforéhe deployment region is 2kmt 4km: (a) Simulation and
the median error is used as the typical value. This theory cafheoretical results, and (b) median shifted simulated and the-
be used to determine the best mix of sensor types under @etical results.
cost constraint. If all the senor types are always able to col-
lect measurements, it is best to select the homogeneous net-
work of highest admissible density (within cost) that providesfects of the finite size of the deployment region, and consider
the lowest typical error. This result is intuitive since all sen-the coupling between the environment and the usefulness of
sors types are collecting the same type measurements abaueasurements from various sensor modalities, i.e., the corre-
the target, i.e., geolocation measurements. However, whenlations betweem,,,. Currently, the design goal only consid-
particular sensor modality is unable to provide measurementsrs geolocation performance. In the future, additional design
under all environmental conditions, a heterogeneous networgoals such as the communication cost and classification ac-
can become desirable. The paper provides examples whercaracy should be considered. For instance, it is desirable for
heterogeneous network that meets the cost constraints actilnte aggregate node density to be high for a low transmission
ally provides the lowest median localization error. Finally, range, and that the number of hops between active nodes to
simulations confirm that the theory is valid as long as criticalbe low. In addition, the theory must eventually take into ac-
mass of nodes of any modality can see the target at a givetount the detection probability of nodes, which is a function
shapshot. of range to the target. In fact, detection alone can be used
for localization [25] and the performance of such approaches
While the theory is a good first step towards providing de-have been characterized in [26], [27]. The determination of
sign guidance for a heterogeneous network, it is not the finathe best mixture of nodes in a senor network is a multi-faceted
answer. The theory should be expanded to account for the eproblem that will keep the research community engaged for
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years to come. Since the joint PDF fog; ands, is given by (41), the joint
PDF fors andw is
APPENDIX (ria )2

f(57 w) = 2t
for s > w > 0. Then, by integrating outr, the marginal
distribution for the numeratoris
This appendix derives the statistics for the localization er- _ [ _migs —rjigs
ror when employing the “normalized closest” sensor man- fs) = mh (e cooe ) (48)
agement approach in a homogeneous network of normalizq%r s> 0.
densityfi;. The localization error is a function @f and¢; -
for i = 1,2 as given by (13). The numerator in (13) can be
rewritten in terms of the normalized squared distances as

s+w

e P Ty (47)

1. DERIVATION OF LOCALIZATION ERROR
STATISTICS

Now, the expected value efis

oo 1 s

R =5t (39) By = [ [ rereasa. @)
Then, the joint PDF of the random variables that affect the - /Oo sf(s)ds /1 lf(b)db. (50)

value ofe is 0 o b

s 2 B After a little work, it can be shown that

f(§11527¢17¢2) = (2) TSz (40) [e'e] 3
/ sf(s)ds = —. (51)
0 T

for 0 < 5; < 33 and0 < ¢1, ¢o < 27w. The polar angles are

statistically independent of the normalized distances squarediowever, the expected value of the reciprocal of the denomi-
Therefore, the joint PDF can be expressed as the product é@tor has problems,

two marginal distributions,

' | 1
I —f(b db:/ ——————db. (52)
F(31,32) = (mfiy)” e ™52 (41) /o b ®) 0o Thvbv/1—b
for0 < 3, < 5, and Using the change of variabte= % — 1, the integral is equal
o to
1 /mlidc_ lim 2\/6 (53)
f(¢17 ¢2) = (27r)2 (42) o T \/E Ccoom Y

which diverges to infinity. Therefore, the localization MSE
for 0 < ¢1, ¢ < 27. given in (13) does not have a finite expected value. Similar

arguments can show that the localization RMS eprore.,
Let's determine the distribution for numerator and denominathe square root of the MSE, also does not have a finite mean.

tor of (13). The denominator is a nonlinear function of the The divergence of the mean f(%ror % is due to the high
modulo 27 difference of two independent random Va”ablesprobability thath = 0 or equivalentlyps = 0. Whenga =

¢1 and ¢, with gniform distributions. It is well known that 0, the two nodes and the target are collinear, which is the
the modula2r difference, degenerate geometry for triangulation.

$a = ¢1 = ¢2 “43)  Even thougle does not have a finite mean, we can still derive
is also uniformly distributed oveb, 27). Now, the denomi- its CDF,
nator is , F.(z) = Prole<u), (54)
b = si 44
sin” ¢a, (44) _ prouz <), (55)
. h hat the distributi .
and it can be shown that the distribution fais = Prols < bz), (56)
£6) =~ 45) e
e - || serwasa, 57)
0 0
1

foro<b<1.

/ (1 —2e~ "0 4 &™b7) f(b)db. (58)
0

_The dlstrlbutpn for the numerat(_)r is determined by conS|der-USing the change of variable— sin ¢, the CDF can be reex-
ing the following changes of variables,

pressed as
s = 51 + So, (46)

w = —5&1 + Sa.

P =125 (o) 4 B, (69)
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where [5] R. A. Burne, |. Kadar, and A. Buczak, “A self-

Bz) = 1 /0C p—masin’0 g0 (60) organizing, cooperative sensor network for remote
™ Jo surveillance: Target tracking while optimizing the ge-
It is convenient to consider the CDF for the special case that ~ ometry between bearing-reporting sensors and the tar-
fe =1, get,” inProc. of SPIEvol. 4393, Apr. 2001.
G(z)=1-23 (1x> + B(x). (61) [6] F. Zhao, J. Shin, and J. Reich, “Information-driven dy-
2 namic sensor collaboration[EEE Signal Processing
Then, the CDF for: associated to arbitrary densify is a Magazinevol. 19, pp. 61-72, Mar. 2002.
dilation of G, . [71 M. Chu, H. Haussecker, and F. Zhao, “Scalable
Fe(r) = G(jux). (62) information-driven sensor querying and routing for
The median value of corresponds to the point where the ad hoc heterogeneous sensor networkstgrnational
CDF equal9).5. Therefore, Journal of High Performance Computing Applications
vol. 16, Aug. 2002.
Fi(medfar{g}) = 05, (63) [8] J.Liu, J. Reich, and F. Zhao, “Collaborative in-network
G(imediare}) = 0.5, (64) processing for target trackingEURASIP Journal on
) G(=1(0.5) Applied Signal Processingvol. 2003, pp. 378-391,
mediar{e} = ——— (65) Mar. 2003.

Numerical computation shows that(~1)(0.5) ~ 1.86.
Thus,

[9] V. Cevher, L. M. Kaplan, U. Sung, and L. Clare, “A
Bayesian acoustic sensor network build strategy for po-

sition tracking.” in preparation folEEE Transactions
. 1.86 ! .
mediar{c} ~ T (66) on Signal Processing
[10] V. Isler and R. Bajcsy, “The sensor selection problem
The CDF for the localization RMS errgris easy to derive for bounded uncertainty sensing models Fourth Intl.
from the CDF of:, Symp. on Information Processing in Sensor Networks
(IPSN) pp. 151-158, Apr. 2005.
Fylz) = Prolfp < z), (67) " [11] 1. Kadar, “Optimum geometry selection for sensor fu-
= Prole <a?), (68) sion,” in Proc. of SPIE vol. 3374, pp. 96-107, Apr.
= F.(z%), (69) 1998.
G (jipz?). (70)  [12] J. M. Manyika and H. F. Durrant-Whyt®ata Fusion
) _ ) and Sensor Management: An Information-Theoretic
Finally, the median op is Approach Englewood Cliffs, NJ: Prentice Hall, 1994.
) G1(0.5) 3 [13] L. M. Kaplan gnd Q. Le, “On.exp_loiting.propaga.\tion de-
mediafp} = (~> , (72) lays for passive target localization using bearings-only
e measurements,Journal of Franklin Institutevol. 342,
'z [14] D. K. Wilson, B. M. Sandler, and T. Pham, “Simulation
of detection and beamforming with acousitcal ground
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