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Abstract—n this paper, we present a multi target particle fil- It is a challenging signal processing problem to track trerbe
ter DOA tracker that can incorporate road prior informatibn ing angles of multiple targets using an acoustic array in the
a single array node. The filter uses a batch of DOA's to deterpresence of noise or interferers [7—11]. To formulate théADO
mine the state vector, based on an image template matchinitgacking problem using state space models [12-14], we need
idea. The filter likelihood is derived with the joint problityi ~ an observation equation that relates the state vectortére.
density association principles so that no DOA measuremerget DOA's and possibly motion states) to the acoustic micro-
is associated to more than one target. The filter state updaphone outputs, and a state update equation that constnains t
has the target DOA, the target velocity over range ratio, andlynamic nature of the state vector. In most cases, itis impor
the target heading parameters. We present two approach&sit to use nonlinear and non-Gaussian state-space models
for incorporating the road information. In the first approac despite their computational complexity [15].

the road prior is injected at the weighting stage of the eack

where a raised mixture Gaussian distribution, derived fromin this paper, we first summarize a particle filter algorithm
the road headings at the target DOA, constraints the pesticl to track the DOA's of multiple maneuvering targets, using an
The second approach is based on modifying the state updaséeoustic node, which contains an array of microphones with
function with a compound model, where a mixture of the con-known positions [16]. The filter state consists of the DOA
stant velocity model and the road information is used. Is thi 6, (t), the heading directiony(¢), and the logarithm of ve-
case, the filter uses an online EM algorithm to update the statocity over rangeR(t) = log (vx/r(t)) for each target.
vector along with the mixture components. Computer simu-A partitioning approach is used to create the multiple targe
lations demonstrate the performance of the approaches.  state vector, where each partition is assumed to be indepen-
dent; however, the filter observation likelihood uses atjoin
probability assignment of each partition similar to the APD

TABLE OF CONTENTS method [17].

measurement idea has been explored in [5] for particle fil-
ters. Our approach differs from [5], because (i) our filtey-pr
posal function uses an approximation of the full trackingpo
1. INTRODUCTION terior without using the road information, and (ii) our pdeu
In target tracking problems, constrained target pathsgalonmeasurement likelihood allows the targets to come-off the
known roads, due to terrain conditions or obstructionsfoad. The second approach, théture methogduses a mix-
present an opportunity for improved tracking [1-6]. In theture model for the target state update function by combining
literature, this problem is considered, using state sptgs the motion equations with the road information. By adap-
employ spatial parameters that are naturally linked with th tively calculating the mixture probabilities by an EM algo-
constraints. Itis, however, harder to incorporate the inad rithm[18,19], the particle filter outputs improved statetce
formation to a direction-of-arrival (DOA) tracker, becaube  €stimates along with the probability that the target isdfoH
spatial position constraints do not translate well intoutag ~ iNg @ certain road.
angle constraints.

1 INTRODUCTION _ . .

We show two ways to incorporate the road information into
2 PARTICLE FILTER the DOA tracker. In the first approach, tveighting method
3 THE ROAD PRIOR INFORMATION the road information is treated as a pseudo-measurement and
4  SIMULATIONS appears at the weighting stage of the algorithm. The pseudo
5

CONCLUSIONS

- The particle filter uses a batch of DOAs to determine the
Prepared through collaborative participation in the AdeshSensors Con-  state vector, based on an image template matching idea. In
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and the target state vectors. By determining the best matclstate update equation is nonlinear:

ing template (e.g., probable target track) to the image, the

target state-vectors are estimated. Because the obsewati zi(t +T) = hr (vx(t)) + uk(t), (1)
are treated as an image, the data association and DOA order- .

ing problems are naturally alleviated. Moreover, by assumWhereu,(t) ~ (0, £.) with X, = diag{07 1, 03 4,07 1}
ing that the DOA observations are approximately normallya”th(xk(t)) =

distributed around the true target DOA tracks, with constan
DOA miss-probability and clutter density, a robust paticl

tan—1 { sin 0 (£)+T exp Qg (t) sin ¢y (¢) }
cos 0y, (t)+T exp Q (t) cos ¢y (t)

filter tracker is formulated. Qx(t) — 3 log {1 +2T exp Qr(t) cos(Br(t) — (1) | (9
+T2 exp(2Q (1)) }
The presented particle filter uses a front-end processoy, i. o (t)

a frequency-adaptive acoustic beamformer, producing-suffi
cient statistics for state vector with known statisticabpr 1 ne analytical derivations of (2) can be found in [9,10]. The
erties: M-DOA estimates during a batch size Bfseconds reference [10] also discusses state update equations tiased
(M > 3 for each target for observability of the state [9, 13]). constant acceleration assumption. Hence, the constar-vel
Hence, the target signal assumptions (e.g., wideband diy state update density function is the following Gaussian
narrow-band target signals) are handled by the front-endistributionp(z(t + T2k (1)) =

processor. Therefore, the probability density functionthie

particle filter mechanics are independent of the acousti, da fi@(t+ T)lei(t)) = N (hr (2x(8) , 2u), (3)
conditioned on the sufficient statistics. Moreover, sirtoe t
filter is built on state sufficient statistics, which compes
the data to be processed for tracking [20], it achieves afsign
icant reduction in computational requirements.

whereN (u, ¥) denotes the normal distribution with mean
and covariancg.

Observation Equation

The particle filter importance function proposes partiétes ~ The observationg; ; = {yi+mr.s(p)}2Z4 consist of all the
each target partition independently to increase the effigie batch DOA estimates from the beamformer block indexed by
of the algorithm. Because the ground targets can wander off.. Hence, the acoustic data of lendgthis segmented into
the road, we do not directly use the road information whileM segments of length. These segments are processed by a
proposing the particles. To derive the partition propogatf  beamformer based on the temporal frequency structure of the
tion, we use the Laplace’s method to approximate each partsignals to calculate possible DOA estimates. This proeadur
tion posterior by a Gaussian around its mode [14,21,22]. Wenay be repeatefl times for narrow-band signals at each fre-
calculate the partition modes using a robust Newton-Raphsoquency indexed by. Note that only the peak locations are
search method that imposes smoothness constraints on tkept in the beamformer power pattern. Moreover, the peak
target motion. values, indexed by, need not be ordered or associated with
the previous time in the batch and the number of peaks re-
The organization of the paper is as follows. Section 2 givegained can be time-dependent.
the details of the multi target DOA particle filter trackeecs
tion 3 explains the weighting and mixture methods for in-The batch of DOAS,y. f, is assumed to form an approxi-
corporating the road prior information into the angle-only mately normally distributed cloud around the true targefDO
tracking particle filter. The performance of the methods ardracks (refer to Fig. 1 for visualizing the observation miode

demonstrated on simulated data in Sect. 4. for one frequency). In addition, only one DOA is present for
each target at each or the target is missed: multiple DOA
2. PARTICLE FILTER measurements imply presence of clutter or other targets. We

also assume that there is a constant detection probalaility f

State Equation each target denoted by, where dependence gfis allowed.

The filter state vectok, = [« (), 2 (t), ... , 2% (t) ]T

consists of the concatenation of partitioﬂi/s(t) for each tar- The particle filter observation model also includes a clut-
get, indexed by, whereK is the number of targets at time ~ ter model, because beamformers can produce spurious DOA

Each partition has the corresponding target motion parameeaks as output (e.g., the sidelobes in the power vs. angle pa
tersazy(t) 2 [0x(t) , Qu(t), é1(t)]", where thek® target  t€rns) [23]. To derive the clutter model, it is assumed that t

DOA is 6, (t), the heading direction igy(¢), and the loga- spgrious DOA peaks are random with unifogpatial distri-
rithm of the velocity-range ratio i€, (t). The angle para- Pution on the angle space, and are temporally as well as spa-

metersdy,(t) and ¢y (t) are measured counterclockwise with tially independent. In this case, the probability disttibo
respect to the-axis. for the number of spurious peaks is best approximated by the

Poisson distribution with a spatial density [17,24]. We use

The state update equation can be derived from the geometH)€ following pdf for the spurious peaks:
imposed by the locally constant velocity model. The renglti (618 is spurious = A, @)



The probability densityr,, ; (y., ) can be calculated by not-
ing that (i) there areP,, ¢!/(Pmn,; — n)! ordered ways of
choosing DOA's to associate with thesubset partitions, and
(i) the remaining(P,, s — n)-DOASs are explained by the
clutter. Therefore,

(Pmyf — n)!)\Pm*fin

T (Ym,f) = X
° R Py !

P g (6)

: ‘\ M E\ Clutter Z H Yo ( Z Z)

e, ‘f = {Witmr.r(P)Im=o e PLEP2F A i=1
| o . .
T T - where the function) is derived from the assumption that the

0 M7 T 2T 3T associated target DOA's form a Gaussian distribution adoun

Figure 1. The circles are the DOA estimates, calculated atthe true target DOA tracks:
a single frequency, using the acoustic data received daring
period of lengthr. In this example, the maximum number of ¥t/ ( i

1
Z) 2wo3(m, f) .

beamformer peak® is 3. Given the observationg ;, the

2
objective of the particle filter is to determine the statét) exp | (W (@i () = Yiymr s ()
for the two targets, which completely parameterizes thiel sol 20%(m, f) ’
curves. (7)

where the superscripton the state update functignrefers
where is the clutter density parameter. only to the DOA component of the state update afithn, f)

is supplied by a beamformer, by using the curvature of the
We now derive the data-likelihood function using the joint DOA estimate at the power vs. angle pattern [23].
probabilistic data association arguments found in [17in-Si
ilar arguments for active contour tracking that is releviant Note that the DOA distribution (7) is not a proper circulas-di
this paper are found in [25]. Consider the output of one batchribution for an angle space. For angle spaces, the von Mises
periodym, f = Yitmr ¢(p), Wherep = 0,1,..., P, ¢ for distribution is used as a natural distribution [26]. The von
eachf andm. The DOASsy,, ; may belong to none, or some Mises distribution has a concentration parameter with a cor
combination, or all of the targets in the particle filter part responding circular variance. It can be shown that for small
tions. Hence, we first define a notation to represent possible << 1 (high concentration), the von Mises distribution
combinations between the data and the particle filter partitends to the Gaussian distribution in (7) [27]. Because the
tions to effectively derive the observation density. von Mises distribution has numerical issues for small DOA

variances, the Gaussian approximation (7) is used in this pa
Define a setZ, that consists ofn-unordered combina- per. Hence, special care must be taken in the implementation
tion of all K-partitions of the particle filter state vector: to handle angle wrapping issues.
I, € {kC.}, whereC, is number of ways of picking
n-unordered outcomes frofit possibilities. Each element The Gaussian in (6)(-|-) are directly multiplied, because
of Z,, hasn numbers, and there are a total g’,, ele- the partitions are assumed to be independent. To elaborate,

ments. For example, whek = 3 andn = 2, then considem =2 andj = 3 from the example of, above:

T, = {{1,2},{1, 3}, {2, 3}}, each element referring to sub-

set of the individual partitions of the particle state vecte g Ty

refer to the individual elements of this set usmg the nota-">* (¥m.£) Z Z Vtam.f (pl‘xl) Vi, f (P2‘SC2)
tion Z,,(j), wherej = 1,..., xC,. HenceZ»(2) = {1,3}. Pr=tpe=lpizes

Then, denote,x;(j) € {z:(t)i € Z.(j),z:(t) € x,} as a Py By

single realization from the s€i,. Using the same example, x Z Z Vtm, s (Pl‘ffz) Vtm, f (pQ‘lB)
2xi(3) = [a (1), o5 ()] = [aT(), 37 (1)]". The el- ot @®
ements of the vectoyx;(j) are shown, in order, by;(t)

(i =1,...,n), given the parametersand;. Hence, the densityr 3(y., ) is @ Gaussian mixture that

peaks, when the updated DOA components of the partitions
We denoter,, ;(ym,r) = p(ym,flnx:(j)) as the probability 2 and 3 ¢, (-)) are simultaneously close to the observed
density function of the data, where onlyDOA’ belong to  DOA’s. Note that (8) guarantees that no measurement is as-
the targets defined by the partitions,pf; (7). Hence, when signed to multiple targets simultaneously.
n = 0, all data is due to clutter:
Given the densities,, ;, the observation density function can
70,1(Ym,f) = Mg (5) be constructed as a combination of all the target assoniatio



hypotheses. Hence, by adding mixtures that consist of they (z(t)|y:, zx(t — T))) and merge them to represeqt It
data permutations and the partition combinations, we derivcan be proved that the resulting particle distribution is th
the observation density: same as when we generatedirectly from the full posterior
F oMol K W Co p(x¢|y+, x:—7). However, in the partitioned sampling case,
n K the computational complexity of the state vector genematio
plyib) = I 11 Z Z T (Ym.f)- (9) is linear with respect to the number of targéfsas opposed
to exponential when the state vector is sampled from the full
In (9), the parameters-j;K -, n-mK = 1) are the ele- posterior.
ments of a detection (or confusion) matrix. For example,
whenK = 2, /-;0 5 is the probability that no target DOA is In our problem, we can approximately factor out the tracking

in the beamformer output, wherea, (i ,) means that 1 posterior to exploit the computational advantage of théipar

(2) target DOA(’s) are present in the beamformer output ationed sampling. Note that in our case, the target dynamics
eachf. These fixed values have to be provided by the usefcan already be factored out because we assume the targets
However, they should be changed adaptively to improve rore moving independently. Unfortunately, the observation
bustness of the particle filter output. For example, when twdlensity does not factor out, because the observed DOA data
partitionsk; andk, have close DOA tracks and are about to cannot be immediately associated with any of the partitions
cross, it is possible that the beamformer’s Rayleigh reuiu However, for a given partition, if we assume that the data is

is not enough to output two DOA's for both targets. Then, we@nly due to that partition and clutter (hence, the DOA data
change the confusion matrix to indicate the possibilityt tha Corresponding to other partitions are treated as clutves),

flmOnOK

one of the targets will likely be missed. can do the following approximate factorization on the obser
vation likelihood (9):
Particle Filter Proposal Function %

H lzN H

Partitioned Sampling-A partitioned sampling approach is
used to reduce the curse of dimensionality in the particle fil
ter. The basic idea is as follows. Suppose that we incoyrectl
factor the tracking posterior density as

In the problem of DOA-only multiple target tracking, the pro p(yelxe) = H (yelzn(t))

posal function poses difficult challenges because (i) thie st

vector dimension is proportional to the number of targéts FoM—1

hence the number of particles to represent posterior can in- H H {’fo APm.1 (11)

crease significantly a&” increases (the curse of dimensional- f=1m=0

ity), (i) in many cases, the targets maneuver, hence fisitgo vt Pt g ( ’ )

rior approximations are required for robust tracking, aiiy ( + Kf /\Pm sl Z }

for full posterior approximations, robustly determinirtget =1

DOA-only data-likelihood is rather hard. We address each of

these challenges in this section. Note that the proposat fun Hence, for our problem, each partition posterior is given by

tion of the filter does not incorporate the road information.

This is because we allow the targets to come off the road. (@)Y, i (t = T)) o plyela (t))p o (t)|ow (t - 1(1})2’)

a target is passing a bridge, where the constraint completel . .

determines the target motion, then to tackle this scenago, wherep(y:|zx(t)) is given in (11) andb(a (t)|zx (t — T)) =

change the probability that the target is on the road to one h@r@®)ex(t — T)) as in (3). Note that (11) will not be

" used as the data-likelihood of the particle filter. The above

approximate factorization of the data-likelihood is to mak
use of the partitioned sampling strategy to propose pasicl
To calculate the particle filter weights, the full postenises

the observation density (9).

P(Xe|ye, Xe—1) X p(ye|%Xe)p (xtlxth) A Gaussian Approximation for Partition Posterior§e-cap-
K ture target maneuvers effectively, we use the current ebder
= H (ye|ze(t) Hp (zx(t)|zn(t = T)) data to propose the filter's particle support. The filter uses
Laplace’s method to approximaigy.|z(¢t)) in (12) and

K thereby derive the partition proposal functions of the par-
= H (ye|ze(0)p(zr (t)|zp(t — T)) ticle filter, denoted ag (zx (t)|y:, zx(t — T)). Laplace’s
k=1 method is an analytical approximation of probability dénsi
K functions based on a Gaussian approximation of the density
o [ ar@n(®)lye, ze(t — T)). around its mode, where the inverse Hessian of the logarithm
k=1 -
(10) LWhen the targets are moving closely in tandem, there is alplitysthat

) o . a beamformer may not resolve them. Hence, they can be traatacingle

In this case, the target posterior is conveniently a prodfict target. In other cases, the independence assumption sthswHowever, if

it ; . _ high resolution observations (e.g, top down video imagehefarget plane)

the partition poste_r_lorak( ). _We cgn then g_ene_ratie)z sam are available, it is better to also model the interactionsagfets. A good
ples for each partition according to its posterior (mé(/,, ~ example using Monté-Carlo Markov chain methods can bedanif28].



of the density is used as a covariance approximation [22]. Ithe target position and velocity as the state vector. Howeve
can provide adequate approximations to posteriors that aiieis also possible to incorporate the road information t th
as accurate and sometimes more accurate than the approkKiOA-only particle filter tracker, without changing any filte
mations based on third-order expansions of the density-funequations. Note that if a target is following a road, its head
tions [21]. The computational advantage of this approach isng direction, in effect, coincides with the road’s orietida.
rather attractive, because it only requires first and second Hence, at any given time, as long as the target is on the road,
der derivatives. The condition for the accurate approxiomat its heading direction will be approximately Gaussian distr
is that the posterior be a unimodal density or be dominated byted with a mean angle of the road’s orientation and some
a single mode. Hence, it is appropriate for approximatireg th variance. Denote
partition posteriors of the particle filter.
p{@,road}(d’) =q+ (1 - Q)X
Laplace’s approximation requires the calculation of theada _{5 o2 ‘
statistics. The Laplacian approximation is described Bi [2 Xj:% N P10.r00d0)}> 76, r00a)
and is implemented with the Newton-Raphson recursion with
backtracking for computational efficiency [30, 31]. The fina + (1 = 06)N(T — d16,r0ad(j)} Uz,mad(j))}
expression for the partition proposal functions to be used i (15)
the particle filter is given by
as the heading prior, calculated using (i) the track inferma
(@ (O)lye, 2t = T)) ~ N (g (k) Zg(k))  (13)  tion, (i) the acoustic node position, and (iii) the currB®A

where the Gaussian density parameters are 0. The parametay is the probability that a target is not on the
1 road, whereas; is the probability that a target is on a spe-
Se(k) = (351 (k) + 331 cific road branchj. The heading variance? ., limits
pig (k) = 2, (k) (E;l (k) Tk mode + X hp (xp (t — 7)), how much variation is allowed from the road’s heading direc-

(14) tion. If it is too small, the state estimates will closelyléal

the road. However, when the targets leave the roads, the filte
wherezy mod. is the mode op(y¢|zx(t)), andX, ' (k) isthe  heading particle distribution may under-represent theaict
Hessian ofp(y:|xx(t)) at xx mode, Calculated by imposing posterior, deteriorating the estimates until the filtenaoges
smoothness constraints on the target motion [29]. Pseudgack on the target. The indicator functiépchooses the ori-
code of the particle filter multi target DOA tracking algbiit  entation of the road by using the previous motion estimate to
is given in Table 1. resolve the heading ambiguity. Equation (15) improves the
robustness of the filter because (i) it allows targets tosros
roads without following the road and (ii) it can emphasize th
Table 1. ParticleFilter Tracker Pseudo-Code constraints on some roads (e.g., bridges) more than thesothe

Note that the meany ,,q.q; Of the heading prior is the ori-

Given the observed daa, ; = {yt 1 mr. s (p)} M1 in [t,t + T), do entatior_1 of the road, Wr_lere the line, originat_ing frqm the
1. Fori=1,2,...,N node with a slope angl® intersects the road. Finally, in the

o Fork = 1,2(,1_5. LK » o _ weighting method, the heading prior enters the particlerfilt

sampler;, (£) ~ gi(z,"(t)lye, ), (¢ = 1)) gvenby (13). - 4t the weighting stage as an independent pseudo-observatio

o Formx(? = [+ (1), 287 (0), ..., 2 )] - w® =

2. Calculate the weights
. . _ (4) (4) .
)t 2O s creerd | LR
T ok (@ O)lye 2 (¢ - 1)) [ g (i Olye, . (t=T)) 55

_ (16)
Whel’e;n(ydxil)) is fully joint observation density, given by (9).
3. Normalize the weights:

The Mixture Method

_ « () _ I
w® = 2t Ok In[1,3,4,6], the road prior information is used to change th
2wy state update equation to improve the predicted state values
4. Make estimationz{f(x;)} = N, w® f(x(). For example, [4] uses Bayesian arguments with hospitabilit
5. Resample the particles. maps to fuse the road’s preferred heading and speed values

into the state update by the Ito stochastic differentialaequ
tions. [3] also approaches the problem with Bayesian argu-
3. THE ROAD PRIOR INFORMATION ments and derives approximate closed-form solutions fr th
S predicted state. [6] modifies the state noise variancesao th
The Weighting Method the state noise aligns itself with the road for better predic
If the road information is available along with the calilm@dt tion.[1] uses a similar approach using the interacting iplait
acoustic node, it is optimal to formulate a new tracker, gisin model filter (IMM).

5



The mixture method presented here does not try to modify théhe particle filter, the E-step of the EM algorithm calcusate

state update by using the road information. This is becaustae ownership probabilities for each new statét) for each

the filter proposal function is based on an approximation ofparticle::

the motion posterior (interaction of the constant veloaityl k) @) @)

image observation models) and is independent from the road i m; 1 fi (@), (t)]a;,” (t — 1))

constraints. Instead, the mixture method tries to selet th 0j,4(k) o< (4) (0 g _ {k}y
T e pzy” ()|, (t—1),m;™)

state update by monitoring the target motion in an exponen-

tially decaying window. By adaptively varying the mixture Conditioned on the ownership probabilities, the M-step com

components based on the data, the mixture method resulpites the mixture probabilities for the current time step:

in improved state estimates, while adaptively identifyihg .

road branch. mi @) = 37 elk)ol, (k). (20)

gt

(19)

|=—
To demonstrate the mixture method, we first modify the state =
update equation of the particle filter as follows: Since it is not possible to store the whole temporal state evo

g lution, we approximate the mixture probability calculatioy
< a simple weighted average:
pax(®lant—T),m{) = 3 mi £ @)zt - 1)), ple welg J

= k k)

o a7 m{ i) = Bol (k) + (1= Bymi (). (2D)
where J; is the number of road branches at DOA(¢),  Hence, the particle filter first proposes particles accayttin
m{* = [ mé, o m t], wherem!*) are the mix-  the full posterior approximation, independent from thedroa
ture probabilities for target; and f; (xx (¢)|zx(t — T)) are information. Then, by calculating the current mixture pgeb
the state update functions. That j&,(zx(t)|zx(t — T)) = bilities, it determines the current state update model:

N (zx(¢), 2,) handles the case when the target is stationary,
fi(xg(®)|zk(t —T)), given by (3), handles the case when thep(z ( )|I (t_l)) f{argmdxgm (l)}( k@2 (t=T)).

target is moving with constant velocity; arfe(xy, (t)|z, (t — o . _ (22)
T)) is the state update based on the heading of the 1) In turn, the weighting step weights the particles according
road branch. the chosen state update model:

To calculatef; (xx(t)|zx (¢ — T)), we propagate the particle w? = t(%_)Tp(Yt|xt Hk plag(t |;C (t -7)
setaz:(Z (t — T) through the state update functi(/irfj) (t) = I gk(% (t )|yta (t=T))
hr(z), 0 (t —T)). Then, the DOA Ofir(i (t) is used to de-

termlne the heading of the roaqe( ) mad(m( ). We re- 4. SMULATIONS

place the headlng parameterszif t — T) with new re-

In this section, we demonstrate the performance of the DOA-
allzat|ons¢k (t—=T) ~ (¢{9(i),mad(j)}(t), Ui,road(j)) only particle filter with a synthetic example. We use an oval
dtrack shown in the bottom left subplot in Figs. 2, 3, 4, and 5
on the road heading information, th&" road branch state that has a width of 100m. The oval track is segmented into
o (i) (i) ~ three segments to simulate road branching: the first segment

update function is given byf;(z,”(t)lz; (t = T)) = g (—100, —50)m to (0, —50)m, the second segment the
N (hT (i?;(;) (t— T)) ; Eu)- top part of the oval, and the third segment is fr@n—50)m

to (150, —50)m. The simulation parameters in this section
To determine the mixture parameters, we use an EM algoare summarized in Table 1. Note that we also create an esti-
rithm for mixture models [18, 32, 33]. We consider the tem-mated target track in the-y space by using the filter motion
poral state estimates under an exponential envelgpp =  estimates along with the correct initial target positiomtHe
Bexp ( ) wherel < t. The parametep is the half-life smglaﬂ_on figures, the particle fllter v_wth no road _pnorom‘

mation is marked with-J, the weighting method is marked
with (+), and the mixture method is marked with)

to obtain j:,(j) (t — T). Given this augmented state base

of the envelope, and = 1 — exp{—p~'} is the normalizing
constant. The loglikelihood of the state evolution up toetim
t can be written as

t

In Fig. 2, we compare the tracking performance of the particl
{k} filter with and without the presented road prior methods. The
L (X4(k) M) = Z er(k)logp (xk( )zk(l = 1), m ), target starts at—100, —50)m and travels on the oval path for
l=—c0 (18) a duration of 30 seconds with a speed of 14m/s. In this sim-
ulation, we user? . . = (5°)? for the weighting method.
Whe{rke} Xt(fg} = o), w(t—1), ... ] and M, = Among the mixture mathod and the weighting method, the
[ e } weighting method performs the best in this case. Both meth-
ods improve the target state estimates over the particle fil-
Given previous time estimates for the mixture probabgitie  ter, because they use the road information. In additionéo th



Table 2. Simulation Parameters

1.4
Number of particlesN 400 < e
g noiseay 1 1° g7
Q noisesg 0.05s~1 T
¢ noisec i 10° 22
Measurement noisey 1° ’
Road prior heading varianeey road 5°
Tracker sampling period, T 1s
Beamformer batch period, 0.1s
Clutter density parametek, 600
Probability of target mis&{;K 0.1 E
Envelope half-lifep 1s e
Number of batch samples for DOA estimation, M 10
Number of DOA peaks in the beamformer pattétn 20r4
Narrow-band beamformers at different center frequenéies, 1 00 300 200 <100 o 100
X
@
tracking results, the mixture method probabilities, shamwn : : : : N
Fig. 2(b), intuitively tell that the target starts at the ffiseg- 09r
ment and then travels to the second segment. 08
0.7r : 1
In Fig. 3, we compare the state tracking performances when 0.6f 8 — Eﬁ;‘f;’g;’;‘:c”y
a target comes off the road. In this case, the mixture model £~ 05¢ : —6— Second Segment
performs the best, followed by the weighting method and the 0.4} , = = = Third Segment
particle filter with no road prior information. In Fig. 4, we 03} '
demonstrate the algorithms for a multi target scenariotly,as 0.2}
we show the effect of the road heading variance parameter 01
2 1 1 i 1 i N ol O i PN . L -
O—g-,”‘oad(j) in F|29. 5. When t.he road hea_dmg variance is small R aa s A e
0% roaa = (2°)7, the resulting track is tighter. time

5. CONCLUSIONS _ . . .
Figure 2. (a) The DOA tracking estimates of the particle

In this paper, we proposed two methods to incorporate priofilter tracker with and without the road prior informatiorear
road information into a DOA-only multi target tracking par- similar. However, the velocity-over-range and the headisg
ticle filter. The weighting method treats the road informa-timates improve due to the constrained target path. Note tha
tion as an additional independent observation on the targehe particle filter heading estimates without the road imfer
heading direction. The mixture method incorporates thd roation lag the true target heading due to the constant velocity
information into the state update by using probability mix- assumption. (b) The mixture probabilities coming from the

tures. By selecting the model using an online EM algorithm mixture method shows the temporal likelihood of the paths
the mixture model improves the state estimates, while simultaken by the target.

taneously resulting in a temporal probability track foraoa
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