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ABSTRACT

We propose a low-power, analog and mixed-mode, implementation
of particle filters. Low-power analog implementation of nonlinear
functions such as exponential and arctangent functions is done using
multiple-input translinear element (MITE) networks. These non-
linear functions are used to calculate the probability densities in
the particle filter. A bearings-only tracking problem is simulated
to present the proposed low-power implementation of the particle
filter algorithm.

1. INTRODUCTION

Particle filters [1] are used in state estimation, where the underlying
state-space models can be nonlinear and non-Gaussian. They use
a large number of weighted samples, called particles, to represent
probability distributions involved in the estimation. Because parti-
cle filters do not approximate the nonlinearities in the state-space
systems, they are computationally complex. Hence, some particle
filter applications require real-time hardware implementations that
must be efficient in speed, accuracy, and power consumed.

Advances in the field of semiconductor technology and commu-
nications have led to fast and efficient distributed signal processing
algorithms in a network of sensor nodes. In most applications, these
sensor nodes operate under constrained energy and power. Hence
energy consumed in communication and computation is critical and
needs to be minimized. A promising approach to achieve low power
is to have cooperative systems that have both digital and analog
components [2]. This will be the approach adopted in this work.

In this paper, we propose a low-power analog implementation
of particle filters. The analog implementation uses Multiple-Input
Translinear Element (MITE) networks to perform certain nonlin-
ear functions. MITEs were introduced as a circuit primitive in [3].
The proposed analog implementation is demonstrated in the particle
weighting stage of a bearings-only target tracker. We compare the
power consumed at the weight evaluation stage of the proposed ana-
log implementation with that of a digital implementation. Specif-
ically, the power consumed inarctan andGaussianfunction eval-
uations is given. Most digital implementations of these functions
use the COordinate Rotation DIgital Computer (CORDIC) algo-
rithm [21]. These functions also determine the update rate of the
particle filter algorithm [4].

Hardware implementation of particle filters was also addressed
in [4]. An architecture was presented for efficient digital hard-
ware implementation of particle filters along with an efficient im-
plementation of the resampling stage. This resulted in a Field Pro-
grammable Gate Array (FPGA) prototype for a particle filter algo-
rithm. This was followed by VLSI or Application Specific Inte-
grated Chip (ASIC) development for particle filters [5], [6]. Other
works addressed the issue of mitigating the complexity of parti-
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cle filters by proposing structural modifications such as efficient
pipelining and parallel operation [7], [8].

The remainder of this paper is organized as follows. Section 2
describes the particle filter based tracking considered in the imple-
mentation. In Sec. 3, MITEs are introduced and implementation
of non-linear functions using MITEs is presented. Section 4 de-
scribes the proposed particle filter implementation strategy and also
presents a comparison of analog and digital power consumption.
Simulation results are presented in Sec. 5, with discussions, future
work in Sec. 6, and conclusions in Sec. 7.

2. PARTICLE FILTER BASED TRACKING

2.1 Particle filter

Particle filters or sequential Monte Carlo (SMC) methods are a class
of recursive simulation methods for solving filtering problems [1],
[9]. Consider a state-space system wherexk is the state vector and
zk are the noisy measurements related to the state at timek. We are
interested in estimating the statexn at timen given the measure-
mentszk for k = 1, . . . ,n. The state transition densityp(xk|xk−1)
and data likelihoodp(zk|xk) can be obtained from the state transi-
tion and measurement equations. A Bayesian solution for this fil-
tering problem involves obtaining the posterior distribution

πn = p(xn|zn,xn−1) ∝ p(zn|xn)p(xn|xn−1). (1)

Particle filters use a combination of importance sampling, weight
update and resampling to sequentially obtain and update the distri-
bution (1). Importance sampling approximates a probability distri-
bution π using a set ofN weighted particles{x(i),w(i)}, wherex

represents the state andw the corresponding weight for theith parti-
cle. The weight update stage uses measurements to update particle
weights. The updated particles are used to make inferences on the
statexn. The resampling stage avoids degeneracy by removing par-
ticles with low weights and replicating particles with high weights.

2.2 Bearings-only tracking

Bearings-only tracking involves estimating the target states based
on angle measurements at a sensor node. The target is assumed
to move in thex-y plane and to follow a constant-velocity motion
model [10], with a state update period of 1s. The state transition is
described using the relation

xk = Fxk−1 +Γuk, (2)

wherexk = [x vx y vy]
T
k , uk = [ux uy]

T
k ,

F =







1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1






andΓ =







0.5 0
1 0
0 0.5
0 1






. (3)

Here,x andy are the Cartesian coordinates of the target,vx andvy
are the corresponding velocities. Parameteruk represents the sys-
tem noise and is Gaussian distributed with covarianceΣu = σ2

uI2,
whereI2 is a 2 x 2 identity matrix.
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Figure 1: Block diagram showing computational flow in the particle fil-
ter algorithm. The flow shown here is for the implementation Method-1 in
Sec.4.1. Highlighted stage is performed in the analog domain.

Table 1:Bearings-only tracker: Particle filter pseudocode

Given the observed data zk at k,

1. For i = 1,2, . . . ,N sample or propose particles,
x

(i)
k ∼ p(x

(i)
k |x(i)

k−1) using (2).

2. For i = 1,2, . . . ,N calculate the weights,

ŵ(i)
k = w(i)

k−1p(zk|x(i)
k ), (5)

where p(zk|x(i)
k ) is the observation density, given by

1
√

2πσr
2

exp−

(

zk−arctan
y
(i)
k

x
(i)
k

)2

2σr
2 . (6)

3. Calculate normalized weights w(i)
k using ŵ(i)

k .

4. Make estimates, E{xk} = ∑N
i=1 w(i)

k x
(i)
k .

5. Resample
{

x
(i)
k ,w(i)

k

}

to obtain new set of particles
{

x
( j)
k ,w( j)

k = 1
N

}

.

The angle measurements at a stationary sensor are given by

zk = arctan{yk/xk}+ rk, (4)

whererk represents a Gaussian measurement noise with mean zero
and varianceσr .

Using (2) and (4), a particle filter algorithm for target tracking
similar to the one in [9] can be formulated. The state update is used
to propose new particles. This provides a sub-optimal recursive es-
timate of the target position in thex-y plane. The pseudocode for the
particle filter algorithm is shown in Table 1 and a block diagram of
the computational flow is shown in Fig. 1. For comparison, a digital
hardware implementation of this algorithm is presented in [4].

3. ANALOG IMPLEMENTATION

3.1 Multiple-Input Translinear Element (MITE)

The multiple-input translinear element (MITE) was introduced in
[3] as a generalization of the bipolar transistor. Both these circuit
elements use their exponential transfer characteristic to implement
nonlinear functions or systems [11], [12]. The system parameters
are represented by currents and are hence tunable. The only MITEs
relevant to this paper are 2-input MITEs. A 2-input MITE, whose
symbol is shown in Fig. 2(a), is defined as a circuit element satisfy-
ing the following properties:
1. The current through the input gates is zero.
2. The drain currentI and the input-gate voltagesV1 andV2 are re-

lated asI = Isexp(κ(V1+V2)/UT), whereIs is a pre-exponential

scaling constant,κ is a positive dimensionless weight, andUT
is the thermal voltage,kT/q.

3.2 Nonlinear function realization

The implementation of nonlinear functions using translinear circuits
is discussed in [13]. Elementary operations like addition and sub-
traction are easily performed in any current-mode system (using
Kirchoff’s current law (KCL) and a current mirror, respectively).
Translinear circuits, in particular, can also do other elementary op-
erations like multiplication, division, and exponentiation (with ra-
tional exponents). Hence any algebraic function can be synthe-
sized by simply expressing it in terms of these elementary oper-
ations. Transcendental functions like exp(x), log(x),andarctan(x)
are implemented by suitably approximating them using algebraic
functions. Different techniques exist for approximating functions
by rational functions [14]. Approximation with minimax or near-
minimax error is one of the more suitable methods for approxima-
tion over an interval. Remez’s algorithm [14] is used to determine
the minimax rational approximation, while numerous other tech-
niques exist to get near-minimax approximations (Maple’s ‘min-
imax’ command implements Remez’s algorithm). The transcen-
dental functions that need to be implemented in the bearings-only
tracking algorithm are the inverse tangentarctanand theGaussian
exp(−x2/2). The approximations and the corresponding implemen-
tations of these functions are considered below.

3.2.1 Implementation of the inverse tangent function

The functionφ to be approximated is as follows (normalized so that
φ(∞) = 1):

φ(x) =
2
π

arctan(x), where|x| < ∞. (7)

An approximation ofφ using algebraic functions, given in [13], is
as follows:

y = f (x) =
x

0.63+
√

0.88+x2
, where|x| < ∞. (8)

The maximum error obtained using the approximation is less than
0.05% of the maximum value.

The implementation off in (8) using MITEs is done through
the following steps:
1. Scaling.Since the input and output variables are represented by

currents, to maintain dimensional consistency, the substitutions
x 7→ Ix/Ia andy 7→ Iy/Ia are done. Hence, we have

Iy =
IxIa

0.63Ia +
√

0.88I2
a + I2

x

(9)

2. Current splitting. Since the inputx can take both positive and
negative values and since the currents through MITEs must nec-
essarily be positive, we use a current splitter [15] to produce
currentsIx+ andIx− satisfyingIx+ − Ix− = Ix andIx+Ix− = I2

a .
3. Block reduction. The equation to be implemented thus be-

comes

Iy =
Ix+Ia− Ix−Ia

0.63Ia +
√

−1.12I2
a + I2

x+ + I2
x−

=

(

Ix+Ia
(

0.63Ia +
(√

Ir Ia
))

)

−
(

Ix−Ia
(

0.63Ia +
(√

Ir Ia
))

)

whereIr = I2
x+/Ia + I2

x−/Ia−1.12Ia. The parentheses show the
order in which the operations are implemented. Each of the
blocks (representing the operation in the parentheses) is imple-
mented using procedures described in [12].

4. Consolidation. As described in [11], reduntant MITEs are re-
moved usingconsolidationto arrive at the final circuit shown in
Fig. 2(b).
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Figure 2: (a) Symbol for a 2-input MITE. Ideally, it should obey the lawI = Isexp(κ(V1 +V2)/UT). (b) The MITE circuit used to implement the arctan
function. The currentIr = I2

x+/Ia + I2
x−/Ia−1.12Ia and the output is given byIy = (Ix+Ia− Ix−Ia)/(

√
IaIr +0.63Ia). (c) The MITE circuit used to implement

the Gaussian function. The intermediate variables used are given by Ir = I2
x+/Ia + I2

x−/Ia, and Iden = Ia − (Id1Ir )/Ia + (Id2I2
r )/I2

a . The output isIy =
zIc(Ia− (In1Ir )/Ia)/Iden.

3.2.2 Implementation of the Gaussian

After scaling and normalization, the Gaussian is transformed into
Iy = Icexp(−I2

x/(2I2
a)). A current splitter convertsIx into two posi-

tive currentsIx+ andIx− satisfyingIx+ − Ix− = Ix andIx+Ix− = I2
a .

Hence, we haveI2
x = I2

x+ + I2
x− − 2I2

a = Ir Ia − 2I2
a , where Ir =

I2
x+/Ia + I2

x−/Ia. Thus, Iy = eIcexp(−Ir/(2Ia)). It should also be
noted that if the implementation is to be valid forIx ∈ [−bIa,bIa],
then it suffices to approximate exp(−Ir/(2Ia)) for Ir ∈ [2Ia,(2+
b2)Ia]. The minimax rational approximation forb = 4 with the nu-
merator and denominator degrees equal to 1 and 2, respectively, was
found using Remez’s algorithm and is given by :

Iy = zIc
Ia− In1(Ir/Ia)

Ia− Id1(Ir/Ia)+ Id2(I2
r /I2

a)
(10)

whereIr = (I2
x+ + I2

x−)/Ia, In1 = 0.07195Ia, Id1 = 0.2913Ia, Id2 =
0.1641Ia, andz = 1.245. The computations that involve multipli-
cation are done using a new synthesis procedure especially meant
for such “product–of–power–law” computations [16]. The cur-
rents In1, Id1, Id2 are set using programmable floating–gate MOS-
FETs [17]. The final circuit is shown in Fig. 2(c).

4. PARTICLE FILTER IMPLEMENTATION

4.1 Architecture

Particle filter algorithms use nonlinear functions and operate on
scalar or vector data, as opposed to blocks of data as in speech or
image processing. Their complexity is related to the number of par-
ticles N and the nonlinear functions used. Most applications that
use particle filters perform a Gaussian evaluation at the weighting
stage. Depending on the state-space model used, some applications
might use additional nonlinear functions in the particle proposal and
weight evaluation stage. Except for the state estimate and resam-
pling stage, processing of individual particles can be done in par-
allel. We concentrate on the computations performed on a single
particle at the weight evaluation stage.

In this work, we propose to use analog computations in the
weight evaluation stage of a bearings-only tracker. As shown in
Fig. 3, this involves simple operations such as addition, multiplica-
tion, and nonlinear operations such asGaussianandarctanevalu-
ation. The use of analog computation leads to a mixed-mode im-
plementation of the particle filter algorithm, where computations

y
(i)
k

x
(i)
k

zk

1√
2σr

+

−

arctan(.)

1√
2πσ2

r
e−(.)2

Figure 3:Computations at the weight evaluation stage of the particle filter
algorithm used in bearings-only tracking.

are performed in both the analog and digital domains. The mixed-
mode implementation leads to two possible methods that differ in
the way the analog-digital partition is formed.

In Method-1, shown in Fig. 1, the weight evaluation stage is
implemented in the analog domain and the remaining stages in the
digital domain. This uses data converter blocks, D-to-A and A-to-D,
before and after the weight update stage. The minimum number
of bits to be used in the D-to-A and A-to-D is based on physical
requirements. The lowest value to be represented must be above the
noise level in the analog circuit. Increasing the number of bits in
these blocks can increase latency and power consumption. Hence, a
compromise among accuracy, speed, and power consumption has to
be made such that the power savings from the analog computations
is not offset. However, a detailed treatment of these trade-offs is
beyond the scope of this paper.

In Method-2, shown in Fig. 4, the resampling stage is imple-
mented in the digital domain and the remaining stages in the analog
domain. This method uses fewer D-to-As and A-to-Ds compared
to Method-1. The measurements, angles in a bearings-only tracker,
may be from a source localization algorithm implemented in the
analog domain [18]. The resampling stage assumes the availability
of analog memory, whose access can be controlled using a digital
controller. Other operations in the proposal and state estimation
stages can provide significant power savings compared to Method-
1. The proposal stage uses four additions to implement (2). In the
analog domain using MITE networks, the addition of two signals
is based on KCL and performed by connecting the wires carrying
the corresponding currents. In the digital domain, addition is per-
formed using adder circuits. The state estimation, Step 4 in Table 1,
can be achieved using a vector multiplier in the analog domain.
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Figure 4:Block diagram showing computational flow in the proposed im-
plementation Method-2. Highlighted stages are performed in the analog
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Our simulations use Method-1 in a bearings-only tracker. An
issue with Method-2 is generating random samples in the proposal
stage. If this stage has to be implemented in analog, we need a ro-
bust way to achieve this. Another issue is the use of analog memory
in the resampling stage. Method-2, however, can provide signifi-
cant power savings compared to Method-1. In either method, the
reference currents are chosen such that the MITE networks remain
in their valid region of operation.

4.2 Power consumption

In this section, the power consumed by the proposed analog imple-
mentation and a digital implementation are presented. From (5) and
(6) we see that significant computations in the particle weighting
stage of the particle filter algorithm involve the evaluation ofarctan
andGaussianfunctions. These functions also limit the speed of the
particle filter algorithm in a digital implementation [4], [5]. Hence,
the power consumed in these computations is considered here.

4.2.1 Digital implementation

Power-aware design in digital circuits is an active area of research
[19]. Power consumption in CMOS circuits consists of dynamic
and static power. Ignoring the negligible static power, the av-
erage dynamic power consumed can be approximated, [20], by
P = α0→1CLV2

dd fclk, whereα0→1 is the node transition activity fac-
tor,CL is the load capacitance,Vdd is the supply voltage andfclk is
the clock frequency.

Digital implementations of thearctanor Gaussianfunction use
the CORDIC algorithm. The CORDIC algorithm is an iterative al-
gorithm that can be used to implement trigonometric and hyperbolic
functions. TheGaussianfunction can be implemented using the
relationex = sinh(x)+ cosh(x). There are several implementation
architectures of the CORDIC block depending on performance re-
quirements. The basic computation, in a single iteration or pipeline,
involves two shifts, three additions, and one look-up operation. Its
complexity and speed depends on the requiredmbits of precision.

A VHDL implementation of a pipelined CORDIC block
was simulated, and estimated power consumption using the
AMI 0 .35µm CMOS process is shown in Table 2. For reference, re-
sults from a low-power CORDIC implementation using MOS Cur-
rent Mode logic (MCML) demonstrated in [22] is also shown. Their
implementation specifications, however, are different.

4.2.2 Analog implementation

The analog implementation of thearctan andGaussianfunctions
use MITEs as explained in Sec. 3. The instantaneous power con-
sumed by these circuits depends upon the (instantaneous) value of
the input current. For thearctancircuit, the current drawn from the
supply can be shown to be

Ia

(

9.26+
2I2

x

I2
a

+

√

4+
I2
x

I2
a

+2

√

Ir
Ia

+

√

4+ I2
x/I2

a
√

Ir/Ia + .63

)

Table 2:Characteristics of digital implementation

Implementation Digital MCML [22]

VDD(V) 3.3 1.0

Clock Frequency(MHz) 1 125

Output precision (bits) 12 8

Power (mW) a 0.55 x 2 4.33 x 2

aThe factor of 2 is to account for two CORDIC blocks.

Table 3:Characteristics of analog implementation

Circuit arctan Gaussian
Minimum Maximum Minimum Maximum

Ref. Ia (nA) 0.5 20 0.1 10
Input current −10Ia 10Ia −10Ia 10Ia
Power (µW) 0.361 14.45 1.097 109.7
Error (%) 0.31 0.71 2.04 2.8

Table 4:Simulation parameters

Tracker parameters Circuit parameters (variables in (6))

N σr σu Iin(y(i)
k /x(i)

k ) Iaarctan IaGaussian(σr )

1000 0.29◦ 0.001 6.36nA to 10nA 0.1nA

7.18nA

Assuming |Ix|max = 10Ia, the maximum power dissipated is
240.82IaVdd. For a typical value ofIa = 10nA with a 3V supply, the
maximum power consumed is 7.23µW. A similar expression can be
derived for theGaussianblock. Assuming thatIc = Ia, the maxi-
mum power consumed is 3655.14IaVdd. For Ia = .1nA the power
consumed to is 1.097µW.

An accurate comparison, based on power consumption, be-
tween the analog and digital implementation can only be made after
performing transient and signal–to–noise ratio (SNR) analyses of
the analog implementation. These analyses are part of ongoing re-
search.

5. SIMULATION

The circuit blocks were simulated for different values of the input
currents and the reference currents to determine the accuracy of the
implementation. Models for the AMI 0.5µm CMOS process were
used in the simulations. The results are shown in Table 3. The er-
ror (as a percentage of the maximum) and power values are over the
ranges of the input and reference currents shown. The analog circuit
for the weighting stage of the bearings-only tracker was simulated
and results compared to a Matlab simulation. The range for input
currents was obtained from the Matlab simulation. The simulation
parameters used are similar to those in [9] and are shown in Table 4.
The plot in Fig. 5 shows the weights obtained from the analog cir-
cuit simulation and the approximation used. The error introduced
by thearctanblock shifts the mean of theGaussiandistribution in
the weight evaluation. From Table 3, the error in thearctanblock
corresponds to an error of 0.28◦ to 0.64◦. Depending on the mea-
surement noise varianceσr , the shift in the peak may or may not
affect the state estimate. Further, the implementedarctanblock has
quadrant ambiguity and hence additional logic needs to be included
to have results in the correct quadrant. The error in the regions near
±90◦ is relatively high compared to those near 0◦.

6. DISCUSSION AND FUTURE WORK

The different currents in the circuit and the sizes of the MITEs must
be chosen so that all the MITEs remain in the sub-threshold region.
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the peak is due to an error of 0.15◦ introduced by the arctan block. (The
parameterσ2
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Each of the reference currents in the blocks are tunable, thanks to
the programming capability of floating–gate MOSFETs. Thus, the
reference currents can be set as low as desired as long as other spec-
ifications such as bandwidth and SNR are met. As MITEs are typ-
ically implemented using floating–gate MOSFETs, care should be
taken to ensure that the floating–gate capacitors do not render the
circuits unstable. Some input waveforms were seen to produce un-
desirable oscillations. This requires frequency compensation in the
analog blocks to ensure unconditional stability for all (relevant) in-
put waveforms. Research to alleviate such problems is in progress.
The bandwidth of operation expected from these blocks is deter-
mined by the rate at which the output estimates are required. This
rate also determines the clock frequency of the digital controller in
Method-2 shown in Fig. 4. While the implementation presented is
low-power, a direct comparison with the digital implementation re-
quires both of them to run at the same clock frequency with compa-
rable accuracy. Estimating the delay in the analog blocks is difficult
since it depends upon the input values (which cause oscillations in
certain cases). Hence, this is indeed a viable solution but requires
further work.

It should be noted that if the processing were done in continu-
ous time as opposed to discrete time, all the blocks can be analog.
However, this necessitates a complete change in the way we view
Bayesian estimation problems.

7. CONCLUSIONS

In this paper, we proposed a low-power, analog and mixed-mode
implementation for particle filters. An implementation method that
uses minimal number of data converters was presented and is more
promising. This was partly demonstrated by implementing the non-
linear functions,Gaussianandarctan, in the analog domain using
MITEs. These functions were used in a bearings-only target tracker
that uses particle filters. While this is a low-power implementation,
some operational issues need to be addressed before characterizing
the overall behaviour of the analog blocks. As part of future re-
search, we will analyze the performance and power consumption of
the system as a whole including the data conversion blocks.
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