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ABSTRACT

We propose a particle filter tracker to track multiple marezing

targets using a batch of range measurements. The stateupfiat

mulated through a locally linear motion model and the oledaitity

of the state vector is proved using geometrical argumertis. data
likelihood treats the range observations as an image usinglate
models derived from the state update equation, and incatgothe
possibility of missing data as well as spurious range olagiems.
The particle filter handles multiple targets, using a pariid state-
vector approach. The filter proposal function uses a Gausgia
proximation of the full-posterior to cope with target maners for
improved efficiency. By treating the range measurementsiages
and using smoothness constraints, the particle filter is ebavoid
the data association problems. Computer simulations dsirate
the performance of the tracking algorithm.

1. INTRODUCTION

Radar range tracking problem is a challenging signal psicgprob-
lem that has attracted very little interest in the literat{i—3]. This
tracking problem is usually formulated using state-spaceleats,
where the target’'s motion is approximated as local lineay. (eon-
stant velocity) and the observations are temporal snapstioadar
range and range-rate estimates. Then, to estimate thevstttm
consisting of the target’s position and velocity using exogly mea-
surements, a mobile platform must be used that executesrkmaw
neuvers for system observability [2]. Otherwise, multiplacons
must be used to track the state vector by virtue of triangnid8].
In this paper, we present a particle filter algorithm to tracitate
vector that consists of the target direction-of-arrivaO@) 6(t), the
logarithm of the target rang&(t), the target speed(t), and the

to have a larger detection range with hemispherical coeeiraghe
future. Note that the filter equations in this paper are e using
range-only measurements so that it is also applicable tditmie
tracking problems. Additional velocity measurements oigearate
measurements can be easily incorporated through the Keliadiod
equation via independence assumptions.

The particle filter uses a batch of range measurements to- dete
mine the state vector, based on an image template matchéag id
The template matching idea is very effective when accuraidets
are available [5]. In our problem, a temporal range imagers fi
formed, when a batch of range measurements are received, The
candidate image templates are formed by using the statea.foohe-
tion and the target state vectors. By determining the besthiray
image template, the target state vectors are determinischdsumed
that the range measurements are normally distributed dritnartrue
range measurements, with constant data miss-probatilitgatter
density.

The presence of multiple targets increases the trackingpleom
ity, because the received data must be sorted for each .t:8gete
the particle filter treats its range-only measurements asnage,
the data association and ordering problems are naturddlyiated.
To handle multiple targets, the particle filter uses a partihg ap-
proach, where a particle consists of the concatenation tifptautar-
get state vectors. We use the probabilistic data assatiatethods
to estimate the states by summing over all the associatipothgsis
weighted by the likelihood probabilities [6]. The partidiker pro-
posal function independently proposes particles for itsitians by
using a Gaussian approximation of the full posterior dgrisit effi-
ciency. Hence, the presented particle filter is robust agéire curse
of dimensionality problem [7], when the number of targetséase.

To derive the proposal function, the multi target posteden-
sity is approximately factorized for each target. Then thelace’s

target heading(t), using a batch of range-only measurements, obmethod is used to approximate each partition posterior bguzs&ian
tained at astationary sensor. The angles are measured counterclockaround its mode [8]. We calculate the partition modes usirgpast
wise with respect to the-axis. We prove that the particle filter state Newton-Raphson recursion with a backtracking step sizecieh

vector is observable given at least three range measursraeder
rotational and planar-symmetrical ambiguities. Our proakes use
of the Stewart’s triangle theorem in geometry.

The motivation for the state vector of the particle filter e t
low power RF sensor, implemented at the University of Fitithat
transmits a microwave signal to determine the range, thecitg|
and the size of the detected targets [4]. The sensor is @pépto-
viding range estimates at 32ms intervals with a range résolof
approximately 2m on a range-Doppler map. Up to 100m, thesatirr
system is capable of producing range estimates for mulgend
vehicles as well as human targets. The radar hardware isiened
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that imposes smoothness constraints on the target motjoii fs
approach is similar to the one for an angle-only trackineifil10].

2. DATA MODELS

2.1. State Update M odel

The filter state vectax, = [ 27 (¢), 23 (t), --- ,2%(t)]" consists
of the concatenation of the partition vectars(¢) for each target,
indexed byk, k = 1,..., K. Each partition has the corresponding
target motion parameters, (t) 2 [0 (t), Ri(t), vi(t), ox(t)]”,
wheredy (t) is the DOA, Ry (t) is the logarithm of the rangey. (¢) is
the speed, andy(t) is the heading direction. For notational conve-
nience, the logarithm of the range is used in the state veettause
the range errors are modeled multiplicative.
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dividual elements of this set using the notatiby(;), wherej =
1,...,xkCn. Hence, Z3(2) = {1,3}. Then, denote,x.(j) €
{zi(t)]i € Zn(j), zi(t) € x¢} as a single realization fro,. Us-
ing the same example above, we have(3) = [ z% (), 23 (1) ]"

= [27(t), 5(1)]". The elements of the vectox; (j) are shown,
in order, byz;(t) (: = 1,...,n), given the parametersand;.

We denotezrw(ym) = p(ym|nx¢(j)) as the probability den-
sity function of the data, where onlyrange measurements belong to
the targets defined by the partitions,of; (). Hence, whem = 0,
all data is due to clutter:

70,1(¥ym) = AP ©))

The probability densityr; (y» ) can be calculated by noting that (i)
there areP,,,! /(P — n)! ordered ways of choosing range measure-
ments to associate with thesubset partitions, and (ii) the remaining

Fig. 1. Observation model using batch of radar range measurementgpP,,, — n) range measurements are explained by the clutter:

Note that the range measurements are not necessarily drditwe-
ever, the image based observation approach provides ahatder-
ing, when targets are being tracked by the particle filter.

The state-update equation can be derived from the geonmetry i
posed by a motion model on the state vector. In this paper, ogeem
the target motion with a locally constant velocity model eTbesult-
ing state-update equation is nonlinear:

ze(t +T) = hr (zk(t)) +uk(?), 1)

whereu (t) ~ N (0, Xy) with £y, = diag{o§ ,07 . 05k, 00 1 }
el sin 0 +T vy, sin ¢y }

anth(xk) =
-1
tan { ek cos 01, +Tvy cos py,

2log {*f* + T?v; + 2T e vy, cos(Ox — dr) }

)
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2.2. Observation Model

The observationg; = {y:+m-(p) }'Z4 consists of range estimates

from a radar sensor at each batch md;exThls observation model

(P — n)INPm

P!
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iz) )

(4)

where the function) is the following Gaussian distribution:

{_ (A (@:(1)) = yesmr (i)
exp 952

T, (Ym) =

I
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where the superscrifi® on the state update functidnrefers only to
the log-range component of the state updatecgnis determined by
the radar hardware capabilities.

Given the densities,, ;, the observation density function can be
constructed as a combination of all the target associatipntheses.
Hence, by adding mixtures that consist of the data pernaunsitind
the partition combinations, we derive the observation itgns

Vi,m (pi T

M-1 K KCn
j : Rn,K j :
ytlxt H ﬂ-’!LJ Y'm (6)
m=0 n=0

In (6), the parameters,, x, >, ~n,x = 1, are the elements of a
detection (or confusion) matrix. For example, whBn= 2, ko 2
is the probability that no target range estimate is in tharadtput,

can be visualized as shown in Fig. 1. The radar returns ower thwhereass1,2 (k2,2) implies that 1 (2) target range(s) are present in
time-intervalr are used to estimate, possibly multiple, target rangesthe radar output. These fixed values have to be provided hyste
A batch of M such range estimates are used by the particle filteHowever, they should be changed adaptively to improve rtoless

to estimate target state eveéfy= M7 seconds. It is assumed that
the batch of measurements are normally distributed ardumdrtie

of the particle filter output. For example, when two partiSd:;

and k2 have close range tracks and are about to cross, we change

target ranges with varianee® and a constant data miss probability the confusion matrix to indicate the possibility that onéhef targets
matrix . This batch may include spurious peaks due to clutter thawill likely be missed.

are Poisson distributed with rale

We derive the data-likelihood function using the joint pablis-
tic data association arguments found in [6]. Consider thpudof
one batch periogt., = y:+m-(p), wherep =0, 1,..., P, foreach
m. The range measurements, may belong to none, or some com-
bination, or all of the targets in the particle filter padits. Hence,
define a sef,, that consists ofi-unordered combination of ak'-
partitions of the particle filter state vectof, € {xCn.}, where
kCr is number of ways of picking.-unordered outcomes froi®
possibilities.

Each element of,, hasn numbers, and there are a totalef,,
elements. For example, whei = 3 andn = 2, thenZ, =

{{1,2},{1,3},{2,3}}, each element referring to subset of the in-

dividual partitions of the particle state vector. We referthe in-

2.3. Approximate Partition Posterior Functions

In our problem of range-only multiple target tracking, thregosal
function poses difficult challenges because (i) the stattovelimen-
sion is proportional to the number of targdts hence the number
of particles to represent posterior can increase significas K
increases (the curse of dimensionality), (ii) in many cafes tar-
gets maneuver, hence full posterior approximations angimed| for
robust tracking, and (iii) for full posterior approximatis, robustly
determining the range-only data-likelihood is rather hard

In our problem, we can approximately factor out the tracking
posterior to exploit the computational advantage of thditpamed
sampling. Note that in our case, the target dynamics camadyre



be factored out because we assume the targets are movingeimde
dently. Unfortunately, the observation density does notdfaout,
because the observed radar range data cannot be immedissely
ciated with any of the partitions. However, for a given gaoti, if we
assume that the data is only due to that partition and cl(tiemice,
the range measurements corresponding to other partitierissated
as clutter), we can do the following approximate factoi@abn the
observation likelihood (6)p(y+|x:) =~ Hszl p(ye|zi(t)) =

K M-1 Pm w m ‘
H Ko, APk )\Pm 1 Z %ﬁ:xk) ©)
k=1 m=0 p=1

Hence, for our problem, each approximate partition posteési
given by

qr (@i (8)]ye, 21 (t = T)) o< p(yelex () p(ze(t)]er(t = T)), (8)

Fig. 2. The speed can be calculatechas= /1 (r? +r3) — r3.

TrianglesAO1 A1 C1 andAO2 A2C- are scaled versions g O AC

wherep(y|xx(t)) is given in (7). Note that (7) is not used as the that demonstrate the rotational and planar symmetric auittsg,

data-likelihood of the particle filter. The above approxienéactor-
ization of the data-likelihood is to make use of the panid sam-
pling strategy to propose particles. To calculate the garfilter
weights, the full posterior uses the observation density (6

2.4. Particle Filter Proposal Function

To capture target maneuvers effectively, we use the cuotesgrved
data to propose the filter’s particle support. The filter usgdace’s
method to approximate(y:|zx(t)) in (8) and thereby derives the
partition proposal functions of the particle filter, wheeg(t) ~
gk (xk(t)|ye, zx(t —T)). Laplace’s method is an analytical approxi-
mation of probability density functions based on a Gausaj@rox-
imation of the density around its mode, where the inversesidas
of the logarithm of the density is used as a covariance appi@x
tion [11]. It can provide adequate approximations to pésteithat
are as accurate and sometimes more accurate than the apgaroxi
tions based on third-order expansions of the density fanst[8].
Laplace’s approximation requires the calculation of thia dsa-
tistics. The Laplacian approximation is described in [18d & im-
plemented with the Newton-Raphson recursion with backinac
step size selection for computational efficiency. The fimgression
for the partition proposal functions is given by

gr(zr®)]ye, oe(t = T)) ~ N (ng(k), Zq(K)) , ©)
where the Gaussian density parameters are
Se(k) = (55 (k) + 554
( Yy + ) ? . (10)
Hg (k) Eg(k) ( ( )xk,modc + E; hT(CCk(t — T))) .
The vectorzy, mode is the mode op(y«|zx(t)), ands, * (k) is the

respectively. They are scaled down due to lack of space.

Table 1. Simulation Parameters
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3. SSIMULATIONS

This section presents simulation results to demonstrateénfor-
mance of the range-only multiple target tracker. Both snaghd
multiple target tracking scenarios are considered. Thehgyic range
measurement data is obtained using the constant velocitiypmaof
the targets. The data is perturbed using a zero mean Gaugstsmn
with variances2. The simulation parameters that generated Figs. 3
and 4 are shown in Table 1.

Figure 3 shows the tracking results obtained for a singlgetar
tracking scenario. The target moves with a constant spegédnofs.
The radar range measurements with clutter are input to tiee dih-
ordered. The tracker is initialized witlv particles generated by
adding noise (Table 1) to the true target stateat0s. The tracker
can associate the range measurements related to the tasieh m
and can provide accurate temporal estimates of the singlettstate.
The filter heading estimates lags the true target headingaloar
assumption of the constant velocity motion. Also, the timagke-
sults for two targets are shown in Fig. 4. The targets mové wit
constant speed dfdm/s and14.5m/s. The particle filter was able
to resolve the data association issues at times3s andt = 30s.

Hessian Oi)(}’t|$k( )) atfck,modcy calculated under the motion Smootﬂ-he motion estimates are unlque due to correct initialimati

ness constraints, as described in [10].

2.5. Observability of the State Vector

Figure 2 illustrates that it is possible to determinandé — ¢ given
three range measurements. This follows from the Stewdm#e-t
rem that can be proved by using the law of cosines on the tgang
AOAB and AOAC. Note thatd and ¢ can not be determined
uniquely given only the range measurements: the trajestate-
fined byABC, A1 B1C1, and A2 B2C> can result in the same range
measurementsry, ra, 73 }.

The estimates obtained using range-only measurementsecan b
further improved by using additional measurements. Fomgie,
defineay, = vcos (0, — ¢x) as the range-rate. Then, we can treat
the additional range rate measurements as an independamivab
tion and calculate(a|x:), o = [, ..., ax]”, by using the same
joint density association approach as (6). The range-ra@&sore-
ments are then incorporated at the weighting stage of thiiciear
filter algorithm:

(i)|)((i)]“)

-1)

(i)) (x
D)y, (t

(ytlx

Hk gk(

w @ = @

plalx{?), (11)
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Fig. 3. Single target tracking example. Black dots in the top leftFig. 4. Multiple target tracking. The heading estimates have more
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panel are range measurements. The pentagram and the staténd oscillations than the DOA estimates, because they are reositive

the target starting position and the radar position, resy.

wherew™ is the unnormalized weight. The range-rate measurement

further improve the tracking estimates as shown in Fig. Sereta
higher observation varianeg = 4 is used witho2 = 1.

4. CONCLUSIONS

In this paper, we present a range-only multiple target glarfilter

tracker based on a batch measurement model. The radar rasge m

surement batches are treated as an image to naturally lthedlata
association and ordering issues. The presence of muldpiets is
handled using a partition approach. The observation hkelis are
calculated jointly and are assigned by using the templatszged by
the state vectors and the state update equation. The ctorembf
the filter can also be used for amplitude tracking problems.
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