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Abstract

In an extention of the Standard Model by three relatively light right-handed neutrinos (the

νMSM model) the role of the dark matter particle is played by the lightest sterile neutrino. We

demonstrate that the observations of the extragalactic X-ray background allow to put a strong

upper bound on the mass of the lightest active neutrino and predict the absolute values of the

mass of the two heavier active neutrinos in the νMSM, provided that the mass of the dark matter

sterile neutrino is larger than 1.8 keV.
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Recently a simple extention of the Minimal Standard Model (MSM) by three relatively

light (with the Majorana masses smaller than the electroweak scale) right-handed neutri-

nos was suggested [1, 2]. The model (dubbed νMSM ) allows simultaneous explanation of

neutrino oscillations and baryon asymmetry of the universe and proposes the candidate for

the dark matter – the lightest long-lived sterile neutrino. Unlike traditional see-saw mech-

anism [3], the tiny values of the active neutrino masses in this model are related to the

small Yukawa coupling constants between sterile neutrinos and left-handed leptonic dou-

blets. Small Yukawas are essential for the explanation of dark matter: the lightest sterile

neutrino with the mass of a few keV can be sufficiently long-lived [4, 5]. In addition to

this, small Yukawa couplings are crucial for baryogenesis in the νMSM, leading to coherence

in the oscillations of sterile neutrinos [2, 6]. Moreover, they are required by some models,

explaining pulsar kick velocities [7].

The Lagrangian of the νMSM has the following form:

LνMSM = LMSM + iN̄ I /∂NI −
(

L̄αMD
αINI +

1

2
MIN̄

c
I NI + h.c.

)

. (1)

In Eq. (1) we fixed the basis in which the sterile neutrino Majorana mass matrix MI is

diagonal (fields NI denote right-handed neutrinos, I = 1, 2, 3), whereas the Dirac mass

matrix providing the mixing between left-handed Lα and right-handed neutrinos is MD
αI ≡

FαI〈Φ〉 where α = {e, µ, τ} is the active neutrino flavor, FαI is a set of Yukawa couplings,

and 〈Φ〉 ≃ 174 GeV is the Higgs vacuum expectation value. The sterile neutrino with I = 1

is supposed to be the lightest one.

It was pointed out in [1] that a prediction of the absolute values of the masses of active

neutrinos can be made, provided that the only source of the sterile neutrino production in the

early universe is their mixing with active neutrinos. Assuming that the initial concentration

(say, at temperatures greater than 1 GeV) of sterile neutrinos were zero, one can estimate [4,

5, 8] the sterile neutrino abundance Ωs and identify it with that of the dark matter ΩDM .

The abundance is proportional to the square of the Dirac mass and depends only weakly on

the sterile neutrino Majorana mass in the keV region [4, 5, 8]. With the use of these results

the constraint on the parameters of the νMSM can be written as [1]:

∑

α=e,µ,τ

|MD
α1
|2 = m2

0
, (2)

where m2

0
= O(0.1eV)2 with an uncertainty of, say, factor of a few, coming from the poor

2



knowledge of the dynamics of the hadronic plasma at the temperature of the sterile neutrino

production. The restrictions from the observations of the cosmic microwave background and

the matter power spectrum inferred from Lyman-α forest data [9, 10] gives a constraint (see

also [11] for a most recent study):

M1 > 2 keV . (3)

Similarly to Eq. (2) this constraint assumes that the sterile neutrino was produced in

active-sterile neutrino oscillations and plays a role of so-called warm dark matter (WDM).

A weaker, but an assumption-free lower bound on the mass of the lightest sterile neutrino

M1 & 0.5 keV (4)

comes from the application of Tremaine-Gunn arguments [12] to the dwarf spheroidal galax-

ies [13]. Now, since M1 from (3,4) is much larger than m0, the see-saw formula [3] for active

neutrino masses

Mν = −
(

MD
)T

M−1

I MD (5)

is valid. The analysis of Eq. (5) reveals [1] that the constraint (2) together with (3) leads

to an upper bound on the lightest neutrino mass, mν < m2

0
/M1 ≃ O(10−5) eV. Now, since

this bound is much smaller than
√

∆m2

sol
≃ 10−2 eV, where ∆m2

sol
is the solar mass square

difference, the masses of other two active neutrinos should be given by

m2 =
√

∆m2

sol
, m3 =

√

∆m2
atm (6)

or by

m1 ≈ m2 =
√

∆m2
atm, m2

1
− m2

2
= ∆m2

sol
, (7)

if the hierarchy is inverted1. In numbers [14],

∆m2

sol
= (7.2 − 8.9) · 10−5 eV2, ∆m2

atm
= (1.7 − 3.3) · 10−3 eV2 . (8)

The errors correspond to 99% confidence level range of 2.58σ. Clearly, the predictions (6,7)

remain in force provided the mass of the lightest neutrino is smaller than the error bar in

the solar neutrino mass difference, namely for (99% C.L.)

mν < 3 · 10−3eV . (9)

1 The same conclusion is true if the bound (4) is taken.
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In fact, the results (2) and (3) are not universal and do depend on the details of universe

evolution above the temperature of Big Bang Nucleosynthesis (BBN). In particular, they are

sensible to the universe content at the time of sterile neutrino production and on particle

physics well beyond the electroweak scale. For example, a substantial lepton asymmetry

may lead to enhancement of the production of the sterile neutrinos [15]. If the reheating

temperature of the universe is just above the nucleosynthesis scale [16] the consideration

leading to Eq. (2) is not applicable at all. If the sterile neutrino has large enough coupling

to inflaton it will be created right after inflation rather than at small temperatures. The

reheating of the universe between the moment of the sterile neutrino production and nucle-

osynthesis due to late phase transitions or due to hypothetical heavy particle decays would

dilute the concentration of the sterile neutrinos and decrease their momentum, leading to

smaller free streaming lengths at the onset of structure formation.

In this note we consider the question whether a robust prediction (which does not depend

on the uncertainties discussed above) can be made for active neutrino masses in the νMSM

provided all 100 % of the dark matter in the universe is associated with sterile neutrino.

Our analysis is based on the astrophysical constraint coming from the analysis of the

X-ray background derived in [17] (for earlier works see [5, 18]). In the νMSM the lightest

sterile neutrino can decay into active neutrino and photon with the width given by a trivial

generalization of Pal and Wolfenstein formula [19, 20]:

Γγ =
9 αem G2

F M3

1

256 π4

∑

α=e,µ,τ

|MD
α1
|2 . (10)

The increase of the Dirac neutrino mass |MD
α1
|2 (notice that exactly the same combination

appears in Eq. (2)) would lead to the increase of the X-ray flux from the sterile neutrino

dark matter. Clearly, the astrophysical constraints on this flux would lead to the limit on

m0, and, therefore to the prediction of active neutrino masses if m0 happens to be small

enough.

The corresponding bound on m0 can be found from ref. [17]. As we have shown in this

paper, a non-observation of a peculiar feature in the X-ray background associated with the

decays of dark matter sterile neutrino implies that2

Ωs sin2(2θ) < 3 × 10−5

(

M1

keV

)

−5

, (11)

2 Sterile neutrino mass M1 was denoted by ms in [17], mixing angle θ is defined via tan 2θ ≡ 2m0/M1.
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where Ωs is the dark matter abundance. This equation describes an empirical fit to the

corresponding exclusion region coming from the analysis of the HEAO-1 and XMM missions

and is valid at M1 > 1 keV (see [17] and references therein). In the limit m0 ≪ M1, one

gets an upper bound on the lightest active neutrino mass mν < m2

0
/M1. Combined with

Eq. (11), this can be recast into the constraint on mν :

mν < 3.4 × 10−2

(

0.22

Ωs

) (

keV

M1

)4

eV . (12)

The weakest limit on the mass of the lightest active neutrino comes from the region of

smaller sterile neutrino masses. One can see that for Ωs = 0.22 and

M1 > 1.8 keV (13)

the condition (9) is satisfied. In other words, the prediction of active neutrino masses (6,7),

made in [1] is robust if the mass of dark matter sterile neutrino is large enough.

In conclusion, we have demonstrated that in the νMSM the astronomical observations

of the X-ray background allow to put severe constraints on the mass of the lightest sterile

neutrino and to make a prediction of the masses of other active neutrinos, independently on

assumptions on the evolution of the early universe above the BBN temperatures, provided

the mass of dark matter neutrino is larger than 1.8 keV. For smaller masses M1, admitted

by the constraint (4), the predictions (6,7) are not in general valid.
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