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Abstract—This paper presents the design characterization of
a heterogeneous sensor network with the goal of geolocation
accuracy. It is assumed that the network exploits sensor man-
agement to conserve node usage. Each available node modal-
ity is a bearings-only sensor of varying capability. The opti-
mal mixture of modalities is discussed under the constraint of
the overall network cost. Finally, simulations verify the the-
ory and demonstrate design choices for a network consisting
of two modes analogous to acoustic arrays and cameras.
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1. INTRODUCTION

The paradigm of the network of inexpensive sensors dis-
tributed geographically over a large region promises to pro-
vide improved surveillance capabilities for a number of ap-
plications [1]. Each sensor node on its own consists of the
sensor to collect measurements, a radio to share data with
other nodes, a microprocessor to process and fuse data into
information and a battery to provide the necessary power for
the hardware to work. Alone, a sensor node is only able to
gain limited inference about objects of interest, i.e., targets, in
the surveillance region. By sharing data over the sensor net-
work, each node is able to gain much better inference about
the scene. In many applications, the sensor network must op-
erate in a clandestine manner where the nodes are dispersed
via airdrop or cannon fire. Therefore, the physical size of each
node is limited, and it is impossible to maintain the nodes
and replenish batteries. Therefore, the nodes must operate
under severe energy constraints to maintain a long effective
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lifetime [2].

In the sensor network research literature, the network man-
agement problems concern themselves for developing strate-
gies to self-organize a set of available sensors for optimal re-
source allocation, e.g., [3], [4], [5], [6], [7], [8]. The solution
of this problem is quite important because the effective life-
time of an already deployed sensor network can be increased
by saving sensor batteries via using clever schemes of sensor
selection, information hand-off, and efficient data compres-
sion. In [9], we investigate an optimal resource allocation
problem on randomly deployed sensor networks for position
tracking. Our focus is the the network build strategy (NBS),
which determines the number of sensors of different types to
deploy from a sensor pool that offers a distinct cost vs. per-
formance trade-off for each type of sensor. We formulate the
NBS problem as a constrained optimization problem, whose
objective is to minimize the position uncertainty under a lim-
ited budget by determining a build strategy. Hence, the re-
sults of the NBS problem is complimentary to the sensor net-
work management literature that concentrates on a choice of
a subset of already deployed sensors in the field to maximize
battery life while simultaneously minimizing the location un-
certainty.

In this paper, using similar assumptions to [9], we focus on
the design of a random heterogeneous sensor network when
only a constant number of sensors are used for position esti-
mation. This is a practical situation because it is proven that
a small subset of sensors is always competitive with the full
network in localization performance [10]. We assume that
there areT possible sensor types, i.e. modalities. For this pa-
per, it is assumed that all sensor types collect target bearing
measurements within the ground plane, i.e., azimuth angle to
the target. The difference among modalities is the field of
view (FOV), accuracy, environmental robustness and mone-
tary cost of the sensors. When the FOV is limited (less than
360◦), the sensor will only be able to see the target and col-
lect a bering measurement when the target moves within the
line-of-sight of the sensor. Because of energy limitations, a
sensor node has no capability to pan and tilt in order change
its orientation to bring a target within line-of-sight. The accu-
racy of the sensor is related to the expected error between the
measured bearing and actual bearing. A sensor may not be
able to collect useful measurements during certain environ-
mental conditions; thus, it may lack environmental robust-
ness. Finally, there is always a budget for the network, and
the cheaper a sensor type, the more nodes that one can include
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in the network.

The design goal for this paper is to optimize the geoloca-
tion performance of the randomly deployed sensor network
for any point well inside the deployment region. The design
choices are the number of senors that comprise each type.
The design constraint is the overall cost of all the nodes com-
prising the network. The geolocation performance is based
on the fact that while the network is tracking targets, it is us-
ing sensor management to control the node usage. The sen-
sor management approaches use the predicted target/node ge-
ometry to determine the best subset of nodes in terms of ex-
pected geolocation accuracy [3], [4], [11], [5], [6], [7], [8].
As shown in [4], it is possible to implement the node selec-
tion over a decentralized architecture [12]. In general, the
analysis of geolocation performance with sensor management
can become unruly. For the analysis to be tractable, this pa-
per considers a simplified management technique: selection
of the two normalized closest nodes to the target. The nor-
malization is based upon the accuracy of the modality of the
particular node.

The paper presents theory applicable to an arbitrary number
T of sensor types and includes simulations that focus on two
sensor types that serve as analogs to acoustic arrays and cam-
eras. The acoustic arrays are robust omni-directional senors,
while the cameras are more accurate but also more expensive
and less environmentally robust. For instance, under foggy
conditions, one can still use the microphones but not the cam-
eras. The simulations consists of generating random configu-
rations of sensor networks and Monte Carlo evaluation of ex-
tended Kalman filter (EKF) trackers. The simulations verify
when the theory is accurate and show how to determine the
number of sensors for each modality given the overall net-
work budget.

The paper is organized as follows. Section 2 discusses
the sensor model parameters. Then, Section 3 reviews the
Cramer-Rao lower bound (CRLB) for bearings-only target lo-
calization, sensor selection and the statistics for the node lo-
cations relative to the target. This review provides the back-
ground which is used in Section 4 to present a new theory
to characterize localization performance as a function of the
design parameters. Section 4 also discusses the general op-
timization problem to determine the best design parameters.
Then, simulations are provided in Section 5 to validate the
theory and to illustrate good design choices for sensor net-
works. Finally, Section 6 provides concluding remarks and
discussions of future directions of research.

2. SENSOR M ODELS

The paper makes a number of simplifying assumptions so that
the analysis is tractable. First, it is assumed that calibration
and synchronization issues can be ignored. Nodes may have
limited FOV and lack the ability to change their orientation
to obtain a better view of the target. Next, each node always
detects the target, if it lies within the FOV of the node, and

never detects a false target. When a node detects the target,
it provides a bearing measurement where the error follows an
additive white Gaussian noise (AWGN) model. The nodes
are always working, but conditions may exist where the some
nodes are unable to provide meaningful measurements. The
wireless communication channels between nodes are always
operating perfectly. Using these assumptions, this section ex-
plains the salient parameters that describe the sensing behav-
ior of any node. The section wraps up by describing parame-
ters that could serve as analogs for acoustic arrays and cam-
eras.

Generic Model

At a given snapshot of time, the sensor node collects a bear-
ing measurement that is representative of the current bearing
φ between the node and the target. More precisely, the mea-
surement is a noisy version of the retarded bearingφ∗, where
retarded bearing refers to the fact that there is a propagation
delay between the time the target emits the signal that the
node is measuring. Therefore, the node is actually collecting
data consistent with a bearing from a retarded time. Thus, the
bearing measurement AWGN model is

φ̃ = φ∗ + η, (1)

whereη ∼ N(0, σ2), φ∗ is the retarded bearing, andσ is
the bearing root mean squared (RMS) error. The RMS bear-
ing errorσ represents the measurement accuracy of the node,
and this value impacts the localization accuracy of integrating
measurements from multiple nodes.

If the target is not moving,φ∗ corresponds to the bearing to
the target at the current time, i.e.,φ∗ = φ. For a constant
velocity target [13],

φ∗ = φ+ arcsin
(v
c

sin(φ− ψ)
)
, (2)

wherev andψ is the speed and heading of the target, respec-
tively, andc is the propagation speed of the signal being mea-
sured. The tracking simulations take into account the prop-
agation delay using (2). However, the error analysis for the
sensor networks assumes thatφ∗ = φ in the AWGN model
given in (1).

The sensor is fixed on the ground with an orientation ofϕ.
The normalized FOV of the sensor isα where0 < α ≤ 1.
This means that the sensor is able to see a target and report a
bearing measurement if

|φ∗ − ϕ|
π

≤ α. (3)

If α = 1, the sensor is omni-directional and always reports a
measurement. The FOV in units of degrees is360◦α.

The environmental conditions may prevent the sensors from
collecting useful measurements. This phenomena is modeled
by the operational probabilitypop. Therefore, there is a prob-
ability of 1− pop that the sensor is can not be operational.
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The final parameter is the unit cost of the sensor. We letζ rep-
resent the cost of the sensor. The cost of the sensor constrains
how many nodes of a particular modality can be employed in
the sensor network.

Acoustic Arrays

An array of microphones can determine the target bearing by
considering the time delays, i.e., phase differences, between
the microphone. Because target typically emit harmonics, it is
advantageous to apply a wideband direction of arrival (DOA)
algorithm, e.g., [14], [15]. As shown in [13],σ is in the or-
der of 3 to 4 degrees. Therefore, we model acoustic arrays
with σ = 5◦. The simulations take into account the time re-
tardation factor given by (2) by setting the speed of sound as
c ≈ 347 m/s. Furthermore, the circular arrays are omnidi-
rectional so thatα = 1. Finally, we suspect that the acous-
tic arrays will always provide useful measurements when the
cameras can see the targets. Therefore,pop = 1. Finally, the
unit cost of the acoustic array is normalized to a value of one
monetary units, i.e.,ζ = 1.

Cameras

Cameras determine the bearing by detecting which pixel in-
cludes the target. The size of the pixels, i.e., instantaneous
FOV (IFOV), is determined by the FOV divided by the num-
ber of pixels comprising the length and width of the imagery.
The FOV varies depending on the design of the optics. We
consider two values for the FOV:α = 1

12 (30◦) andα = 1
3

(120◦). We assume that bearing error is in the order of twice
the IFOV. By considering that the narrow FOV camera con-
tains about 240 pixels per dimension, then a reasonable value
of for the bearing error isσ = 0.25◦. We assume that
the wider FOV camera contains more pixels to maintain this
value ofσ. The simulations ignore the time retardation fac-
tor in (2) because the speed of light is so large. There are
conditions when the cameras can not collect measurements,
but the microphones can, e.g., foggy weather. Therefore, it
reasonable forpop < 1. This paper analyzes the effect of dif-
ferent values ofpop < 1. Finally, we assume in this paper that
cameras are ten times more expensive than microphones, i.e.,
ζ = 10 monetary units.

3. SENSOR NETWORK THEORY

The section provides the background theory to develop the
performance characterization for the sensor network design.
The network consists ofN sensors distributed uniformly over
a large 2-D region on the ground of areaA so that the sensor
density is

λ =
N

A
. (4)

The network is tracking a target that is well inside the phys-
ical boundaries of the network. Without loss of general-
ity, the target is located at the origin of the coordinate sys-
tem, and the nodes are indexed in ascending distance to the
target. The polar coordinates for the nodes are labeled as
(ri, φi) for i = 1, . . . , N , whereri andφi are the distance

and bearing between the target and thei-th node. Note that
0 ≤ r1 ≤ r2 ≤ . . . ≤ rN . Finally, the bearing RMS error
for the i-th node isσi. In this paper, the magnitude ofσi is
dictated by the corresponding sensor type for thei-th node.

Localization

Localization refers to the collection of bearings-only mea-
surements over multiple nodes to estimate the position of
the target. For any unbiased localization estimator, it is well
known that the mean squared error (MSE) is bounded below
by the Cramer-Rao lower bound (CRLB) [16]. This bound
is derived from the Fisher information matrix (FIM). For the
localization estimator using bearings-only measurements, the
FIM is [17]

J =
∑

i∈Na

1
σ2

i r
2
i

[
sin2 φi − sinφi cosφi

− sinφi cosφi cos2 φi

]
, (5)

whereNa is the set of nodes that are actively collecting
and sharing measurements for the given snapshot. Thus, the
CRLB for the localization MSE is

ε(Na) = trace
{
J−1

}
, (6)

=
trace{J}
det{J} , (7)

where

trace{J} =
∑

i∈Na

1
σ2

i r
2
i

, (8)

and [3]

det{J} =
1
2

∑

i∈Na

∑

j∈Na

sin2(φi − φj)
σ2

i r
2
i σ

2
j r

2
j

. (9)

For the the CRLB to be finite, the active setNa must contain
two or more nodes with different bearings to the target. Oth-
erwise, the determinant of the FIM given by (9) is zero. In
tracking scenarios, it is possible for one node to be active at a
time, i.e.,|Na| = 1, because the current measurement is be-
ing integrated with measurements at previous times to form a
full rank posteriori FIM [3].

The expression for the position error in (7) represents the ge-
ometrical dilution of precision (GDOP) measure used in [11]
for node selection. As shown in [11], [17], [18], [19], [20], (7)
is consistent with the expected MSE for the maximum likeli-
hood single snapshot geolocation approach. In fact, the FIM
also represents the inverse covariance update in the informa-
tion form of the EKF tracker [3]. In short, (7) is representa-
tive of the actual errors of practical localization estimators. It
is also convenient to consider the root mean squared (RMS)
localization error

ρ(Na) =
√
ε(Na). (10)

The simulations will provide results in terms of the RMS er-
ror because the corresponding units are natural (in terms of
length).
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Normalized Closest Sensor Management

To conserve energy, the sensor manager determines which
nodes will be active for a given snapshot. A good sensor
manager should balance localization accuracy with energy re-
quirements such as communications via the radios. The “nor-
malized closest” sensor manager is a simple approach to se-
lect the active setNa of Na nodes with small localization
MSE as given by (7). Actually, the calculation of the MSE
requires one to already know the location of the target rela-
tive to the target. In practice, the sensor manager performs
the node selection while tracking the target, and the predicted
target state is used to estimate the polar coordinates for the
nodes.

The “normalized closest” approach selects theNa nodes cor-
responding to the smallest normalized distances to the target

r̃i = σiri. (11)

The justification for the selection approach is because the lo-
calization MSE is bounded below by [3]

ε(Na) ≥ 4
trace{J} . (12)

The lower bound can be achieved when the nodes essentially
surround the target. For the case of two nodes, this means that
the two lines of sight between the nodes and the target are
orthogonal. The normalized closest approach assumes that
the node/target geometry is favorable so that the MSE is near
its lower bound. Then, maximization of the MSE entails the
minimization of the trace of the FIM, which is accomplished
by selecting the nodes with small normalized distances to the
target.

While the bearing errorσi varies by node, it is generally con-
stant over node type. In this paper, the bearing error is fixed
for given sensor model (see Section 2). For the sake of math-
ematical tractability,Na = 2. Note that the MSE diverges to
infinity for Na = 1 since the determinant of the FIM is zero.
From (7), (8) and (9) it can be shown that the MSE for the
two normalized closest nodes is

ε(Na) =
r̃21 + r̃22

sin2(φ1 − φ2)
. (13)

Network Geometry

Given that the sensors are uniformly distributed over the de-
ployment region of areaA, the locations of the sensors over
any patch of areaP inside this region such thatP ¿ A
approximates a 2-D Poisson point process with densityλ
[21]. For any point inside the 2-D Poisson point process, the
squared ordered distances to that point have the same joint
density as the arrival times of a Poisson process with inten-
sity γ = πλ [22]. In addition, the polar angles between the
arbitrary and the ordered sensors are independent identically
distributed (i.i.d.) with a uniform distribution over[0, 2π).

Therefore, a very good approximation to the ordered squared
distances to the target,si = r2i for i = 1, . . . , k, whenk ¿ N
is

f(s1, . . . , sk) =
{

(πλ)ke−πλsk for sk ≥ . . . ≥ s1 ≥ 0,
0 otherwise,

(14)
and the polar anglesψi are approximately uniform. Further-
more, the marginal distribution forsi is approximated by a
Gamma distribution

f(si) =

{
(πλ)i

(i−1)! (si)i−1e−πλsi for si ≥ 0,
0 otherwise.

(15)

Figure 1 compares the distribution of the ordered squared dis-
tances described by the Gamma distribution to empirically
generated histograms. The histograms were created by real-
izing 1000 different configuration ofN = 100 nodes uni-
formly distributed over a circular region of radius 100m and
then sorting the squared distances to the center of the region.
Clearly, wheni ¿ N , the histograms match up with the
Gamma distributions. For the case ofi = 50 andi = 100, the
Gamma distributions are too heavy tailed to be represented
by the histograms ofsi.

4. SENSOR NETWORK DESIGN
CHARACTERIZATION

The sensor network design characterization refers to the re-
lation of the median localization error as a function of the
design parameters, i.e., the number of sensorsNt for types
t = 1, · · · , T . To derive the characterization, the first subsec-
tion focuses on the case of the homogeneous network. Then,
the second subsection extends the results to the general het-
erogeneous case and discusses the optimization of the median
error under the cost constraint.

Homogeneous Network

The sensor network consists of nodes of typet whose bearing
RMS error isσt. The normalized FOV of the nodes isαt.
Given thatNt nodes are uniformly distributed over a region
of areaA, then the node density is given byµt = Nt/A.
Over any patch inside the deployment region of areaP such
thatP ¿ A, the nodes form an approximate 2-D Poisson
point process. Furthermore, the orientation of the nodes are
uniformly distributed over[0, 2π). Thus, the probability that
the target is within the FOV of any node, i.e., (3) is satisfied, is
αt as long as the target is well inside the deployment region.
In other words, the set of nodes that can see the target are
formed by retaining nodes from a 2-D Poisson point process
of densityλ = µt with probabilityαt. As a result, the line-of-
sight nodes also form a 2-D Poisson point process of density
λ = µtαt [21].

The calculation of the distribution of the localization MSE
with sensor management (see (13)) requires the joint dis-
tribution of the normalized squared distances and the polar
angles. As stated earlier, the distances are statistically in-
dependent from the polar angles, and the polar angles are
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Figure 1. Comparison of Gamma distributions (theory) to empirical histograms (Monte Carlo) for the ordered squared dis-
tances to any arbitrary point inside a sensor network: (a)s1, (b) s2, (c) s3, (d) s10, (e)s50, and (f)s100.

i.i.d. with a uniform probability distribution function (pdf)
over [0, 2π). The joint distribution for the squared ordered
distances is given by (14) whereλ = µtαt. The distribution
for the squared orderednormalized distances is obtained by
considering the following change of variables,

s̃i = r̃2i , (16)

= σ2
t si. (17)

It can easily be shown that the joint distribution ofs̃i is also
given by (14), but nowλ = µtαt

σ2
t

. In the sequel, we refer to

µ̃t =
µtαt

σ2
t

(18)

as thenormalized line-of-sightdensity of the homogeneous
networkt, because, one can view the normalized squared dis-
tances as being generated from a Poisson point process of
density µ̃t. Under the assumption that the sensors form a
Poisson point process of densityµt, the dilation of the line-
of-sight sensors about the target by a factor ofσt actually
produces the Poisson point process of densityµ̃t.

Now that the distribution of the components comprising the
expression for localization MSE with sensor management is
characterized, one can calculate the statistics for the localiza-
tion MSE in (13). Unfortunately, as shown in Appendix A,

the expected value ofε(Na) or ρ(Na) is not finite. This is
due to the fact of the high likelihood that the two selected
nodes will exhibit a poor geometry with respect to the tar-
get, i.e., comparable line-of-sight vectors to the target. Even
though the high tail of the distribution ofε or ρ affects the
calculation of a meaningful mean, one can still compute a fi-
nite median value. As shown in Appendix A, the cumulative
distribution function (CDF) for the localization MSE is

Fε(ε) = G(µ̃tε), (19)

where
G(x) = 1− 2β

(x
2

)
+ β (x) , (20)

and

β(x) =
1
π

∫ π

0

e−πx sin2 θdθ. (21)

The median value ofε is

median{ε(Na)} =
G(−1)(0.5)

µ̃t
, (22)

= G(−1)(0.5)
σ2

t

µtαt
, (23)

where G(−1)(·) is the inverse function ofG(·) and
G(−1)(0.5) ≈ 1.86.
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The CDF of localization RMS errorρ is simply determined
by substituting (10) in the CDF for the localization MSE in
(19),

Fρ(ρ) = G(µ̃tρ
2), (24)

and the median of the RMS localization error is

median{ρ(Na)} =
(
G(−1)(0.5)

µ̃t

) 1
2

, (25)

≈ 1.3639σt√
µtαt

. (26)

Heterogeneous Network

The network consists ofT types of bearings-only sensor
nodes covering a deployment region of areaA. The RMS
bearing error, normalized FOV and population for thet-th
node type isσt, αt, andNt, respectively. At this point, we
assume that all sensors types are operational under all condi-
tions, i.e.,pop,i = 1. When viewing the subnetwork of nodes
consisting of only typet, the analysis of the previous sub-
section applies. That is each subnetwork can be viewed as a
Poisson point process of densityµt where the normalized tar-
get distances are dictated by the densityµ̃t given in (18). The
heterogeneous network is simply the aggregate of the subnet-
works formed by nodes of typet for t = 1, . . . , T , and the
additive property of Poisson process applies [21]. As a result,
the normalized target distances are being generated from the
normalized density

µ̃ =
T∑

t=1

µ̃t, (27)

=
T∑

t=1

µtαt

σ2
t

. (28)

When all sensors types are always operational, the CDF forε
andρ is still (19) and (24), but wherẽµ is substituted for̃µt.
Finally, the median for the localization MSE is

median{ε(Na)} =
G(−1)(0.5)∑T

t=1
µtαt

σ2
t

, (29)

and the median for the RMS localization error is

median{ρ(Na)} =


G(−1)(0.5)∑T

t=1
µtαt

σ2
t




1
2

. (30)

The overall cost of the of the network is the sum the cost of
each component of typet

C =
T∑

t=1

ζtNt. (31)

The goal of the network designer is to determine the best mix
of sensors types so that the overall cost is less than or equal

to a constraintK. A reasonable design objective is to mini-
mize the median MSE given in (30) given the cost constraint.
Dividing both size of (31) by the areaA leads to the cost
constraint in terms of node density. When all sensors types
are always operational, minimization of (30) is equivalent to
maximization of its reciprocal so that the objective with the
constraints is a linear program

arg max
µ1,...,µT

T∑
t=1

µtαt

σ2
t

, (32)

given

µ1 ≥ 0,
...

µT ≥ 0,
T∑

t=1

ζtµt ≤ K

A
. (33)

The solution of any linear program lies on one of the ver-
tices of the simplex formed by the constraints [23, Ch. 8.1].
For this linear program, the vertices of the simplex include
only one nonzeroµt. In other words, the optimal network
is a homogenous network consisting of sensor typet∗ corre-
sponding to the largest conceivable normalized density, i.e.,
the density that meets the cost constraint,

µ̃t∗ = max
t

1
ζt

K

A

αt

σ2
t

. (34)

When all the sensor types are operational, the solution is sim-
ple because the nodes are collecting the same form of infor-
mation about the targets. One simply chooses the sensor types
that provides the most accurate form of this information. Re-
placing any set of nodes with another type simply degrades
the quality of the information. The more interesting case is
when some sensor types are not always operational. Then, a
cheaper less accurate but more robust node may actually pro-
vide utility vis-à-vis the more expensive node. Letot be a
binary variable that represents whether sensor typet is oper-
ationalot = 1 or notot = 0. Then, for the general case that
pop,t ≤ 1, the CDF for the localization RMS error is

Fρ(ρ) =
o1=1∑
o1=0

· · ·
oT =1∑
oT =1

P (o1, . . . , oT ) · (35)

·G
((

T∑
t=1

ot
µtαt

σ2
t

)
ρ2

)
,

where

P (o1, . . . , oT ) =
T∏

t=1

pot
op,t(1− pop,t)(1−ot). (36)

The CDF for the localization MSE is obtained by simply sub-
stitutingε for ρ2 in (35), and median statistics forρ andε are
easily obtained from the CDFs.

6



The pitfall with the partially operational model that leads to
(35) is that is assumes that one sensor modality becomes
nonoperational independent of another. In practice, design-
ers choose node modalities to complement each other. In
other words, when conditions are poor for one modality, they
should be OK for another one. A better model is that the oper-
ational probability of nodes types are correlated. This will be
a subject of future work. The simulations focus on the spe-
cific case of the analog of acoustic array and camera nodes
whose first order models are described in Section 2.

Let t = 1 andt = 2 correspond to the acoustic and camera
nodes, respectively. Then, the localization RMS error CDF in
(35) simplifies to

Fρ(ρ) = pop,2G
((

µ1α1
σ2
1

+ µ2α2
σ2
2

)
ρ2

)
(37)

+(1− pop,2)G
((

µ1α1
σ2
1

)
ρ2

)
.

The median RMS localization error is theρ∗ that solves

pop,2G

((
µ1α1

σ2
1

+
µ2α2

σ2
2

)
ρ∗2

)
(38)

+(1− pop,2)G
((

µ1α1

σ2
1

)
ρ∗2

)
= 1

2 .

Again, the designer can search for the densitiesµt for t = 1, 2
that minimizeρ2 under the constraints for cost and positive
densities (see (33)). Unlike the simple case thatpop,t = 1,
the minimization problem is not a linear program. For two
sensor modalities, there is one degree of freedom, i.e.,µ1 or
µ2. In the simulations, we illustrate how the median RMS
localization error changes over this degree of freedom.

5. SIMULATIONS

In this section, we confirm the design characterization pre-
sented in Section 4 against Monte carlo simulations. The
first set of simulations generate random configurations of the
nodes by uniformly distributing them over a circular region
of radius 1.6km. Furthermore, the orientation of the cameras
are uniformly distributed over[0, 2π). An example of such
a random configuration for 100 acoustic arrays (µ1 = 12.5
nodes/km2) and 10 cameras (µ2 = 1.25 nodes/km2) is shown
in Figure 2. The “◦” and “∨” symbols represent the acoustic
and camera nodes, respectively. The target is located at the
center of the region. When the target is within the FOV of
the camera, a small cross-bar is added to the “∨” symbol to
form a “∀” symbol. This cross-bar represents the lens of the
camera. Therefore, one can infer which camera nodes have
line-of-sight to the target based on their orientation. The fig-
ure also shows the nodes selected by the “normalized closest”
management method as the brighter color symbols.

We consider the case where a budget of 1200 monetary units
is available to build a sensor network to cover the circu-
lar region of radius 1.6 km. Therefore, one could design
a homogenous network of 1200 acoustic nodes with den-
sity µ = 150 nodes/km2 or 120 camera nodes with density
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Figure 2. Example of random sensor configuration of 100
acoustic arrays (◦) and 10 cameras (∨) with the target located
in the center. One camera (∀) has line-of-sight to the target.
The brighter colored nodes represent the selected nodes.

µ = 15 nodes/km2. Alternatively, one could design a hetero-
geneous network where the acoustic and camera densities are
µ1 = 150 − 10y andµ2 = y, respectively, for0 < y < 15.
The normalized FOV of the cameras isα2 = 1

12 . Given the
design characterization presented in Section 4 and the mod-
els provided in Section 2, the theoretical RMS localization
error for “normalized closest” node selection is computed us-
ing (38). This formula is valid for any point well inside the
support of the network. To verify the theory, we generated
10,000 random configurations for each value of the degree of
freedomy andpop,2. Then, we sorted the normalized distances
squared to the a center of the region and employed (10) and
(13) to determine the instantaneous RMS localization error.
Finally, we calculated the median error over all 10,000 con-
figurations. Figure 3 provides the results of both the theory
and the Monte Carlo simulations.

Figure 3(a) provides the localization error versus node density
curves for various values ofpop,2. The figure shows very good
agreement between the theory and the simulations. When
pop,2 = 1, the error curve is monotonically decreasing as the
error camera density increases. The design characterization
in Section 4 indicates that this curve must be monotonic (ei-
ther decreasing or increasing) because a heterogeneous net-
work can not lead to minimum error. For our models, it
turns out that the best design choice when the cameras can
always make measurements is to deploy the 120 cameras that
are within budget. Thepop,2 = 1 case also represents the
achievable performance conditioned on the fact that the cam-
eras are operational. On the other hand, whenpop,2 = 0, the
error curve is monotonically increasing because as the cam-
era density increases, the cameras are providing no assistance
for localization. As a result, the density of the useful acous-
tic nodes is simply decreasing and performance is degrading

7
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Figure 3. Median RMS localization error as a function of admissible number of camera and acoustic nodes under different
conditions for the operational probability of the cameras: (a) Variouspop,2, (b) pop,2 = 0.5, (c) pop,2 = 0.6, and (d)pop,2 = 0.7.

(see (26)), and whenµ1 = 0, then the median value diverges
to infinity because no sensors are available to localize the tar-
get. Clearly, if the cameras are not useful, the best design is
to deploy the 1200 acoustic arrays that are within budget. The
pop,2 = 0 curve also represents the worst case performance,
i.e., when the cameras are unable to make useful measure-
ments.

The design decisions become more interesting when0 <
pop,2 < 1. It can be shown that when0 < pop,2 ≤ 0.5, then
the median RMS localization error diverges to infinity asµ1

goes to zero. Oncepop,2 exceeds 0.5, the median error is finite
asµ1 goes to zero, and aspop,2 goes to one, the median lo-
calization error atµ1 = 0 is decreasing with respect topop,2.

For the given sensor parameters, it turns out that the median
error forµ1 = 150 (or µ2 = 0) is less than the median er-
ror for µ1 = 0 (or µ2 = 15) as long aspop,2 < 0.66. In
other words, the error curve has a higher value atµ1 = 0
than it does whenµ1 = 150. Whenpop,2 > 0.66, the me-
dian error forµ1 = 150 is greater than the error forµ1 = 0.
As discussed in the previous paragraph, the error curves in
Figure 3(a) must be monotonic forpop,2 = 0 or pop,2 = 1.
However, one can see in the figure that error curves are not
monotonic as long as the operational probability is within two
thresholds0 < τ ≤ pop,2 ≤ τ < 1.

Figures 3(b), (c), (d) provide the specific error curves for the
cases thatpop,2 = 0.5, pop,2 = 0.6, and pop,2 = 0.7, re-
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Table 1. Nearly optimal design ranges that meet the 1200
monetary unit budget for various values ofpop,2.

pop,2 Acoustic Arrays Cameras

0.5
N1 : 1200 ↔ 680
µ1 : 150 ↔ 85

N2 : 0 ↔ 52
µ2 : 0 ↔ 6.5

0.6
N1 : 1100 ↔ 510
µ1 : 138 ↔ 64

N2 : 10 ↔ 69
µ2 : 1.3 ↔ 8.6

0.7
N1 : 780 ↔ 130
µ1 : 98 ↔ 16

N2 : 42 ↔ 107
µ2 : 5.3 ↔ 13.4

spectively. The vertical axes for these figures accentuate the
dynamic range of these specific curves as compared to Fig-
ure 3(a). All three curves have a minimum that corresponds
to a heterogeneous network solution. Fortunately, the mini-
mum is not very “sharp” so that nearly optimal performance is
achievable over a range of densities. For instance, the reason-
able ranges for the design parameters are provided in Table 1
for these three values ofpop,2. The curves in Figures 3(b)-(d)
represent the typical performance of the network taking into
account the times when the cameras are providing and not
providing data. For the specific times that the cameras are (or
are not) collecting data, then thepop,2 = 1 (or pop,2 = 0) curve
in Figure 3(a) represents the typical performance.

The simulations that generated Figure 3 did not actually run
any localization technique. They simply computed (13) based
upon the geometry of the realization of the random network
configuration. Furthermore, these simulations always placed
the target at the center of the deployment region. The next set
of simulations consider the case of a moving target traveling
at constant velocity of magnitude 10 m/s through a rectangu-
lar deployment region of size 1km× 2km. The initial loca-
tion of the target is determined by the standard nonlinear least
squared method described in [13], [17] that represents the
maximum likelihood estimator for the AWGN model given
by (1) whenφ∗ = φ for each node [17]. Then, a bearings-
only EKF tracker continues to estimate the target position at
each snapshot time. At each snapshot of the tracking, the
“normalized closest” method selects the two nodes collect the
measurement to be fed into the EKF tracker. The EKF em-
ploys the discrete white noise acceleration model with pro-
cess noiseσυ = 5 m/s2 [24]. The specific details about the
bearing-only EKF tracker can be found in [3].

Figure 4 illustrates how the tracking of the target and selec-
tion of nodes at various snapshots of time for a heteroge-
neous network. This particular network consists of 50 acous-
tic (◦) and 10 camera (∨) nodes. The FOV of the cameras is
α2 = 1

12 (30◦). Again, when the target is within the FOV of
the camera, a cross-bar is added to the “∨” symbol to form
the “∀” symbol to represent the camera. The target is mov-
ing from the left to the right. The graphs in the figure indicate
the state of the nodes for various collection snapshots of time.
Overall, the EKF is tracking target for 100 snapshots. When
the camera can see the target, it is colored in a bright red; oth-

erwise, it is colored in a dull red. When a node is selected
for a given snapshot, a dotted line protrudes from the node to
the estimated target location. The graphs in the figure indi-
cate that the EKF is effectively estimating the target location
at each point in time. Whenever, a camera can see the tar-
get, the camera is chosen because the bearing RMS error is
so small much smaller for the cameras (0.25◦ versus 5◦).

For the next set of simulations, the budget is 300 mone-
tary units so that an admissible network design will con-
tain N1 = 300 − 10y acoustic nodes (µ1 = 150 − 5y
nodes/km2) andN2 = y camera nodes (µ2 = 1

2y nodes/km2)
for 0 ≤ y ≤ 30 over the 2 km2 region. The probability that
the cameras collect useful information is set topop,2 = 0.6.
First, we first consider the case that the camera have a wide
field of view α2 = 1

3 (120◦). For each value of the degree
of freedomy, fifty random network configurations were gen-
erated, and the EKF tracks the target over 100 Monte Carlo
realization for a given network configuration. Each track pro-
vides 100 estimated target positions for a total 10,000 RMS
localization error values per configuration, or 500,000 val-
ues per a design posibilityy. Figure 5(a) plots the median
RMS localization error versus the admissible node densities.
The figure also includes the median error predicted via (38).
The two curves have the same shape, but they do not overlap
because they represent slightly different quantities. Specif-
ically, the theory represents the “median” over all possible
node/target geometries of the “average” error for a particu-
lar node/target geometry. On the other hand, the simulations
provide a median over geometries and random realization for
that geometry. Figure 5(b) shows the same plots of the same
two curves except that a constant factor of 2.3 m is added
to the simulated results. Remarkably, the two curves agree
in shape and in dynamic range. The suggestion by theory to
chooseN1 = 140 acoustic nodes (µ1 = 70 nodes/km2) and
N2 = 16 camera nodes (µ2 = 8 nodes/km2) is confirmed to
be reasonable by the simulations.

The next set of simulations considers cameras with narrower
FOVs. Specifically, the FOV of the cameras isα1 = 1

12 (30◦).
Again, the median RMS localization error is computed over
100 Monte Carlo runs of an EKF tracker for each of 50 dif-
ferent random configurations. Figure 6 provides the resulting
localization error versus node density curves. This time, the
theory did not match the simulations as well as it did for the
wider FOV camera. The simulated error grows too quickly
for the larger camera densities. The reason for the discrep-
ancy is due to the limited number of camera nodes relative
to the FOV inside the finite deployment region. The the-
ory assumes an infinite deployment region. For any value
of 0 < y ≤ 30, there is a high probability that a camera node
does not see the target. The theory assumes that there is al-
ways a node that sees the target. The expected distance of the
node to the target is simply pushed out as the FOV becomes
narrower. It can be the case that the normalized distancesr̃i
for i = 1, 2 of the narrow FOV camera nodes are still ex-
ceeded by those of the acoustic nodes even though there is
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Figure 4. Illustration of sensor selection and localization for
a heterogeneous network of 50 acoustic (◦) and 10 camera
(∨) nodes during EKF tracking. Cameras with line-of-sight
to the target are represented by the “∀” symbol.
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Figure 5. Median RMS localization error over EKF tracking
as a function of admissible number of camera and acoustic
nodes when the cameras’ normalized FOV isα2 = 1

3 and the
deployment region is 1km× 2km: (a) Simulation and theoret-
ical results, and (b) median shifted simulated and theoretical
results.

a high probability that the actual distancesri for the camera
nodes exceed the dimensions of the finite region. This is case
in Figure 6, and when the camera density increases, the the-
ory becomes too optimistic.

We reran the simulations of the narrow FOV cameras for a
larger deployment region. For these simulations, the region
is now 2km× 4km, and the budget has increased to 1200
monetary units. The admissible network design now con-
tainsN1 = 1200 − 10y acoustic nodes (µ1 = 150 − 5y
nodes/km2) andN2 = y camera nodes (µ2 = 1

8y nodes/km2)
for 0 ≤ y ≤ 120 over the 8 km2 region. The range of admis-
sible densities is exactly the same as in Figure 6. Figure 7(a)
plots the median RMS localization error versus node density
for both simulated and theoretical results. Figure 7(b) plots
the same two curves except that a constant value of 3 m is
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Figure 6. Median RMS localization error over EKF tracking
as a function of admissible number of camera and acoustic
nodes when the cameras’ normalized FOV isα2 = 1

12 and
the deployment region is 1km× 2km.

added to the simulated results. Clearly, the shape and dy-
namic range of the two curves are in agreement. The de-
ployment region of areas 8 km2 is large enough to avoid the
finite effects of a camera FOV of 30◦. Finally, the simula-
tions confirm that the design ofN1 = 810 acoustic nodes
(µ1 = 101 nodes/km2) andN2 = 39 camera nodes (µt = 4.9
nodes/km2) is reasonable.

6. CONCLUSIONS

This paper presents a first order theory to determine typ-
ical localization errors when a heterogeneous network of
bearings-only nodes are localizing a target using a sensor
management strategy to conserve node usage, i.e., energy.
The “normalized closest” sensor management approach is
considered in order for the analysis to be tractable. The mean
error actually diverges because of the high probability that
the closest approach provides a poor geometry. Therefore,
the median error is used as the typical value. This theory can
be used to determine the best mix of sensor types under a
cost constraint. If all the senor types are always able to col-
lect measurements, it is best to select the homogeneous net-
work of highest admissible density (within cost) that provides
the lowest typical error. This result is intuitive since all sen-
sors types are collecting the same type measurements about
the target, i.e., geolocation measurements. However, when a
particular sensor modality is unable to provide measurements
under all environmental conditions, a heterogeneous network
can become desirable. The paper provides examples when a
heterogeneous network that meets the cost constraints actu-
ally provides the lowest median localization error. Finally,
simulations confirm that the theory is valid as long as critical
mass of nodes of any modality can see the target at a given
snapshot.

While the theory is a good first step towards providing de-
sign guidance for a heterogeneous network, it is not the final
answer. The theory should be expanded to account for the ef-
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Figure 7. Median RMS localization error over EKF tracking
as a function of admissible number of camera and acoustic
nodes when the cameras’ normalized FOV isα2 = 1

12 and
the deployment region is 2km× 4km: (a) Simulation and
theoretical results, and (b) median shifted simulated and the-
oretical results.

fects of the finite size of the deployment region, and consider
the coupling between the environment and the usefulness of
measurements from various sensor modalities, i.e., the corre-
lations betweenpopt

. Currently, the design goal only consid-
ers geolocation performance. In the future, additional design
goals such as the communication cost and classification ac-
curacy should be considered. For instance, it is desirable for
the aggregate node density to be high for a low transmission
range, and that the number of hops between active nodes to
be low. In addition, the theory must eventually take into ac-
count the detection probability of nodes, which is a function
of range to the target. In fact, detection alone can be used
for localization [25] and the performance of such approaches
have been characterized in [26], [27]. The determination of
the best mixture of nodes in a senor network is a multi-faceted
problem that will keep the research community engaged for
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years to come.

APPENDIX

1. DERIVATION OF L OCALIZATION ERROR
STATISTICS

This appendix derives the statistics for the localization er-
ror when employing the “normalized closest” sensor man-
agement approach in a homogeneous network of normalized
densityµ̃t. The localization error is a function of̃ri andφi

for i = 1, 2 as given by (13). The numerator in (13) can be
rewritten in terms of the normalized squared distances as

r̃21 + r̃22 = s̃1 + s̃2. (39)

Then, the joint PDF of the random variables that affect the
value ofε is

f(s̃1, s̃2, φ1, φ2) =
(
µ̃t

2

)2

e−πµ̃ts̃2 (40)

for 0 ≤ s̃1 ≤ s̃2 and0 ≤ φ1, φ2 < 2π. The polar angles are
statistically independent of the normalized distances squared.
Therefore, the joint PDF can be expressed as the product of
two marginal distributions,

f(s̃1, s̃2) = (πµ̃t)
2
e−πµ̃ts̃2 (41)

for 0 ≤ s̃1 ≤ s̃2 and

f(φ1, φ2) =
1

(2π)2
(42)

for 0 ≤ φ1, φ2 < 2π.

Let’s determine the distribution for numerator and denomina-
tor of (13). The denominator is a nonlinear function of the
modulo2π difference of two independent random variables
φ1 andφ2 with uniform distributions. It is well known that
the modulo2π difference,

φ∆ = φ1 − φ2, (43)

is also uniformly distributed over[0, 2π). Now, the denomi-
nator is

b = sin2 φ∆, (44)

and it can be shown that the distribution forb is

f(b) =
1
π

1√
b
√

1− b
, (45)

for 0 ≤ b ≤ 1.

The distribution for the numerator is determined by consider-
ing the following changes of variables,

s = s̃1 + s̃2, (46)

w = −s̃1 + s̃2.

Since the joint PDF for̃s1 and s̃2 is given by (41), the joint
PDF fors andw is

f(s, w) =
(πµ̃t)2

2
e−piµ̃t

s+w
2 (47)

for s ≥ w ≥ 0. Then, by integrating outw, the marginal
distribution for the numerators is

f(s) = πµ̃t

(
e−

πµ̃ts
2 − e−πµ̃ts

)
(48)

for s ≥ 0.

Now, the expected value ofε is

E{ε} =
∫ ∞

0

∫ 1

0

s

b
f(s)f(b)dsdb, (49)

=
∫ ∞

0

sf(s)ds
∫ 1

0

1
b
f(b)db. (50)

After a little work, it can be shown that
∫ ∞

0

sf(s)ds =
3
πµ̃t

. (51)

However, the expected value of the reciprocal of the denomi-
nator has problems,

∫ 1

0

1
b
f(b)db =

∫ 1

0

1
π

1
b
√
b
√

1− b
db. (52)

Using the change of variablec = 1
b − 1, the integral is equal

to ∫ ∞

0

1
π

1√
c
dc = lim

c→∞
2
π

√
c, (53)

which diverges to infinity. Therefore, the localization MSE
given in (13) does not have a finite expected value. Similar
arguments can show that the localization RMS errorρ, i.e.,
the square root of the MSE, also does not have a finite mean.
The divergence of the mean for1b or 1√

b
is due to the high

probability thatb = 0 or equivalentlyφ∆ = 0. Whenφ∆ =
0, the two nodes and the target are collinear, which is the
degenerate geometry for triangulation.

Even thoughε does not have a finite mean, we can still derive
its CDF,

Fε(x) = Prob(ε ≤ x), (54)

= Prob(
s

b
≤ x), (55)

= Prob(s ≤ bx), (56)

=
∫ 1

0

∫ bx

0

f(s)f(b)dsdb, (57)

=
∫ 1

0

(1− 2e−
πµ̃t

s bx + eπµ̃tbx)f(b)db. (58)

Using the change of variableb = sin θ, the CDF can be reex-
pressed as

Fε(x) = 1− 2β
(
µ̃t

2
x

)
+ β(µ̃tx), (59)
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where

β(x) =
1
π

∫ ∞

0

e−πx sin2 θdθ. (60)

It is convenient to consider the CDF for the special case that
µ̃t = 1,

G(x) = 1− 2β
(

1
2
x

)
+ β(x). (61)

Then, the CDF forε associated to arbitrary densitỹµt is a
dilation ofG,

Fε(x) = G(µ̃tx). (62)

The median value ofε corresponds to the point where the
CDF equals0.5. Therefore,

Fε(median{ε}) = 0.5, (63)

G(µ̃tmedian{ε}) = 0.5, (64)

median{ε} =
G(−1)(0.5)

µ̃t
. (65)

Numerical computation shows thatG(−1)(0.5) ≈ 1.86.
Thus,

median{ε} ≈ 1.86
µ̃t

. (66)

The CDF for the localization RMS errorρ is easy to derive
from the CDF ofε,

Fρ(x) = Prob(ρ ≤ x), (67)

= Prob(ε ≤ x2), (68)

= Fε(x2), (69)

= G(µ̃tx
2). (70)

Finally, the median ofρ is

median{ρ} =
(
G(−1)(0.5)

µ̃t

) 1
2

, (71)

≈ 1.3639√
µ̃t

. (72)

REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “In-
strumenting the world with wireless sensor networks,”
in Proc. of IEEE ICASSP 2001, vol. 4, pp. 2033–2036,
May 2001.

[2] V. Raghunathan, C. Schurgers, S. Park, and M. Srivas-
tava, “Energy-aware wireless microsensor networks,”
IEEE Signal Processing Magazine, vol. 19, pp. 40–50,
Mar. 2002.

[3] L. M. Kaplan, “Global node selection for localization in
a distributed network,”IEEE Trans. on Aerospace and
Electronic Systems, pp. 136–146, Jan. 2006.

[4] L. M. Kaplan, “Local node selection for localization in
a distributed network,”IEEE Trans. on Aerospace and
Electronic Systems, pp. 113–135, Jan. 2006.

[5] R. A. Burne, I. Kadar, and A. Buczak, “A self-
organizing, cooperative sensor network for remote
surveillance: Target tracking while optimizing the ge-
ometry between bearing-reporting sensors and the tar-
get,” in Proc. of SPIE, vol. 4393, Apr. 2001.

[6] F. Zhao, J. Shin, and J. Reich, “Information-driven dy-
namic sensor collaboration,”IEEE Signal Processing
Magazine, vol. 19, pp. 61–72, Mar. 2002.

[7] M. Chu, H. Haussecker, and F. Zhao, “Scalable
information-driven sensor querying and routing for
ad hoc heterogeneous sensor networks,”International
Journal of High Performance Computing Applications,
vol. 16, Aug. 2002.

[8] J. Liu, J. Reich, and F. Zhao, “Collaborative in-network
processing for target tracking,”EURASIP Journal on
Applied Signal Processing, vol. 2003, pp. 378–391,
Mar. 2003.

[9] V. Cevher, L. M. Kaplan, U. Sung, and L. Clare, “A
Bayesian acoustic sensor network build strategy for po-
sition tracking.” in preparation forIEEE Transactions
on Signal Processing.

[10] V. Isler and R. Bajcsy, “The sensor selection problem
for bounded uncertainty sensing models,” inFourth Intl.
Symp. on Information Processing in Sensor Networks
(IPSN), pp. 151–158, Apr. 2005.

[11] I. Kadar, “Optimum geometry selection for sensor fu-
sion,” in Proc. of SPIE, vol. 3374, pp. 96–107, Apr.
1998.

[12] J. M. Manyika and H. F. Durrant-Whyte,Data Fusion
and Sensor Management: An Information-Theoretic
Approach. Englewood Cliffs, NJ: Prentice Hall, 1994.

[13] L. M. Kaplan and Q. Le, “On exploiting propagation de-
lays for passive target localization using bearings-only
measurements,”Journal of Franklin Institute, vol. 342,
pp. 193–211, Mar. 2005.

[14] D. K. Wilson, B. M. Sandler, and T. Pham, “Simulation
of detection and beamforming with acousitcal ground
sensors,” inProc. of SPIE, vol. 4743, pp. 50–61, 2002.

[15] S. Chandran, ed.,Advances in Direction-of-Arrival Es-
timation. Norwood, MA: Artech House, 2006.

[16] J. M. Mendel,Lessons in Digital Estimation Theory.
Englewood Cliffs, NJ: Prentice Hall, 1987.

[17] Y. Oshman and P. Davidson, “Optimization of observer
trajectories for bearings-only target localization,”IEEE
Trans. on Aerospace and Electronic Systems, vol. 35,
pp. 892–902, July 1999.

[18] L. M. Kalan, Q. Le, and P. Molnar, “Maximum likeli-
hood methods for bearings-only target localization,” in
Proc. of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), vol. 5,
pp. 3001–3004, May 2001.

[19] A. Farina, “Target tracking with bearing-only measure-

13



ments,” Signal Processing, vol. 78, pp. 61–78, Jan.
1999.

[20] R. G. Stransfield, “Statistical theory of D.F. fixing,”IEE
(London), vol. 94, pp. 762–770, 1947.

[21] S. M. Ross,Introduction to Probability Models. San
Diego, CA: Academic Press, eighth ed., 2003.

[22] R. Mathar and J. Mattfeldt, “On the distribution of cu-
mulated interference power in Rayleigh fading chan-
nels,”Wireless Networks, vol. 1, pp. 31–36, Feb. 1995.

[23] G. Strang, Introduction to Applied Mathematics.
Wellesley, MA: Wellesley-Cambridge Press, 1986.

[24] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan,Estima-
tion with Application to Tracking and Navigation. New
York: John Wiley & Sons, 2001.

[25] A. Artes-Rodriguez, M. Lazaro, and L. Tong, “Target
location estimation in sensor networks using range in-
formation,” inProc. of the 2004 IEEE Sensor Array and
Multichannel Signal Processing Workshop, pp. 608–
612, July 2004.

[26] A. Capponi, C. Pilotto, G. Golino, A. Farina, and L. Ka-
plan, “Algorithms for the selection of the active sensors
in distributed tracking: Comparison between Frisbee
and GNS methods,” inProc. of the International Con-
ference on Information Fusion, (Florence, Italy), July
2006.

[27] A. Capponi, L. Kaplan, and C. Pilotto, “Performance
characterization of random proximity sensor networks,”
in Proc. of the Asilomar Conference on Signals, Sys-
tems, and Computers, 2006.

Lance M. Kaplan(S’88 M’89 SM’00)
received the B.S. degree with distinction
from Duke University, Durham, NC, in
1989 and the M.S. and Ph.D. degrees
from the University of Southern Califor-
nia, Los Angeles, in 1991 and 1994, re-
spectively, all in Electrical Engineering.
From 1987-1990, Dr. Kaplan worked as

a Technical Assistant at the Georgia Tech Research Institute.
He held a National Science Foundation Graduate Fellowship
and a USC Deans Merit Fellowship from 1990-1993, and
worked as a Research Assistant in the Signal and Image Pro-
cessing Institute at the University of Southern California from
1993-1994. Then, he worked on staff in the Reconnaissance
Systems Department of the Hughes Aircraft Company from
1994-1996. From 1996-2004, he was a member of the faculty
in the Department of Engineering and a senior investigator
in the Center of Theoretical Studies of Physical Systems (CT-
SPS) at Clark Atlanta University (CAU), Atlanta, GA. Cur-
rently, he is a team leader in the EO/IR Image Processing
branch of the U.S. Army Research Laboratory. Dr. Kaplan
serves as Associate Editor-In-Chief and EO/IR Systems Ed-
itor for the IEEE Transactions on Aerospace and Electronic

Systems. He is also a three time recipient of the Clark At-
lanta University Electrical Engineering Instructional Excel-
lence Award from 1999-2001. His current research interests
include signal and image processing, automatic target recog-
nition, data fusion, and resource management.

Volkan Cevher was born in Ankara,
Turkey, in 1978. He received his B.S.
degree in Electrical Engineering from
Bilkent University, Ankara, Turkey in
1999 as a valedictorian. During summer
of 2003, he was employed by Schlum-
berger Doll Research. In Fall 2004, he
was the co-recipient of the Center for

Signal and Image Processing Outstanding Research Award.
He received his Ph.D. degree in Electrical Engineering from
Georgia Institute of Technology in 2005. He worked a post-
doc at Georgia Institute of Technology under the supervision
of Dr. James H. McClellan till the end of 2005. He is cur-
rently working with Dr. Rama Chellappa as a research as-
sociate on computer vision problems. His research interests
include structure from motion, sensor network management
problems (sensor build and placement strategies), Monte-
Carlo Markov chain methods (specifically particle filters),
target tracking models, adaptive filters, time frequency dis-
tributions, fractional Fourier transform, brain-computer in-
terface problems, and array signal processing.

14


