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Abstract—In this paper, we present a multi target particle fil-
ter DOA tracker that can incorporate road prior informationat
a single array node. The filter uses a batch of DOA’s to deter-
mine the state vector, based on an image template matching
idea. The filter likelihood is derived with the joint probability
density association principles so that no DOA measurement
is associated to more than one target. The filter state update
has the target DOA, the target velocity over range ratio, and
the target heading parameters. We present two approaches
for incorporating the road information. In the first approach,
the road prior is injected at the weighting stage of the tracker,
where a raised mixture Gaussian distribution, derived from
the road headings at the target DOA, constraints the particles.
The second approach is based on modifying the state update
function with a compound model, where a mixture of the con-
stant velocity model and the road information is used. In this
case, the filter uses an online EM algorithm to update the state
vector along with the mixture components. Computer simu-
lations demonstrate the performance of the approaches.
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1. INTRODUCTION

In target tracking problems, constrained target paths along
known roads, due to terrain conditions or obstructions,
present an opportunity for improved tracking [1–6]. In the
literature, this problem is considered, using state spacesthat
employ spatial parameters that are naturally linked with the
constraints. It is, however, harder to incorporate the roadin-
formation to a direction-of-arrival (DOA) tracker, because the
spatial position constraints do not translate well into regular
angle constraints.
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It is a challenging signal processing problem to track the bear-
ing angles of multiple targets using an acoustic array in the
presence of noise or interferers [7–11]. To formulate the DOA
tracking problem using state space models [12–14], we need
an observation equation that relates the state vector (i.e., tar-
get DOA’s and possibly motion states) to the acoustic micro-
phone outputs, and a state update equation that constrains the
dynamic nature of the state vector. In most cases, it is impor-
tant to use nonlinear and non-Gaussian state-space models
despite their computational complexity [15].

In this paper, we first summarize a particle filter algorithm
to track the DOA’s of multiple maneuvering targets, using an
acoustic node, which contains an array of microphones with
known positions [16]. The filter state consists of the DOA
θk(t), the heading directionφk(t), and the logarithm of ve-
locity over rangeQk(t) = log (vk/rk(t)) for each targetk.
A partitioning approach is used to create the multiple target
state vector, where each partition is assumed to be indepen-
dent; however, the filter observation likelihood uses a joint
probability assignment of each partition similar to the JPDA
method [17].

We show two ways to incorporate the road information into
the DOA tracker. In the first approach, theweighting method,
the road information is treated as a pseudo-measurement and
appears at the weighting stage of the algorithm. The pseudo
measurement idea has been explored in [5] for particle fil-
ters. Our approach differs from [5], because (i) our filter pro-
posal function uses an approximation of the full tracking pos-
terior without using the road information, and (ii) our pseudo
measurement likelihood allows the targets to come-off the
road. The second approach, themixture method, uses a mix-
ture model for the target state update function by combining
the motion equations with the road information. By adap-
tively calculating the mixture probabilities by an EM algo-
rithm [18,19], the particle filter outputs improved state vector
estimates along with the probability that the target is follow-
ing a certain road.

The particle filter uses a batch of DOA’s to determine the
state vector, based on an image template matching idea. In
our problem, a DOA image is first formed, when a batch
of DOA observations are received. Then, image templates
for target tracks are created using the state update function
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and the target state vectors. By determining the best match-
ing template (e.g., probable target track) to the image, the
target state-vectors are estimated. Because the observations
are treated as an image, the data association and DOA order-
ing problems are naturally alleviated. Moreover, by assum-
ing that the DOA observations are approximately normally
distributed around the true target DOA tracks, with constant
DOA miss-probability and clutter density, a robust particle
filter tracker is formulated.

The presented particle filter uses a front-end processor, i.e.,
a frequency-adaptive acoustic beamformer, producing suffi-
cient statistics for state vector with known statistical prop-
erties:M -DOA estimates during a batch size ofT seconds
(M > 3 for each target for observability of the state [9, 13]).
Hence, the target signal assumptions (e.g., wideband or
narrow-band target signals) are handled by the front-end
processor. Therefore, the probability density functions in the
particle filter mechanics are independent of the acoustic data,
conditioned on the sufficient statistics. Moreover, since the
filter is built on state sufficient statistics, which compresses
the data to be processed for tracking [20], it achieves a signif-
icant reduction in computational requirements.

The particle filter importance function proposes particlesfor
each target partition independently to increase the efficiency
of the algorithm. Because the ground targets can wander off
the road, we do not directly use the road information while
proposing the particles. To derive the partition proposal func-
tion, we use the Laplace’s method to approximate each parti-
tion posterior by a Gaussian around its mode [14,21,22]. We
calculate the partition modes using a robust Newton-Raphson
search method that imposes smoothness constraints on the
target motion.

The organization of the paper is as follows. Section 2 gives
the details of the multi target DOA particle filter tracker. Sec-
tion 3 explains the weighting and mixture methods for in-
corporating the road prior information into the angle-only
tracking particle filter. The performance of the methods are
demonstrated on simulated data in Sect. 4.

2. PARTICLE FILTER

State Equation

The filter state vectorxt =
[

xT
1 (t), xT

2 (t), . . . , xT
K(t)

]T

consists of the concatenation of partitionsxk(t) for each tar-
get, indexed byk, whereK is the number of targets at timet.
Each partition has the corresponding target motion parame-
tersxk(t) , [ θk(t) , Qk(t) , φk(t) ]

T , where thekth target
DOA is θk(t), the heading direction isφk(t), and the loga-
rithm of the velocity-range ratio isQk(t). The angle para-
metersθk(t) andφk(t) are measured counterclockwise with
respect to thex-axis.

The state update equation can be derived from the geometry
imposed by the locally constant velocity model. The resulting

state update equation is nonlinear:

xk(t+ T ) = hT (xk(t)) + uk(t), (1)

whereuk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
Q,k, σ

2
φ,k}

andhT (xk(t)) =266664 tan−1
n

sin θk(t)+T exp Qk(t) sin φk(t)
cos θk(t)+T exp Qk(t) cos φk(t)

o
Qk(t) − 1

2
log

n
1 + 2T exp Qk(t) cos(θk(t) − φk(t))

+T 2 exp(2Qk(t))
o

φk(t)

377775 . (2)

The analytical derivations of (2) can be found in [9,10]. The
reference [10] also discusses state update equations basedon
constant acceleration assumption. Hence, the constant veloc-
ity state update density function is the following Gaussian
distributionp(xk(t+ T )|xk(t)) =

f1(xk(t+ T )|xk(t)) = N (hT (xk(t)) ,Σu) , (3)

whereN (µ,Σ) denotes the normal distribution with meanµ
and covarianceΣ.

Observation Equation

The observationsyt,f = {yt+mτ,f(p)}M−1
m=0 consist of all the

batch DOA estimates from the beamformer block indexed by
m. Hence, the acoustic data of lengthT is segmented into
M segments of lengthτ . These segments are processed by a
beamformer based on the temporal frequency structure of the
signals to calculate possible DOA estimates. This procedure
may be repeatedF times for narrow-band signals at each fre-
quency indexed byf . Note that only the peak locations are
kept in the beamformer power pattern. Moreover, the peak
values, indexed byp, need not be ordered or associated with
the previous time in the batch and the number of peaks re-
tained can be time-dependent.

The batch of DOA’s,yt,f , is assumed to form an approxi-
mately normally distributed cloud around the true target DOA
tracks (refer to Fig. 1 for visualizing the observation model
for one frequency). In addition, only one DOA is present for
each target at eachf or the target is missed: multiple DOA
measurements imply presence of clutter or other targets. We
also assume that there is a constant detection probability for
each target denoted byκf , where dependence onf is allowed.

The particle filter observation model also includes a clut-
ter model, because beamformers can produce spurious DOA
peaks as output (e.g., the sidelobes in the power vs. angle pat-
terns) [23]. To derive the clutter model, it is assumed that the
spurious DOA peaks are random with uniformspatialdistri-
bution on the angle space, and are temporally as well as spa-
tially independent. In this case, the probability distribution
for the number of spurious peaks is best approximated by the
Poisson distribution with a spatial density [17, 24]. We use
the following pdf for the spurious peaks:

p(θ|θ is spurious) = λ, (4)
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Clutteryt,f = {yt+mτ,f (p)}M−1
m=0

Figure 1. The circles are the DOA estimates, calculated at
a single frequency, using the acoustic data received duringa
period of lengthτ . In this example, the maximum number of
beamformer peaksP is 3. Given the observationsyt,f , the
objective of the particle filter is to determine the statexk(t)
for the two targets, which completely parameterizes the solid
curves.

whereλ is the clutter density parameter.

We now derive the data-likelihood function using the joint
probabilistic data association arguments found in [17]. Sim-
ilar arguments for active contour tracking that is relevantto
this paper are found in [25]. Consider the output of one batch
periodym,f = yt+mτ,f(p), wherep = 0, 1, . . . , Pm,f for
eachf andm. The DOA’sym,f may belong to none, or some
combination, or all of the targets in the particle filter parti-
tions. Hence, we first define a notation to represent possible
combinations between the data and the particle filter parti-
tions to effectively derive the observation density.

Define a setIn that consists ofn-unordered combina-
tion of all K-partitions of the particle filter state vector:
In ∈ {KCn}, whereKCn is number of ways of picking
n-unordered outcomes fromK possibilities. Each element
of In has n numbers, and there are a total ofKCn ele-
ments. For example, whenK = 3 and n = 2, then
I2 = {{1, 2}, {1, 3}, {2, 3}}, each element referring to sub-
set of the individual partitions of the particle state vector. We
refer to the individual elements of this set using the nota-
tion In(j), wherej = 1, . . . ,KCn. Hence,I2(2) = {1, 3}.
Then, denotenxt(j) ∈ {xi(t)|i ∈ In(j), xi(t) ∈ xt} as a
single realization from the setIn. Using the same example,

2xt(3) =
[

xT
2 (t), xT

3 (t)
]T

=
[

x̂T
1 (t), x̂T

2 (t)
]T

. The el-
ements of the vectornxt(j) are shown, in order, bŷxi(t)
(i = 1, . . . , n), given the parametersn andj.

We denoteπn,j(ym,f ) = p(ym,f |nxt(j)) as the probability
density function of the data, where onlyn-DOA’s belong to
the targets defined by the partitions ofnxt(j). Hence, when
n = 0, all data is due to clutter:

π0,1(ym,f ) = λPm,f (5)

The probability densityπn,j(ym,f ) can be calculated by not-
ing that (i) there arePm,f !/(Pm,f − n)! ordered ways of
choosing DOA’s to associate with then-subset partitions, and
(ii) the remaining(Pm,f − n)-DOA’s are explained by the
clutter. Therefore,

πn,j(ym,f ) =
(Pm,f − n)!λPm,f−n

Pm,f !
×

Pm,f
∑

p1 6=p2 6=...6=pn

n
∏

i=1

ψt,m,f

(

pi

∣

∣

∣
x̂i

)

,

(6)

where the functionψ is derived from the assumption that the
associated target DOA’s form a Gaussian distribution around
the true target DOA tracks:

ψt,m,f

(

pi

∣

∣

∣
xi

)

=
1

√

2πσ2
θ(m, f)

×

exp

{

−

(

hθ
mτ (xi(t)) − yt+mτ,f(pi)

)2

2σ2
θ(m, f)

}

,

(7)

where the superscriptθ on the state update functionh refers
only to the DOA component of the state update andσ2

θ(m, f)
is supplied by a beamformer, by using the curvature of the
DOA estimate at the power vs. angle pattern [23].

Note that the DOA distribution (7) is not a proper circular dis-
tribution for an angle space. For angle spaces, the von Mises
distribution is used as a natural distribution [26]. The von
Mises distribution has a concentration parameter with a cor-
responding circular variance. It can be shown that for small
σ2

θ << 1 (high concentration), the von Mises distribution
tends to the Gaussian distribution in (7) [27]. Because the
von Mises distribution has numerical issues for small DOA
variances, the Gaussian approximation (7) is used in this pa-
per. Hence, special care must be taken in the implementation
to handle angle wrapping issues.

The Gaussian in (6)ψ(·|·) are directly multiplied, because
the partitions are assumed to be independent. To elaborate,
considern = 2 andj = 3 from the example ofI2 above:

π2,3(ym,f ) ∝

Pm,f
∑

p1=1

Pm,f
∑

p2=1,p1 6=p2

ψt,m,f

(

p1

∣

∣

∣
x̂1

)

ψt,m,f

(

p2

∣

∣

∣
x̂2

)

∝

Pm,f
∑

p1=1

Pm,f
∑

p2=1,p1 6=p2

ψt,m,f

(

p1

∣

∣

∣
x2

)

ψt,m,f

(

p2

∣

∣

∣
x3

)

.

(8)

Hence, the densityπ2,3(ym,f ) is a Gaussian mixture that
peaks, when the updated DOA components of the partitions
2 and 3 (hθ

mτ (·)) are simultaneously close to the observed
DOA’s. Note that (8) guarantees that no measurement is as-
signed to multiple targets simultaneously.

Given the densitiesπn,j , the observation density function can
be constructed as a combination of all the target association
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hypotheses. Hence, by adding mixtures that consist of the
data permutations and the partition combinations, we derive
the observation density:

p(yt|xt) =

F
∏

f=1

M−1
∏

m=0

K
∑

n=0

κf
n,K

KCn

KCn
∑

j=1

πn,j(ym,f ). (9)

In (9), the parametersκf
n,K (

∑

n κ
f
n,K = 1) are the ele-

ments of a detection (or confusion) matrix. For example,
whenK = 2, κf

0,2 is the probability that no target DOA is

in the beamformer output, whereasκf
1,2 (κf

2,2) means that 1
(2) target DOA(’s) are present in the beamformer output at
eachf . These fixed values have to be provided by the user.
However, they should be changed adaptively to improve ro-
bustness of the particle filter output. For example, when two
partitionsk1 andk2 have close DOA tracks and are about to
cross, it is possible that the beamformer’s Rayleigh resolution
is not enough to output two DOA’s for both targets. Then, we
change the confusion matrix to indicate the possibility that
one of the targets will likely be missed.

Particle Filter Proposal Function

In the problem of DOA-only multiple target tracking, the pro-
posal function poses difficult challenges because (i) the state
vector dimension is proportional to the number of targetsK,
hence the number of particles to represent posterior can in-
crease significantly asK increases (the curse of dimensional-
ity), (ii) in many cases, the targets maneuver, hence full poste-
rior approximations are required for robust tracking, and (iii)
for full posterior approximations, robustly determining the
DOA-only data-likelihood is rather hard. We address each of
these challenges in this section. Note that the proposal func-
tion of the filter does not incorporate the road information.
This is because we allow the targets to come off the road. If
a target is passing a bridge, where the constraint completely
determines the target motion, then to tackle this scenario,we
change the probability that the target is on the road to one.

Partitioned Sampling—A partitioned sampling approach is
used to reduce the curse of dimensionality in the particle fil-
ter. The basic idea is as follows. Suppose that we incorrectly
factor the tracking posterior density as

p(xt|yt,xt−T ) ∝ p(yt|xt)p(xt|xt−T )

=

K
∏

k=1

p(yt|xk(t))

K
∏

k=1

p(xk(t)|xk(t− T ))

=

K
∏

k=1

p(yt|xk(t))p(xk(t)|xk(t− T ))

∝
K
∏

k=1

qk(xk(t)|yt, xk(t− T )).

(10)

In this case, the target posterior is conveniently a productof
the partition posteriorsqk(·|·). We can then generate sam-

ples for each partition according to its posterior (i.e.,x
(i)
k ∼

qk(xk(t)|yt, xk(t − T ))) and merge them to representxt. It
can be proved that the resulting particle distribution is the
same as when we generatext directly from the full posterior
p(xt|yt,xt−T ). However, in the partitioned sampling case,
the computational complexity of the state vector generation
is linear with respect to the number of targetsK as opposed
to exponential when the state vector is sampled from the full
posterior.

In our problem, we can approximately factor out the tracking
posterior to exploit the computational advantage of the parti-
tioned sampling. Note that in our case, the target dynamics
can already be factored out because we assume the targets
are moving independently.1 Unfortunately, the observation
density does not factor out, because the observed DOA data
cannot be immediately associated with any of the partitions.
However, for a given partition, if we assume that the data is
only due to that partition and clutter (hence, the DOA data
corresponding to other partitions are treated as clutter),we
can do the following approximate factorization on the obser-
vation likelihood (9):

p(yt|xt) ≈
K
∏

k=1

p(yt|xk(t))

=

K
∏

k=1

F
∏

f=1

M−1
∏

m=0

{

κf
0,1λ

Pm,f

+ κf
1,1λ

Pm,f−1

Pm,f
∑

p=1

ψt,m,f

(

p
∣

∣

∣
xk

)

Pm,f

}

.

(11)

Hence, for our problem, each partition posterior is given by

qk(xk(t)|yt, xk(t− T )) ∝ p(yt|xk(t))p(xk(t)|xk(t− T )),
(12)

wherep(yt|xk(t)) is given in (11) andp(xk(t)|xk(t−T )) =
f1(xk(t)|xk(t − T )) as in (3). Note that (11) will not be
used as the data-likelihood of the particle filter. The above
approximate factorization of the data-likelihood is to make
use of the partitioned sampling strategy to propose particles.
To calculate the particle filter weights, the full posterioruses
the observation density (9).

A Gaussian Approximation for Partition Posteriors—To cap-
ture target maneuvers effectively, we use the current observed
data to propose the filter’s particle support. The filter uses
Laplace’s method to approximatep(yt|xk(t)) in (12) and
thereby derive the partition proposal functions of the par-
ticle filter, denoted asgk(xk(t)|yt, xk(t − T )). Laplace’s
method is an analytical approximation of probability density
functions based on a Gaussian approximation of the density
around its mode, where the inverse Hessian of the logarithm

1When the targets are moving closely in tandem, there is a possibility that
a beamformer may not resolve them. Hence, they can be treatedas a single
target. In other cases, the independence assumption still works. However, if
high resolution observations (e.g, top down video images ofthe target plane)
are available, it is better to also model the interactions oftargets. A good
example using Monté-Carlo Markov chain methods can be found in [28].
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of the density is used as a covariance approximation [22]. It
can provide adequate approximations to posteriors that are
as accurate and sometimes more accurate than the approxi-
mations based on third-order expansions of the density func-
tions [21]. The computational advantage of this approach is
rather attractive, because it only requires first and secondor-
der derivatives. The condition for the accurate approximation
is that the posterior be a unimodal density or be dominated by
a single mode. Hence, it is appropriate for approximating the
partition posteriors of the particle filter.

Laplace’s approximation requires the calculation of the data
statistics. The Laplacian approximation is described in [29]
and is implemented with the Newton-Raphson recursion with
backtracking for computational efficiency [30, 31]. The final
expression for the partition proposal functions to be used in
the particle filter is given by

gk(xk(t)|yt, xk(t− T )) ∼ N (µg(k),Σg(k)) (13)

where the Gaussian density parameters are

Σg(k) =
(

Σ−1
y (k) + Σ−1

u

)−1

µg(k) = Σg(k)
(

Σ−1
y (k)xk,mode + Σ−1

u hT (xk(t− T ))
)

,

(14)

wherexk,mode is the mode ofp(yt|xk(t)), andΣ−1
y (k) is the

Hessian ofp(yt|xk(t)) at xk,mode, calculated by imposing
smoothness constraints on the target motion [29]. Pseudo-
code of the particle filter multi target DOA tracking algorithm
is given in Table 1.

Table 1. Particle Filter Tracker Pseudo-Code

Given the observed datayt,f = {yt+mτ,f (p)}M−1
m=0 in [t, t + T ), do

1. Fori = 1, 2, . . . , N

• Fork = 1, 2, . . . , K

samplex(i)
k

(t) ∼ gk(x
(i)
k

(t)|yt, x
(i)
k

(t − T )), given by (13).

• Formx
(i)
t =

h
x
(i)
1 (t), x

(i)
2 (t), . . . , x

(i)
K

(t)
iT

.

2. Calculate the weights

w∗(i)
t = w

(i)
t−T

p(yt|x
(i)
t )p(x

(i)
t |xt−T )Q

k gk(x
(i)
k

(t)|yt, x
(i)
k

(t − T ))
,

wherep(yt|x
(i)
t ) is fully joint observation density, given by (9).

3. Normalize the weights:

w
(i)
t =

w∗
(i)
tP

i w∗
(i)
t

.

4. Make estimation:E{f(xt)} =
PN

i=1 w
(i)
t f(x

(i)
t ).

5. Resample the particles.

3. THE ROAD PRIOR INFORMATION

The Weighting Method

If the road information is available along with the calibrated
acoustic node, it is optimal to formulate a new tracker, using

the target position and velocity as the state vector. However,
it is also possible to incorporate the road information to the
DOA-only particle filter tracker, without changing any filter
equations. Note that if a target is following a road, its head-
ing direction, in effect, coincides with the road’s orientation.
Hence, at any given time, as long as the target is on the road,
its heading direction will be approximately Gaussian distrib-
uted with a mean angle of the road’s orientation and some
variance. Denote

p{θ,road}(φ) = q + (1 − q)×
∑

j

γj

{

δφN (φ{θ,road(j)}, σ
2
φ,road(j))

+ (1 − δφ)N (π − φ{θ,road(j)}, σ
2
φ,road(j))

}

(15)

as the heading prior, calculated using (i) the track informa-
tion, (ii) the acoustic node position, and (iii) the currentDOA
θ. The parameterq is the probability that a target is not on the
road, whereasγj is the probability that a target is on a spe-
cific road branchj. The heading varianceσ2

φ,road(j) limits
how much variation is allowed from the road’s heading direc-
tion. If it is too small, the state estimates will closely follow
the road. However, when the targets leave the roads, the filter
heading particle distribution may under-represent the actual
posterior, deteriorating the estimates until the filter converges
back on the target. The indicator functionδφ chooses the ori-
entation of the road by using the previous motion estimate to
resolve the heading ambiguity. Equation (15) improves the
robustness of the filter because (i) it allows targets to cross
roads without following the road and (ii) it can emphasize the
constraints on some roads (e.g., bridges) more than the others.

Note that the meanφ{θ,road} of the heading prior is the ori-
entation of the road, where the line, originating from the
node with a slope angleθ, intersects the road. Finally, in the
weighting method, the heading prior enters the particle filter
at the weighting stage as an independent pseudo-observation:
w∗(i)

t =

w
(i)
t−T

p(yt|x
(i)
t )p(x

(i)
t |xt−T )

∏

k gk(x
(i)
k (t)|yt, x

(i)
k (t− T ))

∏

k

p
{θ

(i)
k

,road}
(φ

(i)
k ).

(16)

The Mixture Method

In [1,3,4,6], the road prior information is used to change the
state update equation to improve the predicted state values.
For example, [4] uses Bayesian arguments with hospitability
maps to fuse the road’s preferred heading and speed values
into the state update by the Ito stochastic differential equa-
tions. [3] also approaches the problem with Bayesian argu-
ments and derives approximate closed-form solutions for the
predicted state. [6] modifies the state noise variances so that
the state noise aligns itself with the road for better predic-
tion. [1] uses a similar approach using the interacting multiple
model filter (IMM).
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The mixture method presented here does not try to modify the
state update by using the road information. This is because
the filter proposal function is based on an approximation of
the motion posterior (interaction of the constant velocityand
image observation models) and is independent from the road
constraints. Instead, the mixture method tries to select the
state update by monitoring the target motion in an exponen-
tially decaying window. By adaptively varying the mixture
components based on the data, the mixture method results
in improved state estimates, while adaptively identifyingthe
road branch.

To demonstrate the mixture method, we first modify the state
update equation of the particle filter as follows:

p(xk(t)|xk(t−T ),m
{k}
t ) =

Jt−1
∑

j=0

m
{k}
j,t fj(xk(t)|xk(t−T )),

(17)
where Jt is the number of road branches at DOAθk(t),

m
{k}
t =

[

m
{k}
0,t , . . . , m

{k}
J−1,t

]

, wherem{k}
j,t are the mix-

ture probabilities for targetk; andfj(xk(t)|xk(t − T )) are
the state update functions. That is,f0(xk(t)|xk(t − T )) =
N (xk(t),Σu) handles the case when the target is stationary,
f1(xk(t)|xk(t−T )), given by (3), handles the case when the
target is moving with constant velocity; andfj(xk(t)|xk(t−
T )) is the state update based on the heading of the(j − 1)th

road branch.

To calculatefj(xk(t)|xk(t − T )), we propagate the particle

setx(i)
k (t − T ) through the state update functioñx(i)

k (t) =

hT (x
(i)
k (t − T )). Then, the DOA ofx̃(i)

k (t) is used to de-
termine the heading of the roadφ{θ̃(i),road(j)}(t). We re-

place the heading parameters ofx(i)
k (t − T ) with new re-

alizationsφ(i)
k (t − T ) ∼ N

(

φ{θ̃(i),road(j)}(t), σ
2
φ,road(j)

)

to obtain x̂(i)
k (t − T ). Given this augmented state based

on the road heading information, thejth road branch state
update function is given byfj(x

(i)
k (t)|x

(i)
k (t − T )) =

N
(

hT

(

x̂
(i)
k (t− T )

)

,Σu

)

.

To determine the mixture parameters, we use an EM algo-
rithm for mixture models [18, 32, 33]. We consider the tem-
poral state estimates under an exponential envelopeǫt(l) =

β exp
(

− t−l
ρ

)

, wherel ≤ t. The parameterρ is the half-life

of the envelope, andβ = 1 − exp{−ρ−1} is the normalizing
constant. The loglikelihood of the state evolution up to time
t can be written as

L (Xt(k)|Mt) =

t
∑

l=−∞

ǫt(k) log p
(

xk(l)|xk(l − 1),m
{k}
l

)

,

(18)
where Xt(k) = [ xk(t), xk(t− 1), . . . ] and Mt =
[

m
{k}
t , m

{k}
t−1, . . .

]

.

Given previous time estimates for the mixture probabilities in

the particle filter, the E-step of the EM algorithm calculates
the ownership probabilities for each new statexk(t) for each
particlei:

oi
j,t(k) ∝

m
{k}
j,t−1fj(x

(i)
k (t)|x

(i)
k (t− 1))

p(x
(i)
k (t)|x

(i)
k (t− 1),m

{k}
t )

. (19)

Conditioned on the ownership probabilities, the M-step com-
putes the mixture probabilities for the current time step:

m
{k}
j,t (i) =

t
∑

l=−∞

ǫt(k)o
i
j,t(k). (20)

Since it is not possible to store the whole temporal state evo-
lution, we approximate the mixture probability calculation by
a simple weighted average:

m
{k}
j,t (i) = βoi

j,t(k) + (1 − β)m
{k}
j,t−1(i). (21)

Hence, the particle filter first proposes particles according to
the full posterior approximation, independent from the road
information. Then, by calculating the current mixture proba-
bilities, it determines the current state update model:

p(x
(i)
k (t)|x

(i)
k (t−1)) = f

{arg maxj m
{k}
j,t

(i)}
(xk(t)|xk(t−T )).

(22)
In turn, the weighting step weights the particles accordingto
the chosen state update model:

w∗(i)
t = w

(i)
t−T

p(yt|x
(i)
t )

∏

k p(x
(i)
k (t)|x

(i)
k (t− T ))

∏

k gk(x
(i)
k (t)|yt, x

(i)
k (t− T ))

.

4. SIMULATIONS

In this section, we demonstrate the performance of the DOA-
only particle filter with a synthetic example. We use an oval
track shown in the bottom left subplot in Figs. 2, 3, 4, and 5
that has a width of 100m. The oval track is segmented into
three segments to simulate road branching: the first segment
from (−100,−50)m to (0,−50)m, the second segment the
top part of the oval, and the third segment is from(0,−50)m
to (150,−50)m. The simulation parameters in this section
are summarized in Table 1. Note that we also create an esti-
mated target track in thex-y space by using the filter motion
estimates along with the correct initial target position. In the
simulation figures, the particle filter with no road prior infor-
mation is marked with (·), the weighting method is marked
with (+), and the mixture method is marked with (◦).

In Fig. 2, we compare the tracking performance of the particle
filter with and without the presented road prior methods. The
target starts at(−100,−50)m and travels on the oval path for
a duration of 30 seconds with a speed of 14m/s. In this sim-
ulation, we useσ2

φ,road(j) = (5◦)2 for the weighting method.
Among the mixture method and the weighting method, the
weighting method performs the best in this case. Both meth-
ods improve the target state estimates over the particle fil-
ter, because they use the road information. In addition to the
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Table 2. Simulation Parameters

Number of particles,N 400
θ noiseσθ,k 1 ◦

Q noiseσQ,k 0.05s−1

φ noiseσφ,k 10 ◦

Measurement noiseσθ 1 ◦

Road prior heading varianceσφ,road 5 ◦

Tracker sampling period, T 1s
Beamformer batch period,τ 0.1s
Clutter density parameter,λ 600

Probability of target missκf
0,K

0.1
Envelope half-lifeρ 1s

Number of batch samples for DOA estimation, M 10
Number of DOA peaks in the beamformer patternP 2 or 4

Narrow-band beamformers at different center frequencies,F 1

tracking results, the mixture method probabilities, shownin
Fig. 2(b), intuitively tell that the target starts at the first seg-
ment and then travels to the second segment.

In Fig. 3, we compare the state tracking performances when
a target comes off the road. In this case, the mixture model
performs the best, followed by the weighting method and the
particle filter with no road prior information. In Fig. 4, we
demonstrate the algorithms for a multi target scenario. Lastly,
we show the effect of the road heading variance parameter
σ2

φ,road(j) in Fig. 5. When the road heading variance is small

σ2
φ,road = (2◦)2 , the resulting track is tighter.

5. CONCLUSIONS

In this paper, we proposed two methods to incorporate prior
road information into a DOA-only multi target tracking par-
ticle filter. The weighting method treats the road informa-
tion as an additional independent observation on the target
heading direction. The mixture method incorporates the road
information into the state update by using probability mix-
tures. By selecting the model using an online EM algorithm,
the mixture model improves the state estimates, while simul-
taneously resulting in a temporal probability track for road
segments. The presented methods improve the state vector
estimates when the targets are following the road constraints;
however, they do not degrade the performance if the targets
do not follow the available road network.
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