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ABSTRACT by merging different information streams and (ii) to maintain ade-
quate robustness of the estimates in the face of unexpected model

A proposal function determines the random particle support of a yariations or noisy data. For joint state-space estimation problems,
particle filter. When this support is distributed close to the true the particle filter is a natural choice because it propagates the prob-
target density, filter's estimation performance increases for a given apjlity density function (pdf) of the state vectors. Hence, it allows
number of particles. In this paper, a proposal strategy for joint for heuristic combination methods, which may be problem spe-
state-space tracking using particle filters is given. The state-spacegific [5], or a general probabilistic framework for combining infor-
are assumed Markovian and not-exact; however, each state-spacgation.
is assumed to sufficiently describe the underlying phenomenon.
The joint tracking is achieved by carefully placing the random sup- sin
port of the joint filter to where the final posterior is likely to lie.
Computer simulations demonstrate improved performance and ro-
bustness of the joint state-space through the proposed strategy.

In this paper, a general framework is described for tracking a
gle joint state vector by merging two overlapping state-space
models using the particle filter. It should be stressed that combin-
ing two particle filters for different state spaces is different from
formulating one filter that will track them jointly [6]. A proposal
strategy is described that carefully combines the proposal strate-
1. INTRODUCTION gies optimal for the individual state-spaces such that the random

support of the particle filter is concentrated where the final poste-

State-space models are mathematical relations used for describingor Of the joint state-space lies. The resulting filter can have better

a system’s evolution and have extensive applications in many prac_e.stlma'[.lon accuracy with the same number of particles as the indi-
tical problems in control theory, signal processing, and telecom- Vidual filters.

munications. Since exact state-space models of real systems are The joint proposal strategy assumes that the state-space for-
extremely rare, approximate models are used. Hence, during andmulations are not exact. If there is an exact relation governing the
alytical modelling of some natural phenomena, the emphasis isSystem parameters, then a single consistent state space can be for-
usually placed on choosing a minimum set of variables that com- mulated easily from the individual state-spaces. Loosely speaking,
pletely describe a system’s internal status relevant to the problemeach state space locally explains the underlying phenomenon and
at hand. In this way, satisfactory results can still be achieved de-the different independent observations can be used to assist the es-
spite incomplete modelling of a system due to ignorance or lack of timation in the individual state-spaces. For example, an acoustic

knowledge [1, 2]. tracker with a constant velocity motion model can assist a visual
Once a system’s state-space is described in a probabilistic fashiracker using a random-walk model through an occlusion scenario
ion, sequential Moré-Carlo methods, also known particle fil- if the acoustic propagation path from the target is not blocked.

ters, can be used to track the state vector as the observations arrive  The paper is organized as follows. Section 2 sets up the state
in sequence. In the filter mechanics, posteriors describing the statespaces and describes the assumptions in mathematical terms. Sec-
vector are represented by randomly distributed discrete state realtion 3 provides the derivation of the joint proposal strategy for par-
izations, called particles, along with associated weightspre: ticle filters. Computer simulations are given in Sect. 4.

posal functiordetermines the internal distribution of the particles

and directly affects the efficiency of the filter. Given the random

particle support, a particle filter can estimate any statistics of the 2 STATE-SPACE ASSUMPTIONS

posterior by proper weighting, and the estimation accuracy can be ’

improved up to the theoretical bounds by increasing the number of

particles [3, 4].

Recently, there is much interest in combining multiple trac
ing algorithms described by different state-spaces with overlap-
ping state parameters. The motivation for joint estimation is ba-
sically two-fold: (i) to improve the performance of the estimates

Two state-spaceS; andS: described below are used to demon-
k. Strate the framework. The state update and observation functions
of S1 andS; are assumed to be time-invariant; however, the results
can be generalized to time-varying systems including nuisance pa-
rameters. It is also assumed that the state dimensions are constant
even if the system is time-varying. Define
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where the observed data in each space is representgg byi = If one believes that both models explain the underlying pro-
1,2} and the overlapping (possibly multi-dimensional) state pa- cess equally likely regardless of their self-consistency, one can set
rameters are represented py. The state transition density func- 01 = 02 = 1/2 to have the marginal distribution of; resem-
tions ¢; (-|—) are assumed known or, in the general time-varying ble the product of the marginal distributions imposed by both state
case, they can be determined dynamically. The observations arespaces. The proposal strategy in this chapter is derived with this
explained through the density functiofig-|—). The observation ~ assumption on the ownership probabilities, because, interestingly,
setsy; are modelled as statistically independent given the stateit is possible to show that assuming equal ownership probabilities
through conditionally independent observation densities, e.g., onealong with (4) leads to the following conditional independence re-
of them might be the acoustic observations and the other one videolation on the state spaces:
This assumption is justified in many cases but may be hard to ver-
ify mathematically for a specific problem at hand [6, 7].

To track the joint state vectar, = [x:, ¥1,:, ¥2,:] With a par-
ticle filter, the following target posterior should be determined:

@)

wherens(-) = p(|zs). In (2), the Markovian property is implic-
itly assumed on the state-spaces. That is, given the previous state

(6)

Equation (6) decouples the partitiofy ; distributions in the joint
update forz;, and results in the following update equation:

Te—1(x1,¢)Te—1(T2,¢) = qu(x1,¢|x1,6—1)q2(T2,¢|T2,6—1)

P(Te|Te—1, 1,6, Y2,6) X Te(Y1,e, Y2,0)Te—1(¢), o1 (20) = T (V1.0 Dot xe) e (x2)

= me—1(P1,elxe) Te—1 (P2, xe)me—1(xt)

o ﬂ'tfl(xl,t)ﬂ'tfl($2,t)

and the current data observation, the current state distribution does = o1 (xe) (1)

not depend on the previous state track and the previous observa- -1iXe

tions. ' . = o1 (z) = ql(xl,t|$1,t—1)q2($2,t|$2,t—1)7 where
Equation (2) can calculate the target posterior up to a propor- me—1(xt)

tionality constant, where the proportionality is independent from L

the current state:;. The first pdf on the right hand side of (2)
is called the joint data-likelihood and can be simplified using the
conditional independence assumption on the observations:

®)

The last pdf in (2), corresponding to a joint state update, re-
quires a little bit more finesse. State-spaSgsandS. may have
different updates for the common parameter set since they are no
exact. This poses a challenge in terms of formulating the common
state update fox:. Instead of assuming a given analytical form
for the joint state update as in [6], we combine the individual state
update marginal pdfs for the common state parameter by, in effect,
convolving the models as follows:

Te(Yi,e, y2,6) = fr(ynelzie) fo(yo,el@2,0).

o 4)
wherec > 1 is a constantp; (x:) = p(x¢|z:,:—1) is the marginal
density and the probabilities; for i = 1,2 (3, 0; = 1) define

an ownership of the underlying phenomenon by the state models;
andr(x:) is a (uniform/reference) prior in the natural space of
parametery: [8] to account for unexplained observations by the
state models. If we defin® as the Kullback-Leibler distance then

D(a(xt)llme-1(xt)) = —loge+ Z oiD(a(xe)llpi(xt))  (5)

me—1(xt) = ep1(xe) " p2(xe) 2 r(xt)

whereqx is the unknown true; distribution. HenceD (a||mi—1) <

me—1(xt) x {// q1(z1,¢]x1,e—1)d1,eq2 (z2,t|T2,t—1)depa ¢
®

3. PROPOSAL STRATEGY

A proposal function, denoted agxz|z:—1,y:), determines the

random support for particle candidates to be weighted. Two very
popular choices are (i) the state updatec ¢; (z+|x¢—1), and (ii)

the full posteriorg o< fi(yt|zt)q:(x¢|x:—1). The first one is at-
tractive because of its tractability. The second one performs bet-
ter because it incorporates the latest data while proposing parti-
cles, thereby decreasing the variance of the importance weights
(since, in effect, it directly samples the posterior) [3,4]. Moreover,
it can be approximated for faster particle generation by using local
linearization techniques (see [4]), where the posterior is approxi-
mated by a Gaussian. An example proposal function obtained by
local linearization of the posterior is

9(@e|ze—1,y¢) = N(u(z) + 2,%(2)), where ©)

S(2) = = [lF(2) +15(2)] 7" wl(z) = 3(2) [1(2) + 1(2)]
and wherd’ and!” are the gradients and the Hessians of the re-

spective log-likelihood functions. Alsa,is judiciously chosen as
the mode of the posterior, which can be calculated. Hence, by ei-

max; {D(a]|p;)}. This implies that (4) minimizes the worst case o1 way of proposing particles, one can assume that an analytical

divergence from the true distribution [9]. This way, one of the
trackers can assist the other one in this framework.

The ownership probabilities,’s, can be determined by using
an error criteria. For example, one way is to monitor how well
each each partition; + in x+ explains the information streanys;
through their state-observation equation pair definedShy(1).
Then, the respective likelihood functions can be aggregated with
an exponential envelope to solve for thgs recursively. In this
case, the target posterior will be dynamically shifting towards the
better self-consistent model while still taking into account the in-
formation coming from the other model, which might be unable
temporarily to explain the temporary data stream.

relation forg;, defining the support of the actual posterior for each
state space, can be obtained.

Figure 1 describes the proposal strategy used for the joint state
space. It is assumed that each state space has a proposal strategy
described by the analytical functiofg;,: = 1,2} defined over

the whole state-spaces. Then, the proposal functions of the each

stateg; are used to propose particles for the joint space by care-

fully combining the supports of the individual posteriors. First,

marginalize out the parametefs ;:

§i(Xt|$¢,t—1,yi,t) = /gi(mi,t mi,t—l,yi,t)dlﬁi,t- (10)



Table 1. Pseudo Code for Joint Proposal Strategy

Pat 1. Given the state update g; and observation relations f;, deter-
mine analytical relations for the proposal functions g;. It is im-
portant to approximate the true posterior as close as possible
because these approximations are used to define the random
support for the final joint posterior. For this purpose, Gaussian
approximation of the posterior (9) or linearization of the state

g1 Pre)

Suppor
for ¢ : |

Support equations can be used [4].
92(X1(:j)7 Vo) for o ¢ 2. Determine the support for the common state parameter x; using
' ' (11). The expression for g should be approximated or simulated
T o U1t D ‘ N Pt to generate candidates x\”’, j = 1,2,..., N where N is the
1t wz,t number of particles.

. . L 3. Given (j), i). calculate the marginal integrals by using (12),
Fig. 1. The supportg; for the posterior distribution in each state i () ( ) 9 9 y g(g) 1
)=

space are shown on the axgsvs. ; ;. Particles for the joint state (i). generate ’/ﬁ-,]t) ~ 9i(xe” s YielTie—1, i), (D). form
are generated by first generatiggs from the combined supports x¢”, w7}, 957)), and (iv). calculate the importance weights,
of the marginal distributions of,. Parameters); ; are then sam- w()'s, using (13).

pled fromg;, as constrained by:.

The functionsj; describe the random support the for the common  the joint tracker manifest robustness in the common parameter es-
state parametey:, and can be combined in the same way as the timates even if one of the models diverges. For the analytic ex-
joint state update (4). Hence, the following function ample, the ownership parameters for the state spaces are fixed to
A . . a0 1/2,i = 1,2 and the prior componem{-) in (4) is not used.
G(xelme—1, Y1, Y2,6) o [G1(Xe|@1,0-1, Y1,6) G2 (Xe 2,01, Y2,¢)] Consider the following state-space descriptions

11)

. 2
can be used to generate the candidatgs for the overlapping S: { it } ~ N ({ Xt—1 Z:ﬁsl(wt)% ] 7 [ /\01 /\0% D
state parameters. Then using’, one can generat¢§ft) from (14)
. , , X : 2

9" Wialwie—1, yi0), and forma?” = [x(”, o7, o). Si [ fjf } ~N<{ Xj}“pt ][ Aol Aog D

In general, Mor#-Carlo simulation methods can be used to ‘ =1 2 (15)
simulate the marginal integrals in this paper [10]. Here, we show » NN({ Xt } , { of 0 D
how to calculate the marginal integrals of the state models. Simu- Yt 0 o3
lation of the other integrals are quite similar. Giv,@ﬁ), draw M St xt ~ N (xt—1, >\§)
samples usin@§?’ ~ gi(x Wit|zie—1,yi0)- Then, 0, fvj\/(tarf1 (%) ,aﬁ) (16)

ql(X(j) w(m)|x1 1) whereS is the true state model with a deterministic parameter
t Vit =

M
T1—1)d); ¢ & €1 Z 8 S1 andS, are the image and acoustic tracker formulationss of
M —= gl(xij) wET)\xl,z—h y1,t)  In this case, the joint state space is included in the state space of
(12) Si1. Hence, the objective is to do a better job in trackinggiven
Pseudo-code for the joint strategy is given in Table 1. Fi- the aggregate observations.
nally, the importance weights for the particles generated by the Since the data-likelihood and the state-likelihood functions of
joint strategy described in this section can be calculated as follows: S; are linear Gaussian, the full posterior can be analytically de-
termined. In this case, the proposal functignwill be the actual

/q1(X§j)7 it

W o (@)@ 1, y10, v2.0) G0 |1, Y10, Y2t posterior forS; :
@) ) @) )
X — 1 ) Z y— 1 ’
g1(x; ¢1,t‘ 1,e—1,Y1,0)92(X¢ ¢2,t| 2,t—1,Y2 t()]_.3) g1(xt, V| Xt—1,Yt—1,y) ~ N (1, 31), a7
where )
1 1 1 -
+ —
4. EXAMPLES S = Uf, L)\f N if N 7 (18)
¥ 3TN TR
This section demonstrates the proposal strategy with an analyt- L 1
ical example, emphasizing that the joint tracker (calléy has L= yt71/0§ " ﬁl Y Xt—1 + Ye—1
less RMS error in tracking when compared to the trackers (alsd" Yt,2/03 - wte V-1 '
called S;) formulated using the individual state spaces, and that oo (19)

The marginal distribution of, from S; is calculated using its
1|t.iS aCtually not necessary to draw the Samples direCtly from State update The resultlng marglnal dlstrlbutlon |S

g,'(xij), 5 ¢|—). An easier distribution function approximating onjy

can be used for simulating the marginalization integral (12). pOxelxe—1,%e-1) ~ N (xe—1 + te-1, A+ )\3) . (20)



Table 2. RMS errors fory: andv;. Large numbers in the table are
caused by tracking divergence. The underlying matied closer
to S1 whenw is small, whereas it is closer 8 whenw is large.

I w [ J0) [ Silx) | Soalxe) [| T@e) | Si(wy) |
1/500 || 44.38 | 80.24 | 6669.5 21.43 24.83
1/50 42,99 | 101.05| 1511.7 26.55 27.68
1/5 235.7 | 1134.7| 48.96 222.59 | 134.21

Moreover, (10), and (17) lead to

gl(Xt‘Xt*bwt*hyt) NN(M1(1)721(171)) (21)
For S», the data-likelihood is given by
- b _ -1 (Xxt\]?
Lot =5 [9t tan (W>] . 2)

The proposal function foS2, which approximates the full poste-
rior is obtained by the local linearization of the model as follows:

g2(xtlxt—1,0¢) = Ga(xelxe—1,00) ~ N (p2,32),  (23)
1 w21
Yo = :32) + <W) /\%:| ’ (24)
. Xt—1 w 1 1 Xt—1 Wixt—1
“2_22{ o2 W23 A2 <yt’2 tan ( W )+W2+x§>}'
(25)
Hence, to generate;, substitute (21) and (23) into (11) to obtain
G(xelxe—1,Ye—1,9t,0¢) ~ N (11, %) (26)
1 1\ !
2= (5imtm) @0
(1 L\ ) e
"= (zl(m) +2_2> (&(Ll) E_z> )
Givenxgj), (17) can be used to generateas follows
(@) 01) ~ N 2+ (Xij)iﬂl(l)) $1(2,2
91(xy"", Yelxt—1,0t) ~ 1 ( )+W7 1(2,2)
(29)

wherep; is the correlation coefficient df.

Three particle filters {,S1,S2) are implemented each with
100 particles.7 uses the joint proposal strategy, wheréasand
S2 use (17) and (26) as proposal functions. Each filter also has

a resampling stage, where particles are resampled with replace-

ment according to their probabilities. Simulation parameters are
M =1, =50 =20 =17 =905 = (1°?
W = 50, and variousv's. The simulation is done for 50 itera-

tions total. Table 2 demonstrates the RMS error averages of the

Monté-Carlo simulation, where modé is simulated 100 times
with differentw parameters.
It should be noted that when neith8r nor S, diverges, their

performances are comparable. In those cases, the joint filter has
less than one-fourth of their combined RMS error, because the par- [g]

ticles are not wasted in redundant areas. Table 2 also shows that th
joint filter demonstrates improved performance as well as robust-
ness. Even though one of the models diverges, the joint filter still
does a good job, because it is, in effect, assisted by the presenc
of the other built-in model, which can still track the phenomenon.

The filter’s performance may be further improved by implement-
ing the adaptive ownership probabilities. Lastly, the joint tracker’s
robustness vs. time is shown in Fig. 2.

[t

X (true)
Joint Tracker

-100

Fig. 2. Example tracking realization with = 1/50: Even though
the particle filter designed usii&y is unable to track after= 35s,

the joint tracker still does a good job since it uses the information
from coming both state-space models.

5. CONCLUSIONS

In this paper, a general proposal strategy is demonstrated for joint
state-space tracking with particle filters. The framework is quite
general and it allows different state-spaces to assist each other in
tracking a common parameter. The framework is demonstrated
using an analytical example that mimics a joint acoustic image
tracker.
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