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ABSTRACT cases, the engineer may decide to use fewer particles irShigh
cases. The goal is to choose the design parameters so thigohe
rithm gives acceptable performance for reasonable cortipng
requirements.

We propose to evaluate the particle filter convergence rate a
quantify the effect of system parameters. In communicatys-
tems, the transmitted symbols usually are from a discratdinite
space. Therefore, the approach is similar to convergenayss
methods that have been applied to discrete Markov chain¥\Jd]
relate the convergence speed of the chain to the magnitutthe of
second largest eigenvalue of the Markov chain transitiobaipil-
ity matrix. It is possible to compare the effectiveness dfedent
proposal functions by monitoring the temporal evolutionttuf
eigenvalue.

Recently, sequential Monte Carlo methods have been apiplied
the telecommunications field and found application in nesreile-
sign. The properties of these receivers make these design ap
proaches very attractive. These receivers do not requaareh
state information or training. Therefore, they are bandwief-
ficient and no communication bandwidth needs to be wasted on
training. The receivers are optimal in the sense that thbieae
minimum symbol error rate regardless of the noise distigioLit
nonlinearities in the system, and distribution of the traitted
symbol. Moreover, these receivers are capable of prodisuftg
information outputs, which enables the designer to utiiizea-
tive receiver architectures for near-optimal performantethis
work we investigate the convergence properties of theseitigns
when utilized in various types of receivers. We quantify the-
vergence rate. We describe how various parameters (e.ge noi 2. CONVERGENCE OF SEQUENTIAL MONTE CARLO
power, channel fading rate, etc) and factors (e.g. staieesmodel ALGORITHM
mismatch) affect the convergence rate and point out therthat
should be improved first to gain speed and accuracy in theetonv  The trajectory of each particle in SMC algorithms can be eigw
gence. as a realization of a Markov chain. At every iteration of théG
algorithm, the particles are moved to a new position by tlee pr
1. INTRODUCTION posal distribution. The proposal distribution constiuéeMarkov
transition kernel. As the algorithm iterates, the trajectf each
Monte Carlo methods allow sampling from complex, intratgab ~Particle reflects the state changes of the system. Howevsera-
distributions by simulating a Markov chain, whose invatidistri- tion noise, model mismatches, and other factors causettimsa
bution approaches the desirsttionarydistribution almost surely ~ from the ideal trajectory [1]. For the algorithm to contirtucking
[1]. In Monte Carlo terms, distributions are representedisgrete @ dynamic state space, the Markov chain should quickly ageve
state realizations, called particles, that are distrihaiecording to ~ @round the mode of the posterior. When this convergencesate

the underlying distribution after convergence. SequéMiante slow, the resulting estimates are inaccurate. o
Carlo (SMC) methods, also known as particle filters, empldif-a Non-homogeneous Markov chains do not have an invariant
ferent approach to sample recursively from dynamicallyivey ~ State. However, the transmitted symbols in communicatams
distributions: they reuse the current particle supportep hecon-  plications are from a discrete and finite state. We propose-to
struct the new particles needed to represent the evolvistgisy label the states so that one state represents the ‘corransrhit-
There are many factors that affect the performance of SMC al- ted symbol and the others the “wrong” ones. By applying this

gorithms. The choice for the number of particles is a trafibe procedure, we can convert a non-homogeneous Markov chain to
tween computational complexity and estimation bias [2]inAilgr a homogeneous Markov chain. In the sections below, we repeat

trade-off exists in integer implementations where liketiti values ~ the sufficient conditions for convergence of homogeneouskia
have to be quantized. One must determine whether a finer quanchains for clarity reasons. We also propose a method to mamtst
tization or more particles result in better algorithm periance ~ @n estimate of the probability transition matrix of the chasing
for the same computational power. The choice of proposai-fun SOMe intermediate results obtained by the running SMC ihgor
tion poses a trade-off between computational complexityesti-

mation accuracy [3]. The use of alternative resamplingegias 2.1. Basics of Markov Chains

may impact the convergence of the algorithm. The algoritiem p ) ) _

formance is also affected by system model parameters. lonex  Letus denote a trajectory wit{hc(()’% x§2)7 e ,ng,)}, which is also
ple, in a communications application, the amount of trattsahi a realization of a Markov chain defined on a state sfga¢2, 4].

power affects the observation signal to noise ratio (SNiR¥uch Let £ be a countably generatedalgebra orE. Let P(Alx) =
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P(xY), € AxY = x)forall A € £ andx € E, which is
the probability of transition from state to stateA (x is in the
state space and is in theo-algebra). Let alsd™ (A|x) denote a
n-step transition functiolP™ (A|x) = P(xﬁf) € A|xé” =x).

The property of irreducibility is a first measure of the sensi
tivity of the Markov chain to the initial conditions. Irredilility
is crucial because it leads to a guarantee of convergenteouti
detailed study of the transition function.

Basically, a chain is irreducible if all of its states comriun
cate [5]. The formal definition is a little more involved. @iva
measurep, the Markov chairx,, with transition kernelP(A|x) is
¢-irreducibleif, for every A € £ with ¢(A) > 0 there exists:
such thatP™(A|x) > 0 for all x € E.

Another property of the Markov chain that must be specified
is its aperiodicity. A period of a state € E is defined as

d(x) = g.c.d{n > 1; P"(x,x) > 0} (1)
The value of the period for all states that communicate witlk
the same. If the chain is irreducible, the period is the samalf
states. If the period is one for the stateand the chain is irre-
ducible, then the chain is called aperiodic.

Here, we introduce thé&!-distance between two measurs
and@, defined as

[P = Qllvar = sup [P(A) — Q(A)]
Ae&
@)

5 S 1PG) - Q)| = 51P — Qs

x€E

When the two measures have density functipfs) andq(x), the
distance can be written as
1

IP= Q=3 [IPG)-QEolax @)
Theorem 2.1. [6]: Suppose the state spa&eof a Markov chain
is finite. The transition function of this chain is irredulgband
aperiodic; then,P" (A|x) = P"(x% € A|x{" = x) as a proba-
bility measure oA converges to its invariant distribution(-) ge-
ometrically in variation distance; namely, there exisG & r < 1
andc > 0 such that

IP™(Ax) = 7(A) var < e @)

Theorem 2.2. (Tierney [6]) : Supposed is w-irreducible and
mA = 7w. ThenA is positive recurrent andr is the unique in-

variant distribution ofA. If A is also aperiodic, then, for almost
all x (for all x except a subset whose measure under zero),

[P (A[-) =7 ()l[var — 0,
where|| - ||var denote the total variation distance.

Q)

The above two theorems prove that all Markov chains that are

irreducible and aperiodic converge geometrically to theiari-
ant distribution. This convergence proof is achieved withine
explicit analysis of the transition kernel.

2.2. Convergence Rate

Consider a Markov chain on a finite discrete state space avith
states. We define a state transition probability maRixvhose
entryp;; indicates the transition probability from state statej.

By definition, Y p;; = 1 for all i. Hence,P has an eigenvalue

equal tol.

Consider an arbitrary functiomon the state-spade Because
the state-space is discrete, the function can be represégta
vectorgo. The vector after the state transitiorgis = Pgo, which
is simply the conditional expectation function:

g1(x) = E{g(x1)|x0 = x} (6)
We also note that
var {E{g1(x)}} < var {g(x1)}. (7

Hence, the eigenvalues of the matixmust be less than or equal
to 1 in absolute value [3,5]. Moreover, Berrman and Plemmons
show that all ofP’s eigenvalues are real and can be diagonalized

(7]

P=BAB ',
whereA = diag([1, Az, ..

8)

., X)), with the eigenvalues sorted in

descending order of their absolute valde> |A2| > ... |\|.
Therefore, ass — oo,
1 0 0
B 0 0 0
P"=BA"B ' "=%B B~ (9)
0 0

The above is true if and only j2| < 1. BecauserP™ = 7 and
the limit of P™ is of rank 1, every row oP>° must be the same as
.

3. CONVERGENCE ANALYSIS OF AN SMC BLIND
EQUALIZER FOR FREQUENCY SELECTIVE FADING
CHANNELS

Details of receiver design and computational complexitgriowe-
ments are thoroughly discussed in [8].

3.1. System Model

Consider a communications system that transmits a sequ#nce
symbolsso., = {so,s1,...,s»} randomly chosen from some
constellationA. At the receiver end, the receiver observes the
signalro., which is a random process that depends on the sym-
bolsso., and channel parametdts.,,. Typically the channel state
information hy.,, is a multidimensional continuous-valued quan-
tity. The system can be described with the following statees
representation:

h”l ~ q1 (hn|h0:n71)
sn ~ q2(sn[sn-1) (10)
Tn ~ f(rn|SO:n, hO:n)-

Based on the state-space representation, we can formatate t
inference problems:

e Symbol Sequence Detection: Assuming the chahgsgl is
known, find

éO:n = arg max p(SO:n|rO:n7 hO:n) (11)

s0:n €A T



e Channel Estimation: Assuming the transmitted symbols
So: are known, find

ho.n = arg rllllaxp(ho:n|ro;n, Soin) (12)
0:n

The channel is usually not known and needs to be estimated.

For this purpose either a training sequence of symbols isined)
or a blind approach must be utilized. Using Monte Carlo pseee
ing, the channel parameters can be marginalized out

né%(z E{p(so:n|ro:n, ho:n)|ho:n}, (13)

So:n = arg

where the expectation is taken with respect to the distobubf
ho.r.

We represent the posterior with a discretized approximatio
We obtain a set of samples and assign weights to it. The potati
{s', w1} is called a random measure that characterizes the
posterior distributionp(so:n[ro:n). A maximum a posteriori esti-
mate (MAP) is calculated as follows:

3p = arg max Zw( )5 ,(f))7 (14)

sn€q

Table 1. Blind equalizer using nested SMC

o Initialization

e fori=1,..., N [*for each particle*/

- DraWSgb)M ~ (3(-) as described in Table 2
— Update

hY =h{), + K (rn — )

i ()T (i
=0 =1 -KD)s B,
where the Kalman gain is:

KO = 30 150 (P0)
— Update weighto!” oc w89 ;1 ()
e Obtain symbol estimate as
Ng ] .
8, = arg max w§(sn — s5),

sp€{£1} Pt

e Resample if needed
e Perturb channel particles and update based on likelihoods.

3.2. Convergence

We utilize Rao-Blackwellization in the algorithm, which ames
that we proceed with analytical solutions rather than taspr

Table 2. Symbol draw using nested SMC

L4 SethaT'tilces =1

e for k=0,...,m-1 [*start with first sub-symbol*/

— Compute
hn+k = Chnfl+k + (1 - C)Unfl (15)

() @ TH®
iun«kkisn«‘fk hn+k

PnJrk—U +s() Z](

ntk +ksn+k

Jfor each p053|blen+k € {1}

- CompUte p(rn+k|hn+kvsn+k) = _(7‘”+7€ -
(%)

n+k) /Pn+k
—Forj=1,...

) Nparticles

x Expand each trajectory {d+1}| = 2 (alpha-
betsize) distinct paths

ﬂ(Q*j) (Tn+k|h,(ﬁﬁkvsn+k) =
ﬂ(]) (7’n+k—1|hgf)+k,175n+k—1)
p(rn+k|h£:<)‘,kysn+k*17 Sn+k = _1)

/6(2*j+1) (Tn+k |hELLik7 Sn+k) _

ﬁ(j)(Tn+k71|h£3rk,17 Sntk—1)
p(r7L+k|h5LiJ)rky Sn4+k—1;Sn+k = +1)
— UpdateN,articies = Nparticles * alphabet_size

— if Npartictes > Npartiices-max Truncate the tra-
jectory list to Npartitces-max and SetNpqrticies =
Npartitces-maz. Use residual resampling when
choosing the subset to be retained.

e Chooses? based on the trajectory with highest likelihood.




to Monte Carlo whenever possible and feasible. This results data. The vertical lines, extending from each end of the oxe
in improved efficiency and convergence. In this case we Rao- show the extent of the rest of the data. The horizontal linésea
Blackwellize the channel coefficient part of the problem. iAs  ends of the extending vertical lines indicate an intervdl.6ftimes

is easily seen the results resemble Kalman filtering equa{ig). the interquartile range. The red + markers indicate owtlier

The symbol estimation part, however, is a non-Gaussiangmob As expected, the median of, decreases as we increase the
The symbol distribution is non-Gaussian. Therefore, wainet  SNR as seen in the box-plots in Figures 1 and 3. Similar observ
Monte Carlo methodology. The symbols are drawn from the pos- tions can be made about the cdf plots as well (Figures 2 and 4).

terior distribution that can be analytically computed, ethalso Comparing Figure 2 to Figure 4, one may conclude more par-

results in increased convergence and efficiency. ticles are needed to trackdadimensional channel state vector rel-
The  properties of the transition  distribution ative to thed = 3 case.

p(So:n|S0:n—1,Tr0o:n) determine the convergence rate of the There is another interesting observation that can only be se

algorithm. Let us factorize the posterior distribution: in the cdf plot, but not in the box-plot (Figures 6 and 7). Féixad

SNR, as the particle count for the channel state is increaked
eigenvalue distribution tends to get bi-modal. At a low nembf

P(S0in|roin) _P(Tn[Somm; Yo:n—1)P(Sn|S0m 1, Yon—1) channel particles, there tends to be a peak clo$asto= 1 (look
p(rn) (16) at the slope). This is an indication of an estimation biasevhne
P(S0:n—1|r0:in—1) number of particles is insufficient, the wrong transmittgchbol
is selected.
The transition kernel turns out to be Similar conclusions can be drawn from the results of the fad-

ing channel case.The ability of the SMC algorithm to tracheti

M varying channels is illustrated in Figure 5. The channelskowly

p(SO:n|SO:n717 I'O:n) =

p(So:n—1[ro:n—1) 17) fading Rayleigh channel with Doppler coefficiefit, 7 = 107>,
X P(rn|Soin, rom—1). The channel coefficients are symbol spaced and mutuallperde
dent. In all simulations there were us&eD particles.
The second term in the numerator in (16) gets absorbed irrthe p Figures 1 and 2 display the box-plot and the cdfxf| for
portionality because the transmitted symbols are indegrenahd the 3-tap fading channel. As SNR increases, the eigenvalue gets
uniformly distributed. The denominator in (16) is just a poo- smaller, which indicates that the number of used particiessti-
tionality constant. mate the channel may be reduced at high SNR. Similar behavior
The transition kernel turns out to be the incremental weight s observed at the channel with delay spread sfmbol intervals
update factor, when the posterior distribution is usedlierdym- (Figures 3 and 4).
bol draws. The dependence between the second largest eigenvalue and

To analyze the convergence we construct an estimate of theysed particles is illustrated in Figures 6 and 7. The biashas t
transition probability matrix. We do this by computing the particle number decreases is evident.
weighted average across all particles (18). Since our rimétesd
symbols are from the sét-1}, we have & x 2 probability transi-
tion matrix. The size of the matrix grows proportionallyr foob- [ ‘ ‘

lems of higher dimesionality. Each element contains thieviohg ! + R T B T f ¥
transition probability: oo 4 1 \ ! e
08} | | | | +
Ns L . o7t F : | ‘ ‘ + N
p(SnlSn—1,rn) = Zp(sff”sfflh r)w'? (18) ol © T : L i
i=1 n
Sosp % : : f
As was described in the previous section, the second eilyené 04l | | *
this matrix determines the rate of convergence. osl : i N
, ¥ :
0.2 :; +
4. NUMERICAL RESULTS o1l — é £
In our simulations we use frequency selective channelsavith3 o0 - < T T T ‘ i ]
and4 channel coefficients. We implement the SMC algorithm with =2 0 2 R [dB]6 8 w0 1
temporal partitioning of the symbol space [8]. The transzdit
symbols are BPSK. The receiver noise is additive white Ganss
noise. Fig. 1. Box-plot of convergence rate for temporally partitioned
We display the distribution of the second largest eigervalu  SMC on a frequency selective fading channel V\dﬂi 3 taps,
with a box-plot and with a plot of the cumulative distributifunc- 300 channel particles and a Doppler shiftfpfT' = 107°.

tion. In the box-plot, the horizontal axis indicates the SiHRd the

vertical axis is the magnitude of the second largest eideavd he

eigenvalue is obtained from the simulations and depend$ien t 5. REFERENCES

particular realizations of the channel, received signa &ans-

mitted data. The line in the middle of the box indicates theliaue [1] J. S. Liu and R. Chen, “Sequential monte carlo methods for
value for the collected samples &6. The upper and the lower dynamic systems,Journal of the American Statistical Asso-
edge of the box indicate the upper and the lower quartile ef th ciation, vol. 93, no. 443, Sep. 1998.



1 T : -8
______ LR i Sl
09 = g
> - e
08 ,F LA e " 4
4 -
’
074 Iy J
- ’
. P
o6 #-' 7 —&— SNR=-2dB
= 2 = H = SNR=2dB
< osl : ]
g 0.5 i 7 —&8— SNR=-2dB —A— SNR=4dB
. f - 4O~ - SNR=2dB = A - SNR=8dB
04 ]
F "' —A— SNR=4dB —— SNR=10dB
0al o - -A- - SNR=8dB | = € = SNR=12dB
A ’ —6— SNR=10dB
4 — 0= - SNR=
ool 0= - SNR=12dB ]
01 ]
1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1 0.4

[

|

Fig. 2. CDF of convergence rate for temporally partitioned SMC Fig. 4. CDF of convergence rate for temporally partitioned SMC
on a frequency selective fading channel witk- 3 taps, 300 chan-  on a frequency selective fading channel witk- 4 taps, 300 chan-
nel particles and a Doppler shift gf, 7 = 1073. nel particles and a Doppler shift ¢f, 7 = 10~3.
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Fig. 5. Channel coefficient magnitude estimates. Random initial-
ization. Rayleigh fading frequency selective channel witk 4
taps, SNR*0dB, fmT = le — 3.

Fig. 3. Box-plot of convergence rate for temporally partitioned
SMC on a frequency selective fading channel with= 4 taps,
300 channel particles and a Doppler shiftfaf7’ = 1073,



F(M,)

—A— N_particles=40

=—8&— N_particles=100
A N_particles=300
+@ N_particles=500

0.3

0.2

0.1
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on a frequency selective fading channel witk- 3 taps,SNR =
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Fig. 7. CDF of convergence rate for temporally partitioned SMC
on a frequency selective fading channel witk= 3 taps,SNR =
8dB, a Doppler shift off,,7 = 10~2 and varying number of
channel particles. The display is zoomed at the second mode.
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