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ABSTRACT

A Monté-Carlo method is used to calibrate a randomly placed sen-
sor node using helicopter sounds. The calibration is based on using
the GPS information from the helicopter and the estimated DOA’s
at the node. The related Cramér-Rao lower bound is derived and
the effects of the GPS errors on the position estimates are derived.
Issues related to the processing of the field data, e.g., time syn-
chronization and data nonstationarity are discussed. The effects of
the GPS errors are shown to be negligible under certain conditions.
Finally, the results of the calibration on field data are given.

1. INTRODUCTION

Acoustic arrays with directionally sensitive or omnidirectional mi-
crophones can be used to localize and track targets using the
direction-of-arrival (DOA) estimates from their sounds [1, 2]. If
an acoustic node is defined as a collection of omnidirectional mi-
crophones whose relative positions are known with respect to each
other, the node calibration problem refers to the determination of
the unknown array center and its orientation. Note that this prob-
lem differs from the calibration of the individual microphone posi-
tions previously considered in the literature [3,4]. In [3], accurate
localization of the individual microphone positions is done by con-
sidering the effects of the calibration on the array manifold matrix,
which is used in determining the target direction-of-arrival esti-
mates (DOA’s). On the other hand, as the DOA’s are estimated,
the node positions and orientations should be known to determine
the target position (Fig. 1), which is the objective of this paper.

There has been some work in calibrating acoustic nodes using
known calibration targets [5, 6]. The scenario considered in this
paper is similar to one considered in [5]. A helicopter deploys
the node and then transmits its GPS positions to the node. As
the node receives these GPS estimates, it uses its DOA estimates
of the helicopter to determine its position. It is assumed that the
acoustic nodes themselves do not have GPS on them due to battery
or jamming reasons (justifications can be found in [6].) The GPS
position estimates are modelled as noisy and the effects of the GPS
noise on the estimation performance of the node positions are also
considered.

Node calibration is performed using a Monte-Carlo Markov
Chain (MCMC) method. In this framework, a candidate node po-
sition is proposed and the Metropolis-Hastings scheme is used to
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Fig. 1. Black dots are the acoustic nodes (arrays) and the solid
arrows through the nodes represent their reference orientations
for the local DOA estimates. The DOAs are measured counter-
clockwise. If the node positions are known, then it is possible to
determine the target position(xt, yt).

sample a target distribution proposed in this paper. For this algo-
rithm to obtain high resolution estimates, the GPS estimates and
the acoustic measurements must be time-synchronized. Since the
target is, in most cases, in the far-field of the sensor, the target
sounds will not arrive instantaneously to the acoustic node. How-
ever, since the GPS estimates are transmitted electronically, acous-
tic data will be delayed because the speed of sound is relatively
slow. This acoustic propagation delay, if not taken into account,
will increase the estimation errors. A time-warping scheme is
demonstrated that synchronizes the GPS estimates with the DOA
estimates.

Assuming time-synchronization, we then show a Cramér-Rao
lower bound on the unbiased estimators which use the DOA esti-
mates for calibration and we also consider the effect of the GPS
errors on the estimation. Another important issue is the array
data non-stationarity problem caused by the rapid target move-
ment which was considered in [1]. Rapid target movement causes
the DOA estimates to be biased, which can lead to increased cal-
ibration errors. We demonstrate how to compensate for the target
motion and get unbiased DOA estimates.
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Organization of the paper is as follows. Section 2 formulates
the problem and presents an MCMC solution. Section 3 derives
the Craḿer-Rao lower bound for the position estimation problem
under some assumptions. Section 4 demonstrates that the GPS
errors are negligible in most cases. Calibration results on field
data are then given in Sec. 5.

2. THE CALIBRATION PROBLEM

We defineξ as the vector of unknown node position(x, y) and
orientationϕ in the 2D plane:

ξ = [x, y, ϕ]T (1)

and also defineχt = [xT (t), yT (t)]T as the known (noisy) cali-
bration target track supplied by the GPS. The target bearing angle
θt (measured c.c.w. with respect to thex-axis) and its rangeRt at
time t are given by

θt(ξ, χt) , −ϕ+ tan−1

(

y − yT (t)

x− xT (t)

)

Rt , ||ξx,y − χt||

(2)

We will use the following classical narrow-band model for the
acoustic microphone outputs:

yt = a(θt)st + nt (3)

2.1. An MCMC Solution

The M-H scheme [7] is a general sampling algorithm and provides
a basis from which other well-known sampling algorithms such
as the Acceptance-Rejection (AR) and the Gibbs sampling can be
derived as special cases [8, 9]. The algorithm assumes that it is
possible to assign probabilities from the distribution to a given re-
alization of the state vector, whose distribution is of interest. These
probabilities need not be exact; they can also be given up to a pro-
portionality constant. Note that calculating probabilities given a
realization is different (and much easier) than generating the re-
alizations directly from the, possibly intractable and multivariate,
distribution itself.

The objective of the Metropolis-Hastings (MH) scheme [8] is
to distribute the particles (discrete state samplesξi) according to
a target distributionπ. Hence, at each iterationk, the algorithm
recursively redistributes its states around so that, asymptotically,
the resulting Markov chain is distributed according to the target
distribution. The new chain candidatesγ are generated by the pro-
posal functionq(ξ, γ), which is usually the spherically symmetric
random walk:

q(ξ, γ) = q(|ξ − γ|) ∝ exp

{

−
(ξ − γ)2

2σ2
q

}

(4)

Once the new candidates are generated, the algorithm accepts the
moves or keeps the current state according to the acceptance ratio
α(ξ, γ) derived from the stochastic reversibility condition [8]:

α(ξ, γ) = min

{

π(γ)q(γ, ξ)

π(ξ)q(ξ, γ)
, 1

}

(5)

Note that the candidate generating (or proposal) function has a
significant impact on the efficiency of the algorithm. It should
be constructed so that the generated candidates display most of

the structural dependence between the different dimensions.σq

in (4) is defined as the jump size and is the other important vari-
able affecting the algorithm speed. If it is too low, the algorithm
takes a longer time to converge since the chain moves very slowly
along the target distribution. On the other hand, if it is too high,
the algorithm mostly rejects the new candidates and stays frozen.
The current MCMC literature concentrates on these two important
components of the algorithm for its efficiency [10].

For the calibration problem, the following target function can
be used :

π(ξ) ∝ exp

{

−
1

2σ2
θ

L
∑

t=1

1

Rt

(

ψt(ξ) +
1

L

L
∑

t=1

(ψt(ξ) − θt) − θt

)2}

(6)
whereψt(ξ) is the DOA calculated using the proposed vectorξ
from the DOA definition in (2) andθt is the DOA estimate from
the acoustic data using a beamformer. Theoretically, if a standard
beamformer such as MVDR or MUSIC is used, the DOA esti-
mates will be biased [1]. The following maximum-likelihood cost
function based on the data model (3) can be used the estimate the
DOA’s with the assumption of constant velocity motion on the tar-
get:

JML(θ) =
M
∑

t=1

tr

{

[

I −
1

P
a(θt)a

H(θt)
]

R̂y(t)

}

(7)

where

θt = tan−1

{

Fs sin θ + q(t− 1) cosφ

Fs cos θ + q(t− 1) sinφ

}

(8)

where M is number of batch samples,R̂y(t) is one sample auto-
correlation estimate,q = v/R (v is helicopter speed estimated
using the GPS), andφ is the approximate target orientation for the
estimation batch using the proposed node position. The following
MVDR based beamformer can also be used:

JMV DR(θ) =

L
∑

i=1

1

aH(θi)R̂
−1
i a(θi)

(9)

where the estimation batchM is partitioned intoL data points
(e.g.,L = 256 whereM = 2048) and the autocorrelation esti-
mates are taken everyM/L samples andθi are the corresponding
DOA estimates using (8).

2.2. Time-Synchronization Issue

Incorrect time-synchronization can severely degrade the perfor-
mance of a high resolution calibration method. The problem is
caused by the faster arrival of the target GPS estimates than the
arrival of the sounds by the target at the respective GPS positions.
In the M-H scheme, this issue can easily be incorporated into the
solution using the proposed positionξ, the GPS estimatesχt, and
the speed of soundc.

Denotetgps andtn as the GPS and the node time frames, re-
spectively. Then, the following time-warping needs to be applied
to the GPS points:

tgps→n = tgps − ||ξ(k) − χtgps ||/c (10)

This implies that the GPS points given on a regular time frame will
correspond to a time-warped irregular time frame on the node ref-



erence and needs to be interpolated on the node time frame where
the DOA’s are calculated.

3. THE CRAM ÉR-RAO LOWER BOUND

Under thei.i.d Gaussian assumption on the array noise, the proba-
bility density function (pdf) of the observed data is given by

p(YW |ξ, χ0, . . . , χt) =

W−1
∏

t=0

1

πPσ2P
exp

[

−
1

σ2
|y(t) − ats(t)|

2

]

(11)
whereσ2 is the array noisena(t) variance,W is the total number
of observations with the sampling frequencyFs, P is the number
of microphones in the node,at , a(θt(ξ, χt)), andYM is the
aggregate data vector formed by stacking all the observed data as
follows

YW =











y(t)
y(t+ τ)

...
y(t+ (W − 1)τ)











, whereτ =
1

Fs

. (12)

Equation (11) models the data likelihood and leads to the ML
solution. First, the negative log-likelihood function is obtained

L− .
= WP log(πσ2) +

1

σ2

W−1
∑

t=0

||y(t) − ats(t)||
2 (13)

where
.
= denotes equality up to a constant. The ML estimates can

then be obtained by maximizing the log-likelihood function, which
is equivalent to minimizingL−. Fixing ξ ands(t) and minimizing
L− with respect toσ2, the ML noise variance can be estimated.
Then, the signal estimate is given by substituting the noise estimate
intoL−:

σ2
ML =

1

WP

W−1
∑

t=0

||y(t) − ats(t)||
2

sML(t) =
1

P
a

H
t y(t)

(14)

The Craḿer-Rao lower bound (CRLB) is an information theo-
retical inequality, which provides a lower bound for the variances
of the unbiased estimators. If an estimator achieves the CRLB,
then it is possible to prove that it is also a solution of the likeli-
hood equation. However, it is not always true that the ML solution
will achieve the CRLB (at least, for finite sample sizes) or that it
will be unbiased [11]. The CRLB is still a useful metric to compare
the performance of the algorithm, and is derived for the calibration
problem in this section.

We now derive the relation for the Fisher information matrix
(FIM). Assume that the noise varianceσ2 is known. The like-
lihood function (11) for the parameter vectorξ simplifies to the
following relation:

L(ξ)
.
= −

1

σ2

W−1
∑

t=0

||y(t) − ats(t)||
2 (15)

whereat is as defined earlier. The(i, j)th element of the FIM is
given by derivatives of the (15) by theith andjth parameter of the

vectorξ

Fi,j = E

{

∂2Lχ(ξ)

∂ξi∂ξj

}

= −
2

σ2

∑

t

Re

{

(

∂at

∂ξi

)H
∂at

∂ξj

}

(16)
whereξi = [ξ]i. The derivation of a similar problem is given
by [3]. The required derivatives∂at

∂ξi
are straightforward and are

omitted. The Craḿer-Rao lower bound is the inverse of this ex-
pression [11].

4. EFFECTS OF THE GPS ERRORS ON THE
ESTIMATION PERFORMANCE

The GPS measurements are usually not supplied at the same rate
as the acoustic data is sampled. It is assumed that the GPS mea-
surements are given everyT seconds (i.e.,T = 1s), which cor-
responds to a much slower sampling rate than the acoustic array
output sampling rate ofFs (i.e.,Fs = 1024Hz). For simplicity,
we consider the 2D problem where the GPS outputsχt have only
two components in thex andy directions. We model the GPS
noise as zero meani.i.d. Gaussian:nχ ∼ N (0, σ2

χI). The target
is assumed to have constant velocity between GPS measurements.
This is a valid approximation usually used in practice [1,2,12].

Using the Taylor series, the first order effect of the GPS noise
on the auxiliary variableθt defined in (2) can be modelled as fol-
lows:

θt(ξ, χt + nχ(t)) ≈

θt(ξ, χt)+
∂θt

∂nx
χ(t)

∣

∣

∣

∣

∣

nx
χ(t)=0

nx
χ(t) +

∂θt

∂ny
χ(t)

∣

∣

∣

∣

∣

n
y
χ(t)=0

ny
χ(t)

(17)

By taking the necessary derivatives in (17) and noting that the
noisenχ(t) is independent in thex and y directions, it is easy
to show that the DOAθt is approximately Gaussian:

θt(ξ, χt + nχ(t)) ∼ N

(

θt(ξ, χt),
1

R2
t

σ2
χ

)

(18)

This is a very intuitive result: since the GPS errors are much
smaller than the target range (i.e.,Rt ≫ σχ because the acous-
tic node is in the far-field), the position errors will translate into an
approximate angle error oftan−1(σχ/Rt) ≈ σχ/Rt.

To derive the effect of the GPS noise on the steering vector, a
first order approximation can again be used:

a(ξ, χt + nχ(t)) ≈ a(ξ, χt) +
∂a

∂θ
nθ (19)

As an example, we explicitly derive the effect for a narrow-band
calibration target, which has constant center frequencyf0. For the
mathematical brevity of the expressions, assume thatith micro-
phone position is given in the polar coordinates:(ρj , φj). With
these assumptions, the array steering vector can be written as

[a(ξ, χt)]j = exp
[

j
2πf0ρj

c
sin(θt(ξ, χt) + φj)

]

(20)

where c is the speed of sound and[a]j indicates thejth ele-
ment of the vectora. By taking the derivative of (20), it can be
shown ∂a

∂θ
= j2πf0

c
a(ξ, χt)λ(θ) with λ(θ) = diag{[ρ1 cos(θ +



φ1), . . . , ρP cos(θ+φP )]}. Also defineΛ(θ) = λ(θ)λ(θ). Then,
the array outputs for a target signal with constant envelope magni-
tude 1 can be shown to obey the following Gaussian distribution

y(t) ∼ N
(

a(ξ, χt),Σ(ξ, χt)
)

(21)

where the autocorrelation matrixΣ is a function of the array noise
as well as the GPS noise:

Σ(ξ, χt) = σ2
I +

(2πf0σχ

cRt

)2

a(θt)Λ(θt)a
H(θt) (22)

Note that the last term in (22) is the perturbation due to the GPS
errors. Ifσ ≫

2πf0σχ

cRt
then it can be argued that GPS has very

small effect on the estimation performance because the data like-
lihood (11) is not effected. This is a very reasonable assumption
in most cases since the target narrow-band frequencies are usually
much less than100Hz and the GPS error standard deviationσχ is
on the order of a few meters.

5. FIELD DATA RESULTS

We apply the Mont́e-Carlo calibration scheme on field data from a
small acoustic array. A helicopter flies sorties around the acoustic
node for the calibration purposes (Fig. 2). For the experiment,
the array was hand-emplaced so that the true true location and
orientation would be known. The acoustic node has six omnidi-
rectional microphones placed uniformly on a circle with a radius
of 1.219m, which also corresponds to the inter-microphone dis-
tance. The spatial aliasing frequency is around135Hz correspond-
ing to the half-wavelength (equal to the radius of the array). For the
MVDR beamforming results, we tracked the ten highest peaks us-
ing the short time Fourier transform (Fig. 3) with their respective
heights, and averaged the estimated DOA’s accordingly. For the
time-synchronization, third-order b-splines were used to interpo-
late the irregular time-grid for the algorithm’s proposed positions
for each particle.

The GPS track of the helicopter used for the calibration is
shown in Fig. 2. Figure 4 demonstrates the results of the
Metropolis-Hastings scheme with the Mode-Hungry modification
[13]. A listing of the pseudo-code for the M-H scheme is given.
To establish a baseline, we found the CRLB using (16) to approx-
imate the lower bounds for the variances for the parameter vector
as[σx, σy, σθ] = [1.3931m, 1.3597m, 0.13296◦].

Note that the approximate bound assumes the single sinusoid
array model for the observations. This assumption is not satis-
fied for the helicopter signal. It is also possible to show that the
same lower bound can also be derived using a Gaussian assump-
tion on the DOA estimates [14]. In Fig. 4, the DOAs estimated
with the field data betweent = 50s andt = 120s violates the
Gaussian assumption since they have the incorrect mean. Without
post-processing of the data, it is difficult to detect this incorrect
mean since the orientation estimates can also bias the DOA distri-
bution. The algorithm still managed to do well because the target
distribution (6) weights the calculated DOAs according to their es-
timated range. When the target is far away from the node, the es-
timates are expected to get worse. Hence, the algorithm puts less
importance on the DOA estimates corresponding to large target
ranges. Lastly, Fig. 4 also demonstrates that the calibration results
are significantly worse without the time-synchronization step.

Pseudo Code for the Metroplis-Hastings Calibration

At time k, for each particlei (i = 1, . . . , N ) , ξ(k)
i :

i. Generate a candidate γi using q(ξi, γi), which repre-
sents a spherical random walk.

ii. Estimate the time-reference frame for data synchroniza-
tion using the proposed position, the target GPS track,
and the speed of sound c.

iii. Calculate the DOAs, θ(t), using a beamformer such as
(7).

iv. Calculate the acceptance ratio, where the target distri-
bution π(.) is as given in (6)

α(ξi, γi) = min

(

π(γi)

π(ξi)
, 1

)

v. Sample u ∼ U(0, 1)

vi. If u ≤ α(ξi, γi), set ξ(k+1)
i = γi, else, ξ(k+1)

i = ξ
(k)
i .
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Fig. 2. The acoustic node (star) is situated at the origin. The cal-
ibration helicopter completes two sorties around the node for the
calibration, corresponding to a four-minute run. The actual heli-
copter track as well as its projection on thex-y plane are shown.
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Fig. 3. The helicopter spectrum displays strong harmonic lines.
The ten highest peaks in the time-frequency plane are picked using
the magnitude of the Fourier transform once per second. These
frequencies as well as their time-frequency amplitudes are used in
determining the DOA estimates.
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Fig. 4. Top figure shows the GPS track coming from the he-
licopter (dashed line), the time-warped GPS track using (10),
and the MVDR beamformer estimates of the field data. The
bottom left plot is the resulting MHMH algorithm distribution
with estimateξ = [ 6.43, −6.52 ]m using time synchroniza-
tion, whereas, at the bottom right, the distribution with estimate
ξ = [ −31.66, 43.77 ]m is the MHMH result without time syn-
chronization. The estimated orientation for both cases is1◦. The
true node location is shown with the diamond.

6. CONCLUSIONS

An MCMC calibration method is demonstrated to solve the prob-
lem of node calibration using acoustic sources. The solution takes
into account the practical issues of time-synchronization, non-
Gaussianity, and array data non-stationarity typically encountered
when the calibration source is a rapidly moving target such as a
helicopter. Lastly, the GPS errors are shown to be negligible rela-
tive to the microphone sensor noise in terms of overall calibration
performance.

7. REFERENCES

[1] Y. Zhou, P.C. Yip, and H. Leung, “Tracking the direction-
of-arrival of multiple moving targets by passive arrays: Al-
gorithm,” IEEE Transactions on Signal Processing, vol. 47,
no. 10, pp. 2655–2666, October 1999.

[2] V. Cevher and J. H. McClellan, “General direction-of-arrival
tracking with acoustic nodes,” To appear inIEEE Transac-
tions on Signal Processing.

[3] B.C. Ng and C.M.S. See, “Sensor array calibration using a
maximum-likelihood approach,”IEEE Transactions on An-
tennas and Propagation, vol. 44, pp. 827–835, June 1996.

[4] B.C. Ng and A. Nehorai, “Active array sensor localization,”
in ICASSP 1993, 27-30 April 1993, vol. 4, pp. 21–24.

[5] V. Cevher and J. H. McClellan, “Sensor array calibration via
tracking with the extended Kalman filter,” inProc. of the
Fifth Ann. Fed. Lab. Symp. on Adv. Sensors, College Park,
MD, 20-22 March 2001, pp. 51–56.

[6] R.L. Moses, D. Krishnamurthy, and R. Patterson, “An
auto-calibration method for unattended ground sensors,” in
ICASSP 2002, Orlando, FL, May 2002, vol. 3, pp. 2941–
2944.

[7] W.K. Hastings, “Monte Carlo sampling methods using
Markov chains and their applications,”Biometrika, vol. 57,
pp. 97–109, 1970.

[8] S. Chib and E. Greenberg, “Understanding the Metropolis-
Hastings algorithm,”The American Statistician, vol. 49, no.
4, pp. 327–335, 1995.

[9] L. Tierney, “Markov chains for exploring posterior distribu-
tions,” The Annals of Statistics, vol. 22, no. 4, pp. 1701–
1728, 1994.

[10] A. Gelman, G.O. Roberts, and W.R. Gilks, “Efficient
Metropolis jumping rules,”Bayesian Statistics, vol. 5, 1996.

[11] H.V. Poor, An Introduction to Signal Detection and Estima-
tion, Springer-Verlag, 1994.

[12] M. Orton and W. Fitzgerald, “A Bayesian approach to track-
ing multiple targets using sensor arrays and particle filters,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.
216–223, February 2002.

[13] V. Cevher and J. H. McClellan, “Fast initialization of par-
ticle filters using a modified Metropolis-Hastings algorithm:
Mode-Hungry approach,” inICASSP 2004, Montreal, CA,
17–22 May 2004.

[14] V. Cevher and J. H. McClellan, “Acoustic node calibration
using moving sources,” in preparation forIEEE Aerospace
and Electronic Systems.


