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ABSTRACT

Recently, sequential Monte Carlo methods have been appliedin
the telecommunications field and found application in receiver de-
sign. The properties of these receivers make these design ap-
proaches very attractive. These receivers do not require channel
state information or training. Therefore, they are bandwidth ef-
ficient and no communication bandwidth needs to be wasted on
training. The receivers are optimal in the sense that they achieve
minimum symbol error rate regardless of the noise distribution,
nonlinearities in the system, and distribution of the transmitted
symbol. Moreover, these receivers are capable of producingsoft-
information outputs, which enables the designer to utilizeitera-
tive receiver architectures for near-optimal performance. In this
work we investigate the convergence properties of these algorithms
when utilized in various types of receivers. We quantify thecon-
vergence rate. We describe how various parameters (e.g. noise
power, channel fading rate, etc) and factors (e.g. state-space model
mismatch) affect the convergence rate and point out the factors that
should be improved first to gain speed and accuracy in the conver-
gence.

1. INTRODUCTION

Monte Carlo methods allow sampling from complex, intractable
distributions by simulating a Markov chain, whose invariant distri-
bution approaches the desiredstationarydistribution almost surely
[1]. In Monte Carlo terms, distributions are represented bydiscrete
state realizations, called particles, that are distributed according to
the underlying distribution after convergence. Sequential Monte
Carlo (SMC) methods, also known as particle filters, employ adif-
ferent approach to sample recursively from dynamically varying
distributions: they reuse the current particle support to help recon-
struct the new particles needed to represent the evolving system.

There are many factors that affect the performance of SMC al-
gorithms. The choice for the number of particles is a trade-off be-
tween computational complexity and estimation bias [2]. A similar
trade-off exists in integer implementations where likelihood values
have to be quantized. One must determine whether a finer quan-
tization or more particles result in better algorithm performance
for the same computational power. The choice of proposal func-
tion poses a trade-off between computational complexity and esti-
mation accuracy [3]. The use of alternative resampling strategies
may impact the convergence of the algorithm. The algorithm per-
formance is also affected by system model parameters. For exam-
ple, in a communications application, the amount of transmitted
power affects the observation signal to noise ratio (SNR). In such

cases, the engineer may decide to use fewer particles in highSNR
cases. The goal is to choose the design parameters so that thealgo-
rithm gives acceptable performance for reasonable computational
requirements.

We propose to evaluate the particle filter convergence rate and
quantify the effect of system parameters. In communications sys-
tems, the transmitted symbols usually are from a discrete and finite
space. Therefore, the approach is similar to convergence analysis
methods that have been applied to discrete Markov chains [4]. We
relate the convergence speed of the chain to the magnitude ofthe
second largest eigenvalue of the Markov chain transition probabil-
ity matrix. It is possible to compare the effectiveness of different
proposal functions by monitoring the temporal evolution ofthis
eigenvalue.

2. CONVERGENCE OF SEQUENTIAL MONTE CARLO
ALGORITHM

The trajectory of each particle in SMC algorithms can be viewed
as a realization of a Markov chain. At every iteration of the SMC
algorithm, the particles are moved to a new position by the pro-
posal distribution. The proposal distribution constitutes a Markov
transition kernel. As the algorithm iterates, the trajectory of each
particle reflects the state changes of the system. However, observa-
tion noise, model mismatches, and other factors cause deviations
from the ideal trajectory [1]. For the algorithm to continuetracking
a dynamic state space, the Markov chain should quickly converge
around the mode of the posterior. When this convergence rateis
slow, the resulting estimates are inaccurate.

Non-homogeneous Markov chains do not have an invariant
state. However, the transmitted symbols in communicationsap-
plications are from a discrete and finite state. We propose tore-
label the states so that one state represents the “correct” transmit-
ted symbol and the others the “wrong” ones. By applying this
procedure, we can convert a non-homogeneous Markov chain to
a homogeneous Markov chain. In the sections below, we repeat
the sufficient conditions for convergence of homogeneous Markov
chains for clarity reasons. We also propose a method to construct
an estimate of the probability transition matrix of the chain using
some intermediate results obtained by the running SMC algorithm.

2.1. Basics of Markov Chains

Let us denote a trajectory with{x(i)
0 , x

(i)
1 , . . . ,x

(i)
N }, which is also

a realization of a Markov chain defined on a state spaceE [2, 4].
Let E be a countably generatedσ-algebra onE. Let P (A|x) =
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P (x
(i)
n+1 ∈ A|x

(i)
n = x) for all A ∈ E andx ∈ E, which is

the probability of transition from statex to stateA (x is in the
state space andA is in theσ-algebra). Let alsoP n(A|x) denote a
n-step transition functionP n(A|x) = P (x

(i)
n ∈ A|x

(i)
0 = x).

The property of irreducibility is a first measure of the sensi-
tivity of the Markov chain to the initial conditions. Irreducibility
is crucial because it leads to a guarantee of convergence, without
detailed study of the transition function.

Basically, a chain is irreducible if all of its states communi-
cate [5]. The formal definition is a little more involved. Given a
measureφ, the Markov chainxn with transition kernelP (A|x) is
φ-irreducible if, for every A ∈ E with φ(A) > 0 there existsn
such thatP n(A|x) > 0 for all x ∈ E.

Another property of the Markov chain that must be specified
is its aperiodicity. A period of a statex ∈ E is defined as

d(x) = g.c.d{n ≥ 1; P n(x,x) > 0} (1)

The value of the period for all states that communicate withx is
the same. If the chain is irreducible, the period is the same for all
states. If the period is one for the statex and the chain is irre-
ducible, then the chain is called aperiodic.

Here, we introduce theL1-distance between two measuresP
andQ, defined as

‖P − Q‖var = sup
A∈E

|P (A) − Q(A)|

=
1

2

X

x∈E

|P (x) − Q(x)| ≡
1

2
‖P − Q‖L1

(2)

When the two measures have density functionsp(x) andq(x), the
distance can be written as

‖P − Q‖var =
1

2

Z

|P (x) − Q(x)|dx (3)

Theorem 2.1. [6]: Suppose the state spaceE of a Markov chain
is finite. The transition function of this chain is irreducible and
aperiodic; then,P n(A|x) = P n(x

(i)
n ∈ A|x

(i)
0 = x) as a proba-

bility measure onA converges to its invariant distributionπ(·) ge-
ometrically in variation distance; namely, there exists a0 < r < 1
andc > 0 such that

‖P n(A|x) − π(A)‖var ≤ crn (4)

Theorem 2.2. (Tierney [6]) : SupposeA is π-irreducible and
πA = π. ThenA is positive recurrent andπ is the unique in-
variant distribution ofA. If A is also aperiodic, then, for almost
all x ( for all x except a subset whose measure underπ is zero),

‖P n(A|·) − π(·)‖var → 0, (5)

where‖ · ‖var denote the total variation distance.

The above two theorems prove that all Markov chains that are
irreducible and aperiodic converge geometrically to theirinvari-
ant distribution. This convergence proof is achieved without the
explicit analysis of the transition kernel.

2.2. Convergence Rate

Consider a Markov chain on a finite discrete state space withκ
states. We define a state transition probability matrixP whose
entrypij indicates the transition probability from statei to statej.

By definition,
P

j

pij = 1 for all i. Hence,P has an eigenvalue

equal to1.
Consider an arbitrary functiong on the state-spaceE. Because

the state-space is discrete, the function can be represented by a
vectorg0. The vector after the state transition isg1 = Pg0, which
is simply the conditional expectation function:

g1(x) = E {g(x1)|x0 = x} (6)

We also note that

var {E{g1(x)}} ≤ var {g(x1)} . (7)

Hence, the eigenvalues of the matrixP must be less than or equal
to 1 in absolute value [3, 5]. Moreover, Berrman and Plemmons
show that all ofP’s eigenvalues are real and can be diagonalized
[7]

P = BΛB
−1, (8)

whereΛ = diag([1, λ2, . . . , λκ]), with the eigenvalues sorted in
descending order of their absolute value,1 ≥ |λ2| ≥ . . . |λκ|.
Therefore, asn → ∞,

P
n = BΛ

n
B

−1 n→∞
−→ B

2

6

6

6

4

1 0 0
0 0 0

. . .
0 0

3

7

7

7

5

B
−1 (9)

The above is true if and only if|λ2| < 1. BecauseπPn = π and
the limit of Pn is of rank 1, every row ofP∞ must be the same as
π.

3. CONVERGENCE ANALYSIS OF AN SMC BLIND
EQUALIZER FOR FREQUENCY SELECTIVE FADING

CHANNELS

Details of receiver design and computational complexity improve-
ments are thoroughly discussed in [8].

3.1. System Model

Consider a communications system that transmits a sequenceof
symbolss0:n = {s0, s1, . . . , sn} randomly chosen from some
constellationA. At the receiver end, the receiver observes the
signalr0:n which is a random process that depends on the sym-
bolss0:n and channel parametersh0:n. Typically the channel state
informationh0:n is a multidimensional continuous-valued quan-
tity. The system can be described with the following state-space
representation:

hn ∼ q1(hn|h0:n−1)
sn ∼ q2(sn|sn−1)
rn ∼ f(rn|s0:n, h0:n).

(10)

Based on the state-space representation, we can formulate two
inference problems:

• Symbol Sequence Detection: Assuming the channelh0:n is
known, find

ŝ0:n = arg max
s0:n∈An+1

p(s0:n|r0:n,h0:n) (11)



• Channel Estimation: Assuming the transmitted symbols
s0:n are known, find

ĥ0:n = arg max
h0:n

p(h0:n|r0:n, s0:n) (12)

The channel is usually not known and needs to be estimated.
For this purpose either a training sequence of symbols is required
or a blind approach must be utilized. Using Monte Carlo process-
ing, the channel parameters can be marginalized out

ŝ0:n = arg max
s0:n∈An+1

E{p(s0:n|r0:n,h0:n)|h0:n}, (13)

where the expectation is taken with respect to the distribution of
h0:n.

We represent the posterior with a discretized approximation.
We obtain a set of samples and assign weights to it. The notation
{s

(i)
n , w(i)}Ns

i=0 is called a random measure that characterizes the
posterior distributionp(s0:n|r0:n). A maximum a posteriori esti-
mate (MAP) is calculated as follows:

ŝn = arg max
sn∈{A}

Ns
X

i=1

w(i)δ(sn − s(i)
n ), (14)

Table 1. Blind equalizer using nested SMC

• Initialization

• for i = 1, . . . , Ns /*for each particle*/

– Draw s̃
(i)
n+k ∼ β(·) as described in Table 2

– Update

h
(i)
n = h

(i)
n−1 + K

(i)
n (rn − µ(i)

n )

Σ
(i)
n = (1 − K(i)

n )s(i)
n

T
Σ

(i)
n−1,

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1s

(i)
n (P (i)

n )−1

– Update weightw(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)

• Obtain symbol estimate as

ŝn = arg max
sn∈{±1}

Ns
X

i=1

w(i)δ(sn − s(i)
n ),

• Resample if needed

• Perturb channel particles and update based on likelihoods.

3.2. Convergence

We utilize Rao-Blackwellization in the algorithm, which means
that we proceed with analytical solutions rather than resorting

Table 2. Symbol draw using nested SMC

• SetNpartilces = 1

• for k=0,...,m-1 /*start with first sub-symbol*/

– Compute

hn+k = ζhn−1+k + (1 − ζ)ηn−1 (15)

µ
(i)
n+k = s

(i)
n+k

T
h

(i)
n+k

P
(i)
n+k = σ2 + s

(i)
n+k

T
Σ

(i)
n+ks

(i)
n+k

,for each possibles(i)
n+k ∈ {±1}

– Compute p(rn+k|h
(i)
n+k, sn+k) = −(rn+k −

µ
(i)
n+k)2/P

(i)
n+k

– For j = 1, . . . , Nparticles

∗ Expand each trajectory to|{±1}| = 2 (alpha-
bet size) distinct paths

β(2∗j)(rn+k|h
(i)
n+k, sn+k) =

β(j)(rn+k−1|h
(i)
n+k−1, sn+k−1)

p(rn+k|h
(i)
n+k, sn+k−1, sn+k = −1)

β(2∗j+1)(rn+k|h
(i)
n+k, sn+k) =

β(j)(rn+k−1|h
(i)
n+k−1, sn+k−1)

p(rn+k|h
(i)
n+k, sn+k−1, sn+k = +1)

– UpdateNparticles = Nparticles ∗ alphabet size

– if Nparticles > Npartilces max Truncate the tra-
jectory list toNpartilces max and setNparticles =
Npartilces max. Use residual resampling when
choosing the subset to be retained.

• Choosẽs(i)
n based on the trajectory with highest likelihood.



to Monte Carlo whenever possible and feasible. This results
in improved efficiency and convergence. In this case we Rao-
Blackwellize the channel coefficient part of the problem. Asit
is easily seen the results resemble Kalman filtering equations [8].
The symbol estimation part, however, is a non-Gaussian problem.
The symbol distribution is non-Gaussian. Therefore, we retain
Monte Carlo methodology. The symbols are drawn from the pos-
terior distribution that can be analytically computed, which also
results in increased convergence and efficiency.

The properties of the transition distribution
p(s0:n|s0:n−1, r0:n) determine the convergence rate of the
algorithm. Let us factorize the posterior distribution:

p(s0:n|r0:n) =
p(rn|s0:n, r0:n−1)p(sn|s0:n−1, r0:n−1)

p(rn)

p(s0:n−1|r0:n−1)

(16)

The transition kernel turns out to be

p(s0:n|s0:n−1, r0:n) =
p(s0:n|r0:n)

p(s0:n−1|r0:n−1)

∝ p(rn|s0:n, r0:n−1).

(17)

The second term in the numerator in (16) gets absorbed in the pro-
portionality because the transmitted symbols are independent and
uniformly distributed. The denominator in (16) is just a propor-
tionality constant.

The transition kernel turns out to be the incremental weight
update factor, when the posterior distribution is used for the sym-
bol draws.

To analyze the convergence we construct an estimate of the
transition probability matrix. We do this by computing the
weighted average across all particles (18). Since our transmitted
symbols are from the set{±1}, we have a2×2 probability transi-
tion matrix. The size of the matrix grows proportionally, for prob-
lems of higher dimesionality. Each element contains the following
transition probability:

p(sn|sn−1, rn) =

Ns
X

i=1

p(s(i)
n |s

(i)
n−1, rn)w(i)

n (18)

As was described in the previous section, the second eigenvalue of
this matrix determines the rate of convergence.

4. NUMERICAL RESULTS

In our simulations we use frequency selective channels withd = 3
and4 channel coefficients. We implement the SMC algorithm with
temporal partitioning of the symbol space [8]. The transmitted
symbols are BPSK. The receiver noise is additive white Gaussian
noise.

We display the distribution of the second largest eigenvalue
with a box-plot and with a plot of the cumulative distribution func-
tion. In the box-plot, the horizontal axis indicates the SNR, and the
vertical axis is the magnitude of the second largest eigenvalue. The
eigenvalue is obtained from the simulations and depends on the
particular realizations of the channel, received signal and trans-
mitted data. The line in the middle of the box indicates the median
value for the collected samples ofλ2. The upper and the lower
edge of the box indicate the upper and the lower quartile of the

data. The vertical lines, extending from each end of the boxes,
show the extent of the rest of the data. The horizontal lines at the
ends of the extending vertical lines indicate an interval of1.5 times
the interquartile range. The red + markers indicate outliers.

As expected, the median ofλ2 decreases as we increase the
SNR as seen in the box-plots in Figures 1 and 3. Similar observa-
tions can be made about the cdf plots as well (Figures 2 and 4).

Comparing Figure 2 to Figure 4, one may conclude more par-
ticles are needed to track a4 dimensional channel state vector rel-
ative to thed = 3 case.

There is another interesting observation that can only be seen
in the cdf plot, but not in the box-plot (Figures 6 and 7). For afixed
SNR, as the particle count for the channel state is increased, the
eigenvalue distribution tends to get bi-modal. At a low number of
channel particles, there tends to be a peak close to|λ2| = 1 (look
at the slope). This is an indication of an estimation bias. When the
number of particles is insufficient, the wrong transmitted symbol
is selected.

Similar conclusions can be drawn from the results of the fad-
ing channel case.The ability of the SMC algorithm to track time-
varying channels is illustrated in Figure 5. The channel is aslowly
fading Rayleigh channel with Doppler coefficientfmT = 10−3.
The channel coefficients are symbol spaced and mutually indepen-
dent. In all simulations there were used300 particles.

Figures 1 and 2 display the box-plot and the cdf of|λ2| for
the 3-tap fading channel. As SNR increases, the eigenvalue gets
smaller, which indicates that the number of used particles to esti-
mate the channel may be reduced at high SNR. Similar behavior
is observed at the channel with delay spread of4 symbol intervals
(Figures 3 and 4).

The dependence between the second largest eigenvalue and
used particles is illustrated in Figures 6 and 7. The bias as the
particle number decreases is evident.
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Fig. 1. Box-plot of convergence rate for temporally partitioned
SMC on a frequency selective fading channel withd = 3 taps,
300 channel particles and a Doppler shift offmT = 10−3.
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