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ABSTRACT

We propose a particle filter acoustic tracker to track multiple ma-
neuvering targets using a state space formulation. The state update
is formulated through a locally linear motion model. The observa-
tions are a batch of direction-of-arrival (DOA) estimates at various
frequencies. The data likelihood incorporates the possibility of
missing data as well as spurious DOA observations. By impos-
ing smoothness constraints on the target motion, the particle filter
is able to avoid the data association problems. To make the filter
computationally efficient, a proposal strategy based on approxi-
mating the full posterior is employed. Computer simulations are
presented to show the performance of the algorithm.

1. INTRODUCTION

Tracking the bearing angles of multiple maneuvering targets using
acoustic arrays is a classical problem with many challenging as-
pects. In the literature, the problem is usually formulated in terms
of state-space models where target direction-of-arrivals (DOA) are
related to the acoustic microphone outputs through some obser-
vation equation and the updates on the state (which may include
variables other than DOA alone) are explained by locally linear
motion models [1–3]. The performance of these algorithms relies
heavily on how accurate these models represent the observed nat-
ural phenomena.

One important observation model is the far-field narrow-band
observation model where the array response is related to a source
with a constant narrow-band frequency at DOA,θ, through some
steering vectors under isotropic and non-dispersive medium as-
sumptions [4]. This model possesses a well-understood mathe-
matical structure and has a significant impact on the DOA estima-
tion problem since it has led to many practical DOA estimation
techniques (e.g., MUSIC, MVDR, eigenvalue beamformers, etc.).
However, the estimation performance of the algorithms using this
model deteriorate when the target signals exhibit wide-band struc-
ture, or when rapid target motion spreads the array spatial spec-
trum. The complexity of this observation model increases signifi-
cantly as some of the assumptions in the model are relaxed to more
accurately represent reality, rendering the tracking algorithms an-
alytically intractable.

The presence of multiple targets also increases the tracking
complexity because of data association issues, where a mechanism
is needed, in effect, to sort the received data for each target. The as-
sociation problem is handled in many ways: (i) probabilistic data
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association methods estimate the states by summing over all the
association hypothesis weighted by the probabilities obtained by
the likelihood [5], (ii) smoothness assumptions on the target (mo-
tion) states allows a natural ordering of the data [6], (iii) compu-
tationally costly ML/EM methods use the likelihood functions to
search for a global maximum, and (iv) nearest neighbor methods
provide easy heuristics to perform measurement updates. Most of
these methods use the mean and the covariance approximation on
the sufficient statistics for the state, which may be estimated with
a Kalman filter; however, for nonlinear state-spaces with general
noise assumptions, Monté-Carlo methods should be used to ade-
quately capture the dynamic, possibly multi-modal, statistics.

A particle filter naturally accommodates solutions for state-
space problems where the observations arrive in sequence. The
state probability density function is represented by discrete state
samples (particles) distributed according to the underlying distri-
bution (as explained by the state-space) either directly or by proper
weighting [7]. Hence, the filter can approximate any statistics of
the distribution arbitrarily accurately by increasing the number of
particles with proven convergence results. In the particle filtering
framework, the data association problem is undertaken implicitly
by the state-space model interaction; however, to increase the effi-
ciency of the algorithm, various methods are proposed, such as the
partitioning approach [2], or other Bayesian approaches [8].

In this paper, a particle filter tracker is presented for multiple
target DOA tracking using a constant velocity motion model on
the targets. Instead of directly using the signals as explained by the
narrow-band model, the algorithm uses a sufficient statistics for the
state vector: a batch of DOA estimatesyt,f = {yt+mτ,f (jm)}M−1

m=0

out of a beamformer appropriate for the local frequency character-
istics of the target signals. The filter state consists of the DOA
θk(t), heading directionφk(t), and (logarithm of) velocity over
rangeQk(t) = log vk/rk(t) for each targetk where the total num-
ber of targetsK is assumed known. The state is reported at reg-
ular time intervals ofT = Mτ . The batch DOAs may also have
depend on frequencyf (e.g., DOAs calculated at different narrow-
band frequencies), which is suitable in specific tracking scenarios.
The number of DOA estimatesjm at timet+mτ is also modelled
as time-dependent.

The observations are assumed normally distributed around the
true DOA tracks with constant missing data probability and clut-
ter rate. To increase the efficiency of the algorithm, the filter uses
an approximation of the full posterior to generate particles where
a robust Newton search method is used to approximate the data-
likelihood. Data association is handled automatically by the parti-
cle filter by imposing the smoothness constraints on the target mo-
tion. Lastly, all DOA observations within the batch are assumed
locally stationary to avoid angle spread due to target motion since
the batch sampling periodτ is assumed small.
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Organization of the paper is as follows. Section 2 is intended
to give a brief overview of the motion model and provide the needed
data-likelihood expressions. The particle filter details are covered
in Sect. 3 where a constrained Newton method is introduced to
approximate the filter proposal function. Finally, a representative
set of simulation results is given in Sect. 4.

2. STATE-SPACE FORMULATION

The particle filter state vectorxk(t) consists of the concatenation
of the individual motion vectorsxk(t) , [ θk(t) , Qk(t) , φk(t) ]T

as xt =
[

xT
1 (t), xT

2 (t), · · · xT
K(t)

]T
. Parametersθk(t) and

φk(t) are measured c.w. w.r.t thex-axis. The state update equa-
tion can be derived from the geometry imposed by the assumed
constant velocity motion and is nonlinear [1,3]:

xk(t + T ) = hT (xk(t)) + uk(t) (1)

whereuk(t) ∼ N (0, Σu) with Σu = diag{σ2
θ,k, σ2

q,k, σ2
φ,k} and

hT (xk(t)) =







tan−1
{

sin θk(t)+T exp Qk(t) sin φk(t)

cos θk(t)+T exp Qk(t) cos φk(t)

}

Qk(t) − 1
2 log

{

1 + 2T exp Qk(t) cos(θk(t) − φk(t)) + T 2 exp 2Qk(t))
}

φk(t)







(2)

The observationsyt,f = {yt+mτ,f (jm)}M−1
m=0 consist of all

the DOA estimates out of a beamformer at each batch indexm.
Hence, the acoustic data of lengthT is segmented intoM seg-
ments of lengthτ . These segments are processed by a proper
beamformer based on the temporal frequency structure of the sig-
nals to calculate possible DOA estimates. This procedure may be
repeatedF times for narrow-band signals for each frequency in-
dexed byf . Note that only the peak locations are kept in the beam-
former power pattern. Moreover, the peak values, indexed byjm,
need not be ordered or associated with the previous indexm − 1
and the number of peaks to retain can even be time-dependent.

Figure 1 visualizes the observation model. It is assumed that
the batch of DOAs,yt,f , form a normally distributed cloud around
the true target DOA tracks with a constant missing data probabil-
ity κ1; and may have spurious peaks Poisson distributed with rate
λ. The variance of DOAs,σ2, is assumed constant and may be
estimated using the DOAs from the previous estimation period in
conjunction with the ML estimation techniques on how the spe-
cific beamformer works. For example, for an ML estimator using
the narrow-band model, there is a formula that calculates the addi-
tive array noise variance given in [1]. The array noise then can be
related to an expected DOA noise through the formulas in [10].

This specific observation model is very similar to the one used
in active contour image tracking problems [9]. It can be shown that
the data likelihood given the state under the assumptions described
above can be written asp(yt|xt) ∝

∏

f

∏

k

∏

m







1 +
1√

2πκλ

∑

jm

exp− (hθ
mτ (xt) − yt+mτ,f (jm))2

2σ2







(3)
whereyt = {yt,f}F

f=1 denotes the cumulative DOA data calcu-
lated in time interval[t, t + T ) andhθ refers to the DOA compo-

1This model assumes that only one DOA at eachf belongs to the target
or the target is missed. By assuming that the probability of thetrue mea-
surement being in the observed data is equal for eachjm, a constant data
miss probabilityκ may be assumed [9].

jm = 3

yt,f (j0)

jm+1 = 1

0

τ
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Fig. 1. The circles and squares are the DOA estimates at differ-
ent frequencies calculated using the acoustic data received during
a period of lengthτ . Given the observationsyt,f , the objective
of the tracker is to determine the statexk(t) which completely pa-
rameterizes the solid curve.

nents. Equation 3 also assumes that each observation through the
dimensionf are independent. If there is a known internal correla-
tion structure, a joint density can be formulated to replace (3).

3. PARTICLE FILTER DETAILS

Given the state-space description of a problem, the particle filter-
ing solutions are well defined. The efficiency of the algorithm de-
pends on the proposal functions that determine the random support
of the particles to beproperly weighted for estimation. In this pa-
per, a proposal function, denoted asg(xt|yt,xt−1), is derived to
approximate the target posterior density directly:

g(xt|yt,xt−1) ≈ p(xt|yt,xt−1) ∝ p(yt|xt)p(xt|xt−1) (4)

wherep(xt|xt−1) ∼ N (fT (xt−1), Σu) andp(yt|xt) is given by
(3). Moreover, the proportionality in (4) is independent from the
current statext. This approximation, in effect, moves the particle
stream towards high probability regions of the posterior so that
more particles survive the final resampling step, producing better
future states as the system evolves [7].

The posterior density should be approximated such that the
resulting proposal function is as close to the posterior as possible
and, at the same time, is easy to sample from. Hence, various
Gaussian approximations to the full posteriors are commonly used
in the literature [11]. In our case, we first approximate the data-
likelihood by a Gaussian so that the proposal function will also be
Gaussian, therefore achieving the objective. Hence, a meanµy and
a covarianceΣy should be first determined from the observed data
yt. Then, by using the Gaussian parameters of the state update, an
analytical relation for the proposal function is given.

The mode ofp(yt|xt), denoted asxM , is a good candidate
for the parameterµy. Then, the HessianH of (3) at the mode can
also be used as the covariance estimate:Σy = H−1. To calcu-
late these parameters, a Newton search algorithm can be used on
the negative log-likelihood of the data [1]. However, the result-
ing analytical relations have numerical sensitivity issues. Hence,
as an alternative, we propose to use the following cost function to



determine the modexM :

J = −
∑

f

∑

k

∑

m

∑

jm

exp

{

− (hθ
mτ (xt) − yt+mτ,f (jm))2

2σ2

}

+
1

2
(xt − x0)

T Σ−1(xt − x0)

(5)

This cost function consists of two terms: the first term has the
same minima as the negative log-likelihood function of the data
distribution; and the second term is a regularization term forcing
the solutionxM to lie close to some vectorx0 w.r.t. some weighted
distance measureΣ.

Nominally, the mode should be within the particle cloud com-
ing from the previous iteration after being propagated through the
state update. Hence, an easy way to determine the mode would be
to choose the particle best explaining the current data set (denoted
asx0 in (5)). Unfortunately, when the targets maneuver,x0 may
fall outside actual data observations. This necessitates a correc-
tion accomplished by a Newton search algorithm to determine the
actual modexM .

Note that the cost function without the regularization term
only depends on the angle distances. The gradients in that case
may lead to physically infeasible (motion) changes in the parame-
tersQ(t) andφ(t) to account for fractional angle errors while de-
terminingxM . Hence, the regularization is introduced to prevent
this issue by constraining the solution space to lie in theΣ neigh-
borhood ofx0, and, at the same time, imposing the smoothness of
the target motion. The parameterΣ also bounds the covariance of
the data-likelihood approximation.

If we defineG = ∂J/∂x andĤ = ∂2J/∂x∂x
T , the New-

ton recursion is given by the familiar expression:x
l+1
M = x

l
M −

µlĤ
−1
l Gl andx

l
M = x0. The step sizeµl should be decreased

adaptively making sure that the cost function is always decreasing.
Although time-consuming, it is straightforward to derive analyt-
ical expressions forG andĤ (similar calculations can be found
in [1].) They are omitted here due to lack of space.

Even with the available analytical relations, the calculation of
the Hessian still poses problems. If the Hessian of (5) is directly
calculated from the exact formulas, it is possible to show that the
resulting expression for̂H is not guaranteed to be positive definite
and modifications are necessary to make the Newton correction
Ĥ−1G effective at each iteration2. Hence, while calculating the
final expression of the Hessian, the terms including second order
derivatives are neglected from the analytical formula. In this case,
the Hessian is a function of the outer product of the gradient, and
it is possible to prove that it is positive definite.

After the Gaussian approximation to the data-likelihood de-
scribed above (note thatΣy = H−1 ≈ Ĥ−1), the final expression
for the proposal function to be used in the particle filter is given by

g(xt|yt,xt−1) ∼ N (µg, Σg) , where (6)

Σg =
(

Σ−1
y + Σ−1

u

)

−1
, µ = Σg

(

Σ−1
y xM + Σ−1

u hT (xt−1)
)

.
(7)

Then, the particle filter incremental weights are given by

u(i) =
p(yt|x(i)

t )p(xt|x(i)
t−1)

g(x
(i)
t |yt,x

(i)
t−1)

(8)

The implementation of the filter used in the simulations also has a
resampling (with replacement) stage after estimation.

2The same issue applies to the the negative log-likelihood of (3).

Table 1. Simulation Parameters
Fig. N T M F σ σu,θ σu,Q σu,φ

2, 4 100 1 10, 20 1 2◦ 1◦ 0.05 10◦

3 100 1 10 2 3◦ 1◦ 0.05 10◦

4. SIMULATIONS

The objective of the simulations is to demonstrate the performance
of the algorithm, using data generated according to the assumed
models. For comparison, in the last example, we also generated
acoustic data based on the narrow-band array model and calcu-
lated the observations using the minimum variance distortionless
response (MVDR) beamformer. To initialize the trackers, we used
a particle cloud with the correct mean, and a covariance ofΣ0 =
diag{(2◦)2 , 0.12 , (4◦)2}. For the Newton algorithm that ap-
proximates the data-likelihood for the particle proposal, an initial
step size of0.1 is used, which is decreased adaptively until 1000
iterations are reached. In the simulations, we usedΣ =

√
2Σu.

Simulation parameters are summarized in Table 1. Figure
2 demonstrates a single target tracking scenario. The observed
DOAs are Gaussian distributed around the true DOA track with
variance(2◦)2. The filter does a good job of catching the target
as it maneuvers through the large heading process noise. Figure 3
shows a much more difficult scenario for the tracker where two in-
dependent layers of DOA estimates are given each with the correct
mean and a variance of(3◦)2. There is a small bias in the filter
DOA estimates betweent = 4s andt = 6s where the targets are
crossing. This bias is, in part, also due to the target maneuvers,
which start att = 4s. The filter maintains the track coherence
in this difficult case using the independent frequency observations
(when only one of them is present, we observed that the filter can
confuse the targets). Although its estimates deteriorate in the re-
gion where targets are crossing as well as maneuvering, it locks
back on the targets after the transient region.

For the last example (Fig. 4), acoustic data sampled atFs =
1000Hz is generated for two targets each with narrow-band fre-
quenciesf1 = 40Hz andf2 = 80Hz using the narrow-band obser-
vation model [4]. The filter state is also augmented to include a fre-
quency variable:xk(t) , [ θk(t) , Qk(t) , φk(t) , fk(t) ]T [3].
Then, Gaussian noise is added to the array data where the noise
standard deviation is equal to one-tenth of the sinusoid ampli-
tudes. The microphone array used for the simulation has 15 mi-
crophones situated uniformly on a circle such that the minimum
inter-microphone distance is .45 times the wavelength of the sec-
ond signal. The acoustic data, then, is run through the MVDR
beamformer where the highest 3 peaks are picked with no particu-
lar order at each batch index.50 data samples are used to calculate
each DOA, henceM = 20. DOAs are used to output per state
vector at a period ofT = 1s.

Note that in this case, ignoring the model dependent angle bias
of (≈ 0.2◦), the calculated DOA’s are distributed around the true
DOA track with much less variance (≈ (0.4◦)2) than the assumed
varianceσ2 = (2◦)2. Hence, the actual data-likelihood is nar-
rower than what is assumed by the tracker. This has the impact of
decreasing the number of effective particles that contribute to the
estimation accuracy. This is to be expected since the filter is not
matched to the data; however, this also demonstrates the robust-
ness of the algorithm under the unmatched prior case.
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Fig. 2. Top: Black dots are the DOA observations generated by
adding Gaussian noise to the true target DOA track. The filter es-
timate is indistinguishable from the true DOA track.Left: Ground
truth vs. filter estimate. The sensor array is shown with the star.
The filter track estimate is constructed by using the filter motion
outputs with the correct initial target position.Right: The filter
heading estimates vs. the true target heading.

5. CONCLUSIONS

In this paper, a robust acoustic tracker is formulated in a flexi-
ble framework that has minimal assumptions on the observations.
Even though the filter requires a batch of data to process, it can be
implemented for online applications because the data-likelihood
approximation can be done as the data is being accumulated. Since
the filter uses the Bayesian framework, it can avoid the data asso-
ciation problems commonly encountered in target tracking. The
multiple target tracking performance can be further improved by
altering the data likelihood so that a confusion probability is as-
signed to each data while the targets are crossing.
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Craḿer-Rao bound,”IEEE Trans. on ASSP, vol. 37, no. 5,
pp. 720–741, May 1989.

[11] A. Doucet, N. Freitas, and N. Gordon, Eds.,Sequential
Monte Carlo Methods in Practice, Springer-Verlag, 2001.


