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ABSTRACT

In this paper, we present a way to track multiple maneuvering
targets with varying time-frequency signatures. A particle filter
is used to track targets that have constant speeds with changing
heading directions. The target motion dynamics help the parti-
cle filter achieve an angular resolution otherwise not possible by
the conventional beamforming techniques. Moreover, the particle
filter has a built-in target association that eliminates the need for
heuristic techniques commonly used in the multiple target track-
ing problems. Reference priors are used to derive the probability
distribution function of the acoustic array outputs given the state
of the multiple target states (MTS’s). Local linearization is used to
approximate the importance function used in the particle filter by
a Gaussian pdf. Finally, computer simulations are used to demon-
strate the performance of the algorithm with synthetic data.

1. INTRODUCTION

The direction-of-arrival (DOA) estimation problem has been ex-
tensively studied in the signal processing literature [1] (and ref-
erences therein). Narrow-band solutions based on beamforming
such as multiple signal classification (MUSIC) [2], minimum vari-
ance beamforming, and Pisarenko’s method suffer in performance
when the targets are moving relatively fast during the estimation
batch (i.e., the snapshot period). In order to remedy this problem,
one can incorporate the target motion dynamics to jointly estimate
the DOA while tracking targets [3]. These refined DOA estimates
provide better performance in exchange for increased complexity.

In the case of wideband acoustic signals impinging on the sen-
sors, the pioneering work by Wang and Kaveh [4] on coherent
subspace processing coherently integrates the array autocorrela-
tion matrices corresponding to the multiple frequencies of interest,
so that signal-to-noise (SNR) and resolution gains can be achieved.
The work by Gershman and Amin [5] approximates the signals at
the DOA batch process as chips and performs time-frequency MU-
SIC (spatial tf-MUSIC) on the acoustic array outputs. These wide-
band methods produce snapshot DOA estimates and hence require
heuristics for target association.

Advances in large scale integration of computer systems have
made Monte-Carlo techniques a feasible alternative as a subopti-
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mal solution to the target tracking problem. Conventionally, given
a target dynamics model, the underlying motion equations are sim-
plified by linearization and Gaussian noise assumptions so that an
analytical solution can be obtained. The extended Kalman filter
is such a method; it is also the best minimum mean-squared lin-
ear estimator for the problem at hand. Monte-Carlo techniques,
on the other hand, do not change the model or assume Gaussian
noise; however, they approximate the posterior density of interest
by particles that represent a discrete version of the posterior. The
idea is that if a sufficient number of effective particles can be used,
the estimation performance will be close to the theoretical optimal
solution. Usually, they are suboptimal since they employ a finite
number of particles.

The array model we employ in this work has a special struc-
ture. Each node of the array consists of a circular acoustic sensor
array, which will supply DOA and frequency information of the
targets. However, the solution is given for the general case and
does not depend on the particular structure of the nodes. Spatial
diversity of multiple nodes can be exploited in triangulating the
targets of interest.

A solution to the problem presented thus far has been given
for the narrow-band case by Orton and Fitzgerald in [6]. Our work
builds on their results. Our extensions will come in the form of
re-deriving the necessary gradients and Hessians used in the par-
ticle filter updates for the wideband case. It is assumed that we
have a separate a time-frequency tracker for tracking the dominant
instantaneous frequencies for the targets. Issues related to the un-
certainty principle for frequency estimation will be left for future
study.

Organization of the paper is as follows. Section 2 describes the
data model used for the multiple target tracking. Sections 3 and 4
describe how we construct the probability density functions (pdf’s)
used by the particle filter. The importance function is discussed in
section 5 and the multiple target tracking particle filter algorithm
is described in section 6. Finally, section 7 shows the performance
of the algorithm with synthetic data.

2. DATA MODEL

ConsiderK far-field targets coplanar with a sensor node consisting
of P acoustic sensors. The sensor node (or sensor array) does not
possess any special structure. The targets are assumed to have
constant speeds with some Brownian disturbance acting on their
heading directions, which is the same data model used in [3, 6].
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2.1. State Model

The state model has the following state vector:

xk(t) ,

2
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θk(t)
Qk(t)
φk(t)
fk(t)

3
75 (1)

whereθk(t), φk(t), andfk(t) are the DOA, the heading direc-
tion, and the instantaneous frequency of thekth target.Qk(t) ,
log qk(t) is the compound variable corresponding to the logarith-
mic ratio of thekth target’s speed (vk) to its range (rk(t)), which
is measured to the center of the sensor array. Target DOA’s are
measured clockwise with respect to they-axis whereas the target
heading directions are measured counter clockwise with respect to
thex-axis. Figure 1 illustrates the geometry of the problem.
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Fig. 1. Thekth target is at position1 at timet and moves to po-
sition 2 in T seconds. The target is at the far-field of the sensor
array whose center coincides with the origin.

The state update equation can be derived by relating the DOA’s
of the target at timest and t + T using the geometrical relation
of position1 at (rk(t) sin θk(t), rk(t) cos θk(t)) to position2 at
(rk(t) sin θk(t)+vkT cos φk(t), rk(t) cos θk(t)+vkT sin φk(t)).
Then, it is straightforward to obtain the following update relations:

tan θk(t + T ) =
rk(t) sin θk(t) + vkT cos φk(t)

rk(t) cos θk(t) + vkT sin φk(t)
(2)

and

rk(t + T ) =
q

r2
k(t) + 2rk(t)vkT sin (θk(t) + φk(t)) + v2

kT 2

(3)
Equations (2) and (3) form a scalable system for the target motion
dynamics at hand. To elaborate on this, consider scaling the range
and the speed of thekth target. It can be shown that this scaled tar-
get has the same set of update equations as above since the scale
factor can be cancelled out. This fact, in turn, leads to the intro-
duction of the compound variableqk(t) , vk/rk(t). In the state
update, however, the logarithm ofqk(t) is used since an additive
noise component can be employed (as opposed to the multiplica-
tive noise whenqk(t) is used1). Hence, the state update equation

1due to the fact thatqk(t) is a scale parameter

can be written as follows:

xk(t + T ) = f(xk(t),u(t + T ))

=

2
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arctan sin θk(t)+eQk(t)T cos φk(t)

cos θk(t)+eQk(t)T sin φk(t)

Qk(t)− 1/2log[1+

2eQk(t)T sin (θk(t) + φk(t)) + (eQk(t)T )2]
φk(t)

fk(t) + 2ak(t)T
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(5)
The state noise vector is chosen to be Gaussian due to its analytical
tractability (justifications can be found in [6].) Moreover, the state
noiseu is usually very small, which may lead to sample impov-
erishment [14] (explained in Sec. V.A.3). In fact, if the process
noise is zero, the state variables can be treated as static variables
in an estimation problem where using a particle filter may not be
appropriate. In the discussion that follows, techniques to prevent
this sample impoverishment or degeneracy will be discussed.

Implicit in (4) is a second order polynomial approximation
done for the phase of the signals of interest. Hence,2ak(t) corre-
sponds to the rate of change of the instantaneous frequency of the
kth signal. The rest of the paper assumes thatak(t) is supplied by
a time-frequency filter and is not estimated by the particle filter.

2.2. Observation Model

The sensor array consists ofP omnidirectional acoustic sensors
situated uniformly on a circle of radiusR. A steering vector as-
sociated with the array defines the complex array response for a
source at DOAθ, and has the following form for theith source
signal (the medium is assumed to be isotropic and non-dispersive):

a(θi) =

2
66664

ej2π[ak(t)(αi
T z1)2−fi(t)(αi

T z1)]

ej2π[ak(t)(αi
T z2)2−fi(t)(αi

T z2)]

...

ej2π[ak(t)(αi
T zP )2−fi(t)(αi

T zP )]

3
77775

(6)

wherei = 1, 2, · · · , K, zl is the lth sensor position, andαi ,
(1/c)[ cos(θi), sin(θi) ]T is theith slowness vector in carte-
sian coordinates [1]. Each steering vectora(θi) corresponds to
a signal whose direction is the objective of the DOA estimation
problem. The observations are updated everyτ = T/M seconds
whereM is the number of batch samples (a typicalM is 100.)
Then, the array outputs for chirp signals can be written as follows:

y(t) = A(Θ(t))s(t) + n(t) t = 1, 2, · · · , M (7)

In (7), y(t) is the noisy array output vector,n(t) is an additive
noise (e.g.,n(t) ∼ N (0, σ2

n)), andA(Θ(t)) consists of the steer-
ing vectors in the following manner:

A(Θ(t)) = [ a(θ1(t)), a(θ2(t)), · · · , a(θK(t)) ] (8)



whereΘ(t) = [ θ1(t), θ2(t), · · · , θK(t) ]T . It should be
noted that the sensor positions must be perfectly known in order to
defineA(θ(t)) for this model.

For notational convenience and tractability, the data collected
at each time is stacked to form the following data vectorYt:

Yt =

2
6664

y(t)
y(t + τ)

...
y(t + (M − 1)τ)

3
7775 (9)

The signal vectorSt and the noise vectorWt are formed in the
same manner. Thus, the array data (or observation) model for the
batch period can be compactly written as the following:

Yt = h(Θ(t),Wt)

Yt = AtSt + Wt

(10)

where the steering matrixAt = diag{A(θ(t)),A(θ(t+τ)), · · · ,
A(θ(t+(M−1)τ))} implicity incorporates the DOA information
of the targets.

3. PDF CONSTRUCTION FOR THE DATA

The particle filter is a convenient way of recursively updating a tar-
get posterior of interest. While formulating these update equations
in our problem, one encounters two nuisance parameters: the sig-
nal vectorSt and the noise variance for the additive Gaussian noise
vectorWt. For simplicity, we will assume that the noise variance
is approximately constant during the batch period[t, t+(M−1)τ ].
Following the notation introduced in [6] , we will denote this noise
variance asσ2

w(t) corresponding to the batch period starting at
time t. The noise has the complex Gaussian probability density
function (pdf) described by Goodman [8]. The data likelihood
given the signal and noise vectors can be written as follows:

p(Yt|At,St,σ
2
w(t)) =

1

(πσ2
w(t))MP

exp
h
− (Yt −AtSt)

H(Yt −AtSt)

σ2
w(t)

i (11)

If the priors are known for the signals and noise variance given
the state vector at timet, they can be integrated out from the Gaus-
sian pdf described by (11). If one desires to assume the least about
these parameters and let the observed data speak for itself, then the
use of reference priors comes into play2. Hence, even for moder-
ate sample sizes, the information in the data dominates theprior
information because of the vague nature of the prior knowledge
[11]. One also needs to be careful about the fact that these types of
priors are actually a function of the data likelihood and in general
will change if, for example, new sensors are added or removed.
The intuitive choice of the prior is usually the uniform prior on
the natural space of the parameter. A good discussion of these
issues can be found in [11], [12], and [10]. We will now discuss
one particular case where the noise variance in (10) is known and
construct the pdf’s for it. The unknown variance case was treated
in [6].

2Bernardo derives the reference prior using an estimation model based
on communication channel with a source and data [9]. The reference prior
maximizes the mutual information between the source and the data.

We will start by assuming that the columns ofAt are linearly
independent. This also implies thatP > K, i.e., the number of
sensors is greater than the number of targets. Using (11), the log-
likelihood function of the data can be written as follows:

L , log p(Yt|At,St, σ
2
w(t))

= −MP log π −MP log σ2
w(t)

− 1

σ2
w(t)

(Yt −AtSt)
H(Yt −AtSt)

(12)

We will take the naive, easy approach in deriving the reference
prior for our problem: use the square root of the determinant of
the Fisher information matrix as our reference prior. After the
derivations, we show that the some reference priors may not be
integrable (and hence, improper) on the entire unbounded space
for the parameter vectors. This in turn stipulates compactness ar-
guments on the parameter space such as the ones used in [11, 13] .
Further properties of the reference priors (or to be consistent with
the literature, Jeffrey’s prior) are discussed below.

The Fisher information matrix for the parameter vectorSt (de-
noted asIL(St)) can be written as

IL(St) = −E
h∂2L

∂S2
t

i
=

1

σ2
w(t)

AH
t At (13)

whereE[.] is the expectation operator. Hence, the reference prior
in this case is

p(St|At) ∝ |AH
t At|1/2 (14)

where|.| is the determinant. At this point, we can use (14) to inte-
grate out the signal vector in (11) from our problem. The integrals
are from−∞ to∞ unless stated otherwise.

p(Yt|At, σ
2
w(t)) =

R
p(Yt|At,St, σ

2
w(t))p(St|At)dSt

∝ R 1
(πσ2

w(t))MP exp [− (Yt−AtSt)
H (Yt−AtSt)

σ2
w(t)

]|AH
t At|1/2dSt

(15)
Let St = (AH

t At)
−1Vt. Then,dSt = dVt/|AH

t At| and (15)
becomes

∝ R 1
(πσ2

w(t))MP

exp
h
− (Yt−At(A

H
t At)

−1Vt)
H(Yt−At(A

H
t At)

−1Vt)

σ2
w(t)

i
dVt

|AH
t At|1/2

∝ 1

(πσ2
w(t))M(P−K)

R
1

(πσ2
w(t))MK |AH

t At|1/2

exp
h
− (Vt−AHYt)

H (AH
t At)

−1(Vt−AH
t Yt)

σ2
w(t)

i
dVt

× exp
h
−YH

t (I−At(A
H
t At)

−1AH
t )Yt

σ2
w(t)

i

⇒ p(Yt|At, σ
2
w(t)) ∝ exp

h
− YH

t (I−At(A
H
t At)

−1AH
t )Yt

σ2
w(t)

i

(16)

Finally, notice that (14) is not integrable ifSt has infinite mul-
tidimensional support. However, the condition{St : |[St]i| < γi}
can be easily imposed on theith signal component for some large
γi. This makes the prior (14) integrable on the signal vector space
and, in turn, the marginalization integrals become approximate.
This condition is always satisfied in practice (e.g., the signals of
interest have finite magnitudes at all times.) Moreover, the finite-
ness condition on the signals implies that the array outputs are
also finite (consider the discrete array model (7)). Hence, the ap-
proximate data probability distribution in (16) is proper (i.e., inte-
grable).



4. PDF CONSTRUCTION FOR THE STATE

In the previous section, we omitted to motivate the need for con-
structing the pdf for the data and put the emphasis on the use of
reference priors. Now, it is necessary to elaborate on the reasons
for constructing the probability distributions for the data and the
state. The state and observation models (4) and (10) form a hidden
Markov model (HMM), which can be compactly described by the
following pdf’s:

p(Xt+T |Xt)

p(Yt+T |Xt+T )
(17)

whereXt = [xT
1 (t),xT

2 (t), · · · ,xT
K(t)]T andp(Yt+T |Xt+T ) =

p(Yt|At) or p(Yt|At, σ
2
w(t)) depending upon whether or not

we treat the noise variance as a known parameter. Here, we in-
troduce the common notation in the particle filtering literature,
z0:t , {z0, zT , . . . , zt}. The recursive update for the HMM
model described by (17) can be written as follows [14]:

p(X0:t+T |Y0:t+T ) = p(X0:t|Y0:t)
p(Yt+T |Xt+T )p(Xt+T |Xt)

p(Yt+T |Y0:t)
(18)

Hence, the recursive evaluation ofp(X0:t+T |Y0:t+T ) requires the
pdf’s shown in (17). The previous section considered the construc-
tion of the second pdf in the model. This section will concentrate
on the first pdf in (17).

The objective is to findp(Xt+T |Xt) given (4). By inspection,
one can see thatXt+T is also normal with meanXt and covari-
ance equal to that of the additive noise. Therefore, we can write
the pdf for the state update as follows:

p(Xt+T |Xt) =
1

(2π)2K(σθσQσφσf )K

exp
h
− 1

2σ2
θ

(Θt+T −Θt)
2 − 1

2σ2
Q

(Qt+T −Qt)
2

− 1

2σ2
φ

(Φt+T −Φt)
2 − 1

2σ2
f

(Ft+T − Ft)
2
i

(19)

where

Θt = [ θ1(t), θ2(t), . . . , θK(t) ]T ,

Qt = [ Q1(t), Q2(t), . . . , QK(t) ]T ,

Φt = [ φ1(t), φ2(t), . . . , φK(t) ]T ,

Ft = [ f1(t), f2(t), . . . , fK(t) ]T .

(20)

We have two important remarks on the construction of the
pdf’s for our problem. The first one is that it is in general true
that we need the analytical expressions for the pdf’s to make use
of the particle filter, which in general do not assume a Gaussian
model. The second remark is on model order of the HMM. The
motion equations describe a first order HMM model and hence the
update equations (18) depend only on the previous state. If more
complicated motion equations are formulated in the state model
that increase the HMM model order, then a new recursive update
formulation becomes necessary.

5. CHOICE OF THE IMPORTANCE FUNCTION

An appropriate choice of the importance function may reduce the
variance of the simulation errors3. However, it is shown analyt-
ically ([16] and references therein) that the importance weights
have increasing variance with time, which leads to increasing esti-
mation errors (or simulation errors, will be used interchangeably).
Here, we state an important result: the unconditional variance of
the importance weights, i.e. with the observationsY0:t being in-
terpreted as random variables, increases over time. This fact is also
known as the degeneracy phenomenon: after a few iterations, all
but one of the normalized importance weights will be very close to
zero [16].

When the notion of optimality enters into a problem, it is nat-
ural to question the optimality criterion. Any optimal solution will
be as good as its objective function and, in our case, the objective
is to minimize the variance of the importance weights. This, in
turn, will maximize the effective number of particles at each time
step, rendering the particle filter more effective given a constant
number of particles.

There are many ways of approximating an optimal importance
function with a suboptimal importance function and we will show
one of them here. Let us denote the likelihood of the importance
function asl(XkT ) , log p(XkT |X(k−1)T ,YkT ). Assume that
the usual assumptions of differentiability are satisfied byl. If we
do a Taylor series expansion on this likelihood around someX, we
get the following:

l(XkT ) = l(X) +
h∂l(XkT )

∂XkT

iT

XkT =X
(XkT −X)

+
1

2
(XkT −X)T

h∂2l(XkT )

∂(XkT )2

i
XkT =X

(XkT −X) + h.o.t

(21)

If l′′(X) , ∂2l(XkT )/∂(XkT )2 is negative definite4, then, by
ignoring the higher order terms in the expansion, we can fit a
Gaussian curve as a suboptimal importance function. Also defin-
ing l′(X) , ∂l(XkT )/∂XkT for notational compactness, it is
a straightforward linear algebra exercise to show that the optimal
importance function can be approximated as

π(XkT |X0:(k−1)T ,Y0:kT ) = p(XkT |X(k−1)T ,YkT )

≈ N (µ(X) + X,Σ(X))
(22)

where

Σ(X) = −[l′′(X)]−1

µ(X) = Σ(X)l′(X)
(23)

It is crucial to note that the optimal importance function
π(XkT |X(i)

0:(k−1)T ,Y0:kT ) is proportional top(YkT |XkT )×
p(XkT |X(i)

(k−1)T ) with the proportionality independent ofXkT

(an observation first noted in [6]). We have previously derived

3i.e., if we choose the exact posterior as the importance function then
the due to the nature of the data generating process the variance of the
estimator is inversely proportional to the number of particlesN [15].

4One case wherel(X) is concave this statement holds; however, this is
in general not true. [3] shows ways to approximate its construction for our
problem so that the negative definiteness holds.



the analytical relations forp(YkT |XkT ) andp(XkT |X(k−1)T ).
Moreover, define

ly(XkT ) , log p(YkT |XkT )

lx(XkT ) , log p(XkT |X(k−1)T )
(24)

then, (23) can be rewritten with new parameter set (24) as follows

Σ(X) = −[l′′x(X) + l′′y (X)]−1

µ(X) = Σ(X)[l′x(X) + l′y(X)]
(25)

and the new suboptimal importance function is given below:

π(XkT |X0:(k−1)T ,Y0:kT ) ≈ N (µ(X) + X,Σ(X)) (26)

X is judiciously chosen to be the mode ofp(XkT |X(k−1)T ,YkT )
so thatµ(X) ≈ 0 [16].

6. ALGORITHM DETAILS

In this section, we will give the details of our modifications to the
independent partition particle filtering algorithm by Orton. The
outline of Orton’s algorithm is given in [6] and hence will not be
repeated here. The target association problem is solved by the in-
dependence assumption on the MTS partitions. However, a minor
clarification of the implementation in [6] is needed. When the nec-
essary Hessians are calculated for the whole particle, only the per-
tinent portions of the Hessians are used while generating the new
partition in the particle. Hence, the off-diagonal matrices in the
particle Hessian corresponding to the cross partitions are ignored.
After the particle is formed, the discrepancies generated by this
method are augmented by the weights, which are calculated using
the the full Hessians generated from the particle.

One modification is the use of the state transition probabil-
ity (19) for the weighted resampling functionsqk(x). This choice
alone seems to constrain the particles by the state update equation
and hence is expected to have poor performance for the maneuver-
ing targets. However, this choice of the weighted resampling func-
tion makes sure that the created particles form a cloud around the
expected mode of the target state. The maneuvering target cases,
on the other hand, are handled by the absolutely critical MCMC re-
sampling step. In the test cases we have run, the algorithm seems
to better handle the maneuvers as the number of iterations increase
in the MCMC resampling algorithm outlined in [6]. When the tar-
gets maneuver, the expected mode of the next state predicted by
the state update equation (4) changes. At the resampling state, the
particles that are closer to this changed mean survive while the par-
ticles around the predicted mean diminish. Hence, the resampling
step, in effect, not only makes the particles span most of the state
space, but also compensates for the effects of the maneuver. It
should be noted that maneuvering has more impact on the heading
direction than the other state variables. Hence, a slight modifica-
tion exploiting this fact in the resampling step may also improve
the performance of the algorithm for a given number of particles.

Because of the state vector is larger, the most important ex-
tension comes in the form of deriving new gradients and Hes-
sians (25) for the linearization of the optimal importance func-
tion. The new gradients and Hessians related to the state update
are straightforward and hence, we will concentrate onl′y and l′′y .

We will show the modifications toG andH following the nota-
tion in [3]. First note that5 ly = −NJ/σ2

w whereJ is as de-
fined at Equation (25) in [3].∇Jt, Am(t), andD(t) remain the
same. Definition ofV (t) does not change; however, the vector
changes due to the fact that the gradient ofθk(t) with respect to
αk(1) includes an extra term∂θk/∂fk(1). Defineψk(t) as the
gradient offk(t) with respect toαk(1), and formΨ(t) in the
same manner asV (t) using ψk(t). Moreover, denote∇Jf =h

∂Jt/∂f1(t), ∂Jt/∂f2(t), · · · , ∂Jt/∂fK(t)
i
, then the

new gradientG can be written as

G = vec

(
1

N

NX
t=1

V (t)diag(∇Jt) + Ψ(t)diag(∇Jf )

)
(27)

Here we defineCm(t) = ∂A(t)/∂fm and the approximate the
new derivatives due to our state vector as follows:

∂2Jt

∂θm(t)∂fn(t)
' 2Re{tr[A†H(t)AH

m(t)P⊥A(t)C
H
n (t)A†H(t)]}

and

∂2Jt

∂fm(t)∂fn(t)
' 2Re{tr[A†H(t)CH

m(t)P⊥A(t)C
H
n (t)A†H(t)]}

(28)

Without these approximations, the Hessian matrices, which basi-
cally approximate the covariance matrices for the suboptimal im-
portance function are not guaranteed to be positive semi-definite.
The necessity of these approximations are further discussed in [3].

7. SIMULATION RESULTS

We will present a case where the algorithm performed poorly among
all the simulations we run. The sensor node consists of a15-
element uniform circular array whose inter-element spacing is0.45
λmin. Other pertinent parameters areT = 1s, M = 50, SNR =
10dB, N = 200, number of MCMC steps is5, σ2

θ = (.1◦)2,
σ2

Q = (.01)2, σ2
φ = (4◦)2, andσ2

f = (.001)2.
Figure 2 shows the evolution of the target instantaneous fre-

quencies, which go into a90◦ turn at the beginning of the25th

batch period. The dashed lines in Fig. 3 are the true target DOAs
where the solid lines show the particle filter estimates. The track-
ing is very good until the targets maneuver; however, the particle
filter still does a great job given the fact that it does not know
the target signals. We found that the estimates get better asN
increases due to asymptotic properties of the particle filter. It
should be noted that the Rayleigh resolution at these frequencies
is worse than20◦; when we used the common beamformers (MU-
SIC, minimum-variance, linear-predictive, and conventional) on
the same synthetic data, they were not able to produce any good
DOA estimates at any batch period.

8. CONCLUSIONS

We presented a way to track multiple targets with varying fre-
quency signatures. The solution is intuitively simple: it is based
on a state/observation equations couple. Moreover, the approach
is general: it is shown that the state vector in [3] and [6] can be

5N is defined to be the batch size in [3] corresponding toM



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

 Batch Period

 F
re

q
u

en
cy

 in
 [

H
z]  1 

 2 

 3 

Fig. 2. The instantaneous frequency of the targets double linearly
in 50 seconds. Targets 2 and 3 have very close instantaneous fre-
quencies making them harder to track.

extended to include other features such as the instantaneous fre-
quency of the target signals. It is also seen that the particle filter
can achieve better than Rayleigh resolution by exploiting the target
motion dynamics and the previous state information of the targets.
Finally, the independent partition assumption automatically takes
care of the target association problem and the filter can also exploit
the frequency information to separate closely moving targets.
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