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ABSTRACT mal solution to the target tracking problem. Conventionally, given
a target dynamics model, the underlying motion equations are sim-
plified by linearization and Gaussian noise assumptions so that an
analytical solution can be obtained. The extended Kalman filter
9s such a method; it is also the best minimum mean-squared lin-
ear estimator for the problem at hand. Monte-Carlo techniques,
on the other hand, do not change the model or assume Gaussian
noise; however, they approximate the posterior density of interest
by particles that represent a discrete version of the posterior. The
idea is that if a sufficient number of effective particles can be used,
the estimation performance will be close to the theoretical optimal
solution. Usually, they are suboptimal since they employ a finite
number of particles.

In this paper, we present a way to track multiple maneuvering
targets with varying time-frequency signatures. A particle filter

is used to track targets that have constant speeds with changin
heading directions. The target motion dynamics help the parti-
cle filter achieve an angular resolution otherwise not possible by
the conventional beamforming techniques. Moreover, the particle
filter has a built-in target association that eliminates the need for
heuristic techniques commonly used in the multiple target track-
ing problems. Reference priors are used to derive the probability
distribution function of the acoustic array outputs given the state
of the multiple target states (MTS’s). Local linearization is used to

approximate the importance function used in the particle filter by L .
a Gaussian pdf. Finally, computer simulations are used to demon-  1h€ array model we employ in this work has a special struc-

strate the performance of the algorithm with synthetic data. ture. Each node of the array consists of a circular acoustic sensor
array, which will supply DOA and frequency information of the

targets. However, the solution is given for the general case and
1. INTRODUCTION does not depend on the particular structure of the nodes. Spatial

o . o diversity of multiple nodes can be exploited in triangulating the
The direction-of-arrival (DOA) estimation problem has been ex- targets of interest.

tensively studied in the signal processing literature [1] (and ref- . .
erences therein). Narrow-band solutions based on beamforming, A solution to the problem presented_ thus far _has been given
such as multiple signal classification (MUSIC) [2], minimum vari- for the narrow-band case by Orton and Fitzgerald in [6]. Our work

ance beamforming, and Pisarenko’s method suffer in performancebu"ds on their results. Our extensions will come in the form of
when the targets are moving relatively fast during the estimation "¢-deriving the necessary gradients and Hessians used in the par-

batch (i.e., the snapshot period). In order to remedy this problem,tide filter updates for the wideband case. Itis a_ssumed tha_t we
one can incorporate the target motion dynamics to jointly estimate Nave @ separate a time-frequency tracker for tracking the dominant
the DOA while tracking targets [3]. These refined DOA estimates mstantaneo.us.frequenmes for the ta}rget_s. Issues related 1o the un-
provide better performance in exchange for increased complexity. certainty principle for frequency estimation will be left for future

In the case of wideband acoustic signals impinging on the sen-StU@Y
sors, the pioneering work by Wang and Kaveh [4] on coherent Organization of the paper is as follows. Section 2 describes the
subspace processing coherently integrates the array autocorreladata model used for the multiple target tracking. Sections 3 and 4
tion matrices corresponding to the multiple frequencies of interest, describe how we construct the probability density functions (pdf’s)
so that signal-to-noise (SNR) and resolution gains can be achievedused by the particle filter. The importance function is discussed in
The work by Gershman and Amin [5] approximates the signals at section 5 and the multiple target tracking particle filter algorithm
the DOA batch process as chips and performs time-frequency MU-is described in section 6. Finally, section 7 shows the performance
SIC (spatial tf--MUSIC) on the acoustic array outputs. These wide- of the algorithm with synthetic data.
band methods produce snapshot DOA estimates and hence require
heuristics for target association.

Advances in large scale integration of computer systems have

made Monte-Carlo techniques a feasible alternative as a subopti- 2. DATAMODEL

Péepared_ through CO"S?)ora;ive pgrtidpaﬂon in thﬁ Adt;/anced Seg' ConsiderK far-field targets coplanar with a sensor node consisting
sors Consortium sponsored by the U. S. Army Research Laboratory under :
the Collaborative Technology Alliance Program, Cooperative Agreement of P acoustic sensors. The sensor node (or sensor array) does not

DAAD19-01-02-0008. The U. S. Government is authorized to reproduce POSS€ss any special structure. The targets are assumed to have
and distribute reprints for Government purposes notwithstanding any copy- constant speeds with some Brownian disturbance acting on their
right notation thereon. heading directions, which is the same data model used in [3, 6].
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2.1. State Model can be written as follows:

The state model has the following state vector: xp(t+T) = fz(xk(t)7 u(t+1))

sin Ok(t)+er(f‘>T cos ¢ (t)

2 0 (1) 3 ArCtan () ek D T sin g, (1)
g &) & = AW g Qutt) - 12og i+ Q)2
Xk(t) > Qbk(t) 1) - 2e“k\ T gin (Ok(t) +¢k(t)) + (6 k T) ]
fk(t) o3 (t)
Ji(t) + 2ax ()T
where 6y (t), ¢x(t), and fx(t) are the DOA, the heading direc- 2 ug x(t+T) 3
tion, and the instantaneous frequency of k& target. Qx(t) , +§ uQk(t+1T) g
log g (t) is the compound variable corresponding to the logarith- up,k(t+17T)
mic ratio of thek'" target's speedit) to its range £ (t)), which upp(t+T)
is measured to the center of the sensor array. Target DOA's are ()]
measured clockwise with respect to tli@xis whereas the target
> . : . - where
heading directions are measured counter clockwise with respect to 2 3 O 2 ) 31
thez-axis. Figure 1 illustrates the geometry of the problem. Ug, k Tbk 20 g 8
uUQ,k 0 00,k é%
Wk ’2 U,k gNNg(]’g 0 % U;k 0
Time progress of y 2 Usk 0 0 07 O-J% &
the K" target - Mime t+T ) (5)
-7 The state noise vector is chosen to be Gaussian due to its analytical
i tractability (justifications can be found in [6].) Moreover, the state
- noiseu is usually very small, which may lead to sample impov-
erishment [14] (explained in Sec. V.A.3). In fact, if the process
() noise is zero, the state variables can be treated as static variables
in an estimation problem where using a particle filter may not be
appropriate. In the discussion that follows, techniques to prevent
this sample impoverishment or degeneracy will be discussed.
0 8, 8 4T) _ sensor array Implicit in (4) is a second order polynomial approximation
done for the phase of the signals of interest. HeBag(t) corre-
X sponds to the rate of change of the instantaneous frequency of the

k" signal. The rest of the paper assumes th4t) is supplied by
Fig. 1. Thek!" target is at positiorl at timet and moves to po- a time-frequency filter and is not estimated by the particle filter.
sition 2 in T seconds. The target is at the far-field of the sensor
array whose center coincides with the origin. 2.2. Observation Model

) ) ) __The sensor array consists 6f omnidirectional acoustic sensors
The state update equation can be derived by relating the DOAS sjated uniformly on a circle of radiug. A steering vector as-
of the target at times and¢ + T" using the geometrical relation  gqciated with the array defines the complex array response for a
of position 1 at (7, (t) sin 0k (¢), rx () cos 0x(t)) to position2 at source at DOAY, and has the following form for thé” source
(rx(2) sin Oy, (¢)+-0r T cos ¢k (t), 71, () cos Or () +ui T sin Gy (t)). signal (the medium is assumed to be isotropic and non-dispersive):
Then, it is straightforward to obtain the following update relations:
6.72W[ak:(t)(aiTzl)2_fi(t)(aiTzl)]

ri(t) sin Oy (t) + vi T cos P (t) g2mla (t)(a; T22)2 = f; (1) (a; T z2)]
tanOp(t +T) = 2 €
an k(£ +T) 5 (t) cos O (t) + vi T sin ¢ (t) ) a(6;) = . (6)
and e.jQW[ak(ﬁ)(aiTZP)2—fi(i)(aiTZP)]
a . . h .
et +T) = r2(8) + 2re (D)o T sin (04 (£) + éu(£)) + v2T2 where: = 1,2,--- , K, z |s‘thel sensor position, andi )
el ) o) + 2t (0 (8) + P (0)) + v 3) (1/¢)] cos(6;), sin(6;) |7 is theit" slowness vector in carte-

. .__sian coordinates [1]. Each steering vecidp;) corresponds to
Equations (2) and (3) form a scalable system for the target mouona signal whose direction is the objective of the DOA estimation

dynamics at hand. To elaborate on this, consider scaling the range .
and the speed of the" target. It can be shown that this scaled tar- problem. The observations are updated every 7'/M seconds

get has the same set of update equations as above since the sc here M is the number of ba}tch §amples @ typ".M‘ is 100.) .
factor can be cancelled out. This fact, in turn, leads to the intro- en, the array outputs for chirp signals can be written as follows:
duction of the compound variablg. (t) , vi/rk(t). In the state y(t) = A(O(¢))s(t) + n(t) t=1,2,---,M (7)
update, however, the logarithm gf (¢) is used since an additive
noise component can be employed (as opposed to the multiplica-
tive noise wheny (¢) is used'). Hence, the state update equation

In (7), y(¢) is the noisy array output vecton(t) is an additive
noise (e.g.n(t) ~ N(0,02)), andA(©(t)) consists of the steer-
ing vectors in the following manner:

1due to the fact thajy (¢) is a scale parameter AO@1) =1 a(0:(t)), a(b2(t)), ---, a(@x(t))] (8)



where®(t) = [ 61(t), 62(t), ---, O0x(t) ]*. Itshould be We will start by assuming that the columnsAt are linearly
noted that the sensor positions must be perfectly known in order toindependent. This also implies th&t > K, i.e., the number of
define A (6(¢)) for this model. sensors is greater than the number of targets. Using (11), the log-
For notational convenience and tractability, the data collected likelihood function of the data can be written as follows:
at each time is stacked to form the following data ve&or
; L, logp(Ye|Ar, S, 0% (1))

3
y(t) = _—MPlogm — MPlogo? (t) (12)
v _g y(t+71) z o 1 o
t= . 9) EEX0) (Y — AsS:)7 (Ve — AsSy)

y(t+ (M = 1)) We will take the naive, easy approach in deriving the reference

The signal vectoS, and the noise vectoW, are formed in the prior for our problem: use the square root of the determinant of
the Fisher information matrix as our reference prior. After the

same manner. Thus, the array data (or observation) model for thed e h hat th f . b
batch period can be compactly written as the following: derivations, we show that the some reference priors may not be
integrable (and hence, improper) on the entire unbounded space

Y, = h(©(t), W,) for the parameter vectors. This in turn stipulates compactness ar-
Y. — AS, + W (20) guments on the parameter space such as the ones used in [11, 13] .
¢ e ¢ Further properties of the reference priors (or to be consistent with

the literature, Jeffrey’s prior) are discussed below.
The Fisher information matrix for the parameter ve&p(de-
noted ad ., (S:)) can be written as

where the steering matri&, = diag{A(6(¢)), A(O(t+7)), -,
A(0(t+ (M —1)7))} implicity incorporates the DOA information
of the targets. i
horpt 4
8S7 ~ o2(1)

I.(S:) = —E AFA, (13)

3. PDF CONSTRUCTION FOR THE DATA

The particle filter is a convenient way of recursively updating atar- whereE|.] is the expectation operator. Hence, the reference prior
get posterior of interest. While formulating these update equationsin this case is

in our problem, one encounters two nuisance parameters: the sig- p(St|Ay) |AtHAt|1/2 (14)
nal vectorS; and the noise variance for the additive Gaussian noise
vectorW;. For simplicity, we will assume that the noise variance
is approximately constant during the batch pefigd+- (M —1)7].
Following the notation introduced in [6] , we will denote this noise R
variance assZ(t) corresponding to the batch period starting at #)(Yt‘At’g'?U(t)) = p(Yi A, St’gi(t))p(st|At)dst
time ¢t. The noise has the complex Gaussian probability density x 1 exp [~ (Yt—AtSt)H(Yt—A,,St)”AHA /248
function (pdf) described by Goodman [8]. The data likelihood (moz, en™ P XP o (®) B K

where|.| is the determinant. At this point, we can use (14) to inte-
grate out the signal vector in (11) from our problem. The integrals
are from—oo to co unless stated otherwise.

iven the signal and noise vectors can be written as follows: (15)
d g LetS; = (AFA,)"'V,. Then,dS; = dV./|AA,| and (15)
1 becomes
p(Yi|Ay,Se,00 (1) = (w02 ()P R )
h ) H i (11 *h oz i
ox _ (Y — Atst) (Yt - Atst) exp — (YA AFA) IV (v —A AR AT VY) dVy
P 10) g (Al a7
1 1
If the priors are known for the signals and noise variance given O(h<wi<t))M<P*K> (o2, ()MK A A, [f/*

_(vi—AfvypyHAEAH) Y (vi—Af Yy
b h o2 (1)
YAa-a.,afa) Ay,

the state vector at timig they can be integrated out from the Gaus-

dv
sian pdf described by (11). If one desires to assume the least about ¢

these parameters and let the observed data speak for itself, then the X exp — o)

use of reference priors comes into faylence, even for moder- h YwH(I _AJATA)IAN)Y i
ate sample sizes, the information in the data dominatepribe = p(Yt'At7Ui(t)) xexp — —t LA et el t) 7t
information because of the vague nature of the prior knowledge oa(t)

[11]. One also needs to be careful about the fact that these types of (16)

priors are actually a function of the data likelihood and in general
will change if, for example, new sensors are added or removed.
The intuitive choice of the prior is usually the uniform prior on
the natural space of the parameter. A good discussion of these
issues can be found in [11], [12], and [10]. We will now discuss
one particular case where the noise variance in (10) is known and
construct the pdf's for it. The unknown variance case was trea’[Edinterest have finite magnitudes at all times.) Moreover, the finite-

in [6]. ness condition on the signals implies that the array outputs are

2Bernardo derives the reference prior using an estimation model based@lSO finite (consider the discrete array model (7). Hence, the ap-
on communication channel with a source and data [9]. The reference prior Proximate data probability distribution in (16) is proper (i.e., inte-
maximizes the mutual information between the source and the data. grable).

Finally, notice that (14) is not integrableSf. has infinite mul-
tidimensional support. However, the conditip®; : |[S:]:| < i}
can be easily imposed on tii@ signal component for some large
~i. This makes the prior (14) integrable on the signal vector space
and, in turn, the marginalization integrals become approximate.
This condition is always satisfied in practice (e.g., the signals of




4. PDF CONSTRUCTION FOR THE STATE 5. CHOICE OF THE IMPORTANCE FUNCTION

In the previous section, we omitted to motivate the need for con- An appropriate choice of the importance function may reduce the
structing the pdf for the data and put the emphasis on the use ofvariance of the simulation errofs However, it is shown analyt-
reference priors. Now, it is necessary to elaborate on the reasonscally ([16] and references therein) that the importance weights
for constructing the probability distributions for the data and the have increasing variance with time, which leads to increasing esti-
state. The state and observation models (4) and (10) form a hiddernation errors (or simulation errors, will be used interchangeably).
Markov model (HMM), which can be compactly described by the Here, we state an important result: the unconditional variance of
following pdf’s: the importance weights, i.e. with the observatidns: being in-
terpreted as random variables, increases over time. This factis also
known as the degeneracy phenomenon: after a few iterations, all
p(Xe+r[Xe) Do ! ;
17) but one of the normalized importance weights will be very close to
P(Yerr|[Xetr) zero [16].

When the notion of optimality enters into a problem, it is nat-
whereX; = [x1 (t),x3 (t), -+ , x5 (t)]" andp(Y 47| Xetr) = ural to question the optimality criterion. Any optimal solution will
p(Y:|A:) or p(Y:i|As, 02, (t)) depending upon whether or not  be as good as its objective function and, in our case, the objective
we treat the noise variance as a known parameter. Here, we in4s to minimize the variance of the importance weights. This, in
troduce the common notation in the particle filtering literature, turn, will maximize the effective number of particles at each time
Zot » {Zo,%Zr,...,Z:}. The recursive update for the HMM  step, rendering the particle filter more effective given a constant
model described by (17) can be written as follows [14]: number of particles.

There are many ways of approximating an optimal importance

P(Y g7 | X 1) p( X1 | X)) function with a suboptimal importance function and we will show
PRoerrYorsr) = pXKoYou) P(Yitr|Your) one of them here. Let us denote the likelihood of the importance
18) function asl(Xxr) » log p(Xir|Xk—1)r, Yirr). Assume that
Hence, the recursive evaluatiomgfXo..+7|Yo:.4+7) requires the the usual assumptions of differentiability are satisfied.bif we
pdf’s shown in (17). The previous section considered the construc-do a Taylor series expansion on this likelihood around s&mee
tion of the second pdf in the model. This section will concentrate get the following:
on the first pdf in (17).

h i
The objective is to fing(X++7|X:) given (4). By inspection, (Xer) = I(X) + Ol(Xpr) T (Xer - X)
one can see th& ., r is also normal with meaiX; and covari- OX T Xpr=X
ance equal to that of the additive noise. Therefore, we can write 1 ThaQZ(XkT) 1
the pdf for the state update as follows: + i(XkT - X) DXpr)? perr—x (Xgr — X) + h.o.t
(21)
1

P(Xepr|Xe) =

(%W)QK(UGUQ%W)K If 1"(X) , 8%1(Xkr)/0(Xpr)? is negative definitg then, by

ignoring the higher order terms in the expansion, we can fit a
Gaussian curve as a suboptimal importance function. Also defin-

1 1
exp — ﬁ(®t+T -0,)% - F(QH—T - Q)
0 Q
ing I'(X) , Ol(Xyr)/0Xkr for notational compactness, it is

1 1
- @(QHT - ‘I’t)2 - ﬁ(FtJrT - Ft)2 a straightforward linear algebra exercise to show that the optimal
¢ f (19) importance function can be approximated as
(X | Xo:(k—1)1> Yo:b1) = P(Xir | X (k—1)7, Y1)
where (22)
~ N (uX) + X, 5(X))
©:=1[0:it), 6:20t), ..., Ox()]", where
_ t), 1), ..., t) 17,
Qf [ Ql( ) Q2( ) QK( )T] (20) E(X) _ —[l//(X)}_l
P, = [ ¢1(t)7 ¢2(t)7 SRR ¢K(t) } ) (X) I E(X)l’(X) (23)
Fo=[ £0), B0), ..., fx() ] a

It is crucial to note that the optimal importance function
We have two important remarks on the construction of the Tr(XkT|X(” Yo.r7) is proportional tao( Y x| X k1) X

. . L 0:(k—1)T"
pdf’s for our problem. The first one is that it is in general true ) . Co
that we need the analytical expressions for the pdf's to make usep(x’“ﬂx(k—l)T) with the proportionality independent & xr

of the particle filter, which in general do not assume a Gaussian (@n observation first noted in [6]). We have previously derived

model. The second remark is on model order of the HMM. The ——— ) ) )

motion equations describe a first order HMM model and hence the € if we choose the exact posterior as the importance function then
. . the due to the nature of the data generating process the variance of the

updatg equatlon§ (18) depend only on the pre\{lous state. If MOr€estimator is inversely proportional to the number of particiegl5].

complicated motion equations are formulated in the state model  4one case wherkX) is concave this statement holds; however, this is

that increase the HMM model order, then a new recursive updatein general not true. [3] shows ways to approximate its construction for our

formulation becomes necessary. problem so that the negative definiteness holds.




the analytical relations fop(Y 7| Xx7) and p(Xer|Xx—1)7). We will show the modifications t6+ and H following the nota-

Moreover, define tion in [3]. First note thatl, = —N.J/o2 whereJ is as de-
fined at Equation (25) in [3]V J;, A..(t), andD(t) remain the
ly(Xer) » logp(Yer|Xer) same. Definition oft’(¢) does not change; however, the vector

(24) changes due to the fact that the gradienfgft) with respect to
ai(1) includes an extra termd,. /0 fi(1). Defineyy(t) as the
< gradient of fx(t) with respect toay (1), and form¥(¢) in the
fame manner a¥ (t) using ¢ (t). Moreover, dengte&vJ; =

lo(Xkr) » log p(Xer X k—1)r)

then, (23) can be rewritten with new parameter set (24) as follow:

5(X) = —[lz(X) + l;’(X)]’l 0Ji/0f1(t), OJy/Ofa2(t), ---, OJ/Ofx(t) ,thenthe
w(X) = (X)[IL(X) + ) (X)] (25) new gradientz can be written as
x Y
C D
and the new suboptimal importance function is given below: G = vec % X V(t)diag(VJy) + U(t)diag(VJ) 27)
t=1

7(Xpr| Xo:k—1yr, Yourr) = N (u(X) + X, 3(X))  (26)
Here we define’,, (t) = 0A(t)/dfm and the approximate the
new derivatives due to our state vector as follows:

9% J,
00, (£)0fn(t)

X is judiciously chosen to be the modeydX i |X x—1)7, Yir)

so thatu(X) ~ 0 [16]. ~ 2Re{tr[A™ (t) AT (t) Pay CH () AT (1))}

6. ALGORITHM DETAILS and

In this section, we will give the details of our modifications to the 0% J, H H L ~H H
independent partition particle filtering algorithm by Orton. The O fm ()0 fn(t) = QRe{tr[AT ()Com (8) Pa()Cn (t)AT O}
outline of Orton’s algorithm is given in [6] and hence will not be (28)
repeated here. The target association problem is solved by the in-
dependence assumption on the MTS partitions. However, a minorWithout these approximations, the Hessian matrices, which basi-
clarification of the implementation in [6] is needed. When the nec- cally approximate the covariance matrices for the suboptimal im-
essary Hessians are calculated for the whole particle, only the perortance function are not guaranteed to be positive semi-definite.
tinent portions of the Hessians are used while generating the newThe necessity of these approximations are further discussed in [3].
partition in the particle. Hence, the off-diagonal matrices in the
particle Hessian corresponding to the cross partitions are ignored. 7. SIMULATION RESULTS
After the particle is formed, the discrepancies generated by this
method are augmented by the weights, which are calculated usingye will present a case where the algorithm performed poorly among
the the full Hessians generated from the particle. all the simulations we run. The sensor node consists b5-a
One modification is the use of the state transition probabil- element uniform circular array whose inter-element spacingiis
ity (19) for the weighted resampling functions(x). This choice Amin. Other pertinent parameters &e= 1s, M = 50, SNR =
alone seems to constrain the particles by the state update equationodB, N = 200, number of MCMC steps i§, 03 = (.1°)?
and hence is expected to have poor performance for the maneuvers?, = (.01)*, o = (4°)?, ando’ = (.001)°.
ing targets. However, this choice of the weighted resampling func- Figure 2 shows the evolution of the target instantaneous fre-
tion makes sure that the created particles form a cloud around theguencies, which go into 80° turn at the beginning of thes*"
expected mode of the target state. The maneuvering target casesatch period. The dashed lines in Fig. 3 are the true target DOAs
on the other hand, are handled by the absolutely critical MCMC re- where the solid lines show the particle filter estimates. The track-
sampling step. In the test cases we have run, the algorithm seemng is very good until the targets maneuver; however, the particle
to better handle the maneuvers as the number of iterations increaseilter still does a great job given the fact that it does not know
in the MCMC resampling algorithm outlined in [6]. When the tar-  the target signals. We found that the estimates get betté¥ as
gets maneuver, the expected mode of the next state predicted byncreases due to asymptotic properties of the particle filter. It
the state update equation (4) changes. At the resampling state, thehould be noted that the Rayleigh resolution at these frequencies
particles that are closer to this changed mean survive while the par-is worse thar20°; when we used the common beamformers (MU-
ticles around the predicted mean diminish. Hence, the resamplingS|C, minimum-variance, linear-predictive, and conventional) on
step, in effect, not only makes the particles span most of the statethe same synthetic data, they were not able to produce any good
space, but also compensates for the effects of the maneuver. IDOA estimates at any batch period.
should be noted that maneuvering has more impact on the heading
direction than the other state variables. Hence, a slight modifica-
tion exploiting this fact in the resampling step may also improve
the performance of the algorithm_for a given number_of particles. e presented a way to track multiple targets with varying fre-
Because of the state vector is larger, the most important x- quency signatures. The solution is intuitively simple: it is based
tension comes in the form of deriving new gradients and Hes- 4 5 state/observation equations couple. Moreover, the approach

sians (25) for the linearization of the optimal importance func- g general: it is shown that the state vector in [3] and [6] can be
tion. The new gradients and Hessians related to the state update

are straightforward and hence, we will concentratd ;pand;, . 5N is defined to be the batch size in [3] correspondingfo

8. CONCLUSIONS
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Fig. 3. The filter correctly associated the DOAs with the targets
around batches 3,4,5, and 17. After the targets maneuver at the
25" batch period, the DOA estimates has some bias and ripples
due to the closeness of their instantaneous frequendies. 200

is used for this figure; however, the estimation performance gets

extended to include other features such as the instantaneous freDetter as the number of particles is increased.

quency of the target signals. It is also seen that the particle filter

can achieve better than Rayleigh resolution by exploiting the target

motion dynamics and the previous state information of the targets. [8] N.R.Goodman, “Statistical analysis based on a certain multi-

Fig. 2. The instantaneous frequency of the targets double linearly
in 50 seconds. Targets 2 and 3 have very close instantaneous fre
guencies making them harder to track.
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