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Standard Model Higgs boson mass from inflation
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Abstract

We analyse one-loop radiative corrections to the inflationary potential in the theory, where inflation is driven by the Standard
Model Higgs field. We show that inflation is possible providedthe Higgs massmH lies in the intervalmmin < mH < mmax, where
mmin = [136.7 + (mt − 171.2) × 1.95] GeV, mmax = [184.5 + (mt − 171.2) × 0.5] GeV andmt is the mass of the top quark. In
the renormalization scheme associated with the Einstein frame the predictions of the spectral index of scalar fluctuations and of
the tensor-to-scalar ratio practically do not depend on theHiggs mass within the admitted region and are equal tons = 0.97 and
r = 0.0034 correspondingly.

Key words: Inflation, Higgs boson, Standard Model, Variable Planck mass, Non-minimal coupling
PACS:98.80.Cq, 14.80.Bn

1. Introduction

During the last decades a growing number of connections be-
tween cosmology and particle physics were established. How-
ever, finding a relation of cosmological inflation to low energy
particle theory is a difficult task. In many models inflation
is driven by some new physics at large energies which is not
connected to the scale of the Standard Model (SM). In [1] it
was suggested that the SM Higgs boson can play the role of
the inflaton. At first sight, the properties of the electroweak
Higgs boson (with the quartic couplingλ ∼ 0.1 and the mass
mH ∼ 100 GeV) are very far from those required for the inflaton
field [2] (in the simplestm2φ2 + λφ4 model the typical choice
of parameters, leading to successful inflation, isλ ∼ 10−13,
m ∼ 1013 GeV). Nevertheless, addition of the non-minimal
coupling of the Higgs fields to the Ricci scalar changes the situ-
ation. As was shown in [1], the SM action with gravity included

SJ = SSM +

∫

d4x
√
−g

(

−M2

2
R− ξΦ†ΦR

)

(1)

naturally leads to inflation. HereSSM stands for the SM action,
M is a mass parameter, nearly equal to the Planck mass in our
case,R is the scalar curvature,Φ is the Higgs doublet, andξ is
the new coupling constant.

The fact that non-minimal coupling of the scalar field relaxes
the requirement for the smallness of the quartic coupling, and
also suppresses the generation of the tensor modes during infla-
tion, was known for quite a long time [3, 4, 5, 6, 7, 8, 9]. Ba-
sically, if non-minimal coupling is present, the parameterthat
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fixes the normalization of the CMB fluctuations is not the scalar
self-coupling, but the combinationλ/ξ2. It is this point which
allows the SM Higgs boson to be the inflaton at the same time.

The study of [1] was based on the classical scalar potential in
the theory (1). It was argued there that the radiative corrections
do not spoil the flatness of the potential, necessary for inflation.
In Refs. [10, 11] it was conjectured that all the results of the
tree analysis remain true if the Higgs mass lies in the interval1

mH ∈ [129, 189] GeV, corresponding to the situation when the
Standard Model remains a consistent quantum field theory up
to the inflation scaleMP/ξ, or, to be on a safer side, all the way
up to the Planck scaleMP.

The aim of this Letter is the analysis of the renormalization
group improved effective potential for Higgs-inflaton. We will
show that inflation is possible in the SM if the Higgs mass lies
in the intervalmmin < mH < mmax, somewhat exceeding the
range in which the SM can be valid up to the Planck scale, in
accordance with our previous expectations.

The Letter is organized as follows. In Sec. 2 we review the
Higgs-inflaton scenario and introduce the notations. In Sec. 3
we construct the renormalization group improved effective po-
tential and discuss possible renormalization prescriptions for its
computation. We also identify there an error made in a previous
attempt [13] to include radiative corrections to Higgs-inflation.
In Sect. 4 we present the numerical results. Sect. 5 is conclu-
sions.

1These specific numbers should be taken with a grain of salt, asthey were
quoted in [12] on the basis of compilation of previous computations and do
not take into account the progress made in experimental determination of elec-
troweak parameters.
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2. Inflation in tree approximation

The simplest way to analyse the inflation in the model (1) is
to make the conformal transformation to the “Einstein frame”,
where the gravitational term takes its usual form. This is
achieved by rescaling the metric by the conformal factorΩ

gµν → ĝµν = Ω
2gµν , Ω

2 =
M2 + ξh2

M2
P

, (2)

where MP ≡ 1/
√

8πGN = 2.44 × 1018 GeV is the re-
duced Planck mass, andh is the unitary gauge HiggsΦ(x) =

1√
2

(

0
v+h(x)

)

. Then, with redefinition of the fieldh→ χ

dχ
dh
=

√

Ω2 + 6ξ2h2/M2
P

Ω4
, (3)

we get the action with usual gravity and canonically normalised
scalar fieldχ with potential

U(χ) =
1

Ω4
[

h(χ)
]

λ

4

[

h2(χ) − v2
]2
. (4)

For largeξ the approximate solution for (3) is

χ ≃



















h for h < MP
ξ
,

√

3
2 MP logΩ2(h) for MP

ξ
< h .

(5)

Therefore, the potential coincides with the standard one for
small fields. At the same time, for large fields it becomes expo-
nentially flat

U(χ) ≃
λM4

P

4ξ2

(

1− e
− 2χ√

6MP

)2

. (6)

The inflation in the Einstein frame2 can be analysed by the
usual means [1, 16, 17]. One has a slow roll inflation end-
ing at hend ≃ (4/3)1/4MP/

√
ξ, with the WMAP scale per-

turbations exiting the horizonN ≃ 59 e-foldings earlier at
hWMAP ≃ 9.14MP/

√
ξ. The normalization of the CMB per-

turbations leads to the requirement

ξ ≃
√

λ

3
NWMAP

0.02762
≃ 44700

√
λ . (7)

The spectral index and the tensor-to-scalar ratio arens ≃ 0.97
andr ≃ 0.0034, which lies well within the WMAP5 limits [18].

3. Renormalization group and effective potential

Following [1], we adopt the following procedure for compu-
tation of quantum corrections to the effective potential. First,
we rewrite the theory in the Einstein frame with the use of the
equations given in the previous Section. Second, we determine

2The same results can be obtained in the Jordan frame [7, 14, 15].

the particle masses (W, Z, Higgs, and t-quark) as a function of
the background fieldχ:

m2
W =

g2h2

4Ω2
, m2

Z =
(g2 + g′2)h2

4Ω2
, (8)

m2
H =

d2U
dχ2
, m2

t =
y2

t h2

2Ω2
.

Hereg, g′, g are the electroweak SU(2), U(1) and strong SU(3)
coupling constants,yt is the top quark Yukawa coupling. Note
that the only difference from the flat space case is the presence
of the conformal factorΩ in the denominators of the masses.
This is just the result of the transformation to the Einstein
frame. Finally, we compute the radiative corrections with the
use of the standard formula of [19] (cf. [20, 21]):

δU =
6m4

W

64π2
log

m2
W

µ2
+

3m4
Z

64π2
log

m2
Z

µ2
−

3m4
t

16π2
log

m2
t

µ2
, (9)

whereµ is the normalization scale3. Note that we omitted the
contribution from the Higgs field itself, since it is exponentially
suppressed at large field values and thus can be safely neglected
for analysis of inflation.

This procedure may be contrasted with that of [13]. These
authors suggested to use the Jordan rather than Einstein frame
for the computation of radiative corrections and made a transi-
tion to the Einstein frame of the 1-loop effective potential. This
leads to the same structure of radiative corrections as in Eq. (9)
but with replacementµ→ µ/Ω.

Let us elaborate more on the difference between two pre-
scriptions. For this end we replace the normalization pointµ

by an effective ultraviolet “cut off”. Then two choices are pos-
sible with the cut off proportional to:

I [1] II [13]
Jordan frame M2

P + ξh
2 M2

P

Einstein frame M2
P

M4
P

M2
P + ξh

2

Both choices correspond to imposing afield-dependentcut off
in one or another frame. It is hard to say, which prescription
should be used without knowledge of the behaviour of the quan-
tum theory at the Planck scales. In fact, the prescription of[1]
can be justified by the ideas of exact quantum scale invariance,
discussed in [22, 23, 24]. In these papers it was proposed that
all dimensional parameters, including the Planck mass, aregen-
erated by spontaneous breaking of exact scale invariance byan
additional dilaton field. The SI-GR prescription of [23] exactly
corresponds to the suggestion which was made in [1]. Though
the choices of [1] and [13] are not physically equivalent, we
will show that after the renormalization group improvementthe
predictions for the Higgs mass arenearly the same.

The one loop modification of the potential (9) is a good ap-
proximation, if the logarithms remain small. However, if one

3In the MS subtraction scheme log(x) should be replaced by log(x) − 3/2
for t-quark and log(x) − 5/6 for gauge bosons.
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uses the physical values of coupling constants, Higgs,W,Z and
top masses, which are defined at the electroweak scale, the log-
arithms are large in the inflationary region. Therefore, to con-
nect the potential at inflation with the low energy parameters,
one should apply the renormalization group procedure. This
was not done in [13], which resulted in erroneous conclusions.

The one-loop renormalization group equations in the curved
space are (no graviton loops are included) [25, 21, 20, 26]:

16π2dg
dt
= −19

6
g3 , (10)

16π2dg′

dt
=

41
6

g′3 , (11)

16π2dg3

dt
= −7g3

3 , (12)

16π2dyt

dt
=

9
2

y3
t − 8g2

3yt −
9
4

g2yt −
17
12

g′2yt , (13)

16π2dλ
dt
= 24λ2 + 12λy2

t − 9λ(g2 +
1
3

g′2)

− 6y4
t +

9
8

g4 +
3
8

g′4 +
3
4

g2g′2 , (14)

16π2dξ
dt
=

(

ξ +
1
6

) (

12λ + 6y2
t −

9
2

g2 − 3
2

g′2
)

, (15)

wheret ≡ logµ/MZ.
The solution of these equations can be plugged in the ex-

pression for the effective potential (as usual, theµ-dependent
constants should be substituted only in the tree level part)

Ueff(χ, µ) = U + δU

=
λ(µ)

4ξ2(µ)
f (χ) + s(g, g′, g3, yt) f (χ) log

(

m2
t

µ2

)

+ µ-independent terms. (16)

Note that the function

f (χ) = M4
P

(

1− e
− 2χ√

6MP

)2

(17)

is in fact the same in the tree level term and one loop contribu-
tions (compare (6) with (9), (8)), and functions(g, g′, g3, yt) can
be read of (9), (8).

The dependence of the effective potential onµ is artificial. To
be more precise,Ueff(χ, µ) does not depend onµ at its extrema
(in other points contributions the field renormalization must be
taken into account). In our case, the potential becomes constant
at χ → ∞, and, therefore, it should not depend onµ in this
region (in other words, the energy density during inflation is a
physical quantity and thus isµ-independent). With the use of
Eqns. (14,15) one can easily check that this is indeed the case
for both prescriptions discussed above,

d
dµ













λ(µ)M4
P

4ξ2(µ)
+ δU













= 0 . (18)

The running ofξ is essential for this result.
As far as the potential isµ-independent, we can choose the

most convenient value ofµ. The obvious choice is to takeµ to

make the logarithms vanish [27]

µ2 = κ2m2
t (χ) = κ2

yt(µ)2

2

M2
P

ξ(µ)

(

1− e
− 2χ√

6MP

)

. (19)

Here κ is some constant of order one, introduced to imi-
tate difference betweenmt, mW, mZ, and also account forµ-
independent terms that were dropped in (9). Then the final im-
proved potential is given by the formula (6), whereλ andξ are
taken at the scaleµ, determined by (19). The parameterµ varies
in a finite interval, 0< µ < µmax, corresponding to theχ change
from 0 to∞.

Making the analysis for the prescription of [13] is also sim-
ple, and boils down to just taking another value forµ:

µ2 = m2
t (χ)Ω(χ)2 =

yt(µ)2

2

M2
P

ξ(µ)

(

e
2χ√
6MP − 1

)

. (20)

Once the potential is determined, one can carry out the usual
analysis of the slow-roll inflation, fixingξ from COBE or
WMAP normalization, and calculating spectral indexns and
tensor to scalar rationr, in complete analogy with [1, 16]. The
only technical point here is that it is easier to useµ as an inde-
pendent variable instead ofχ. The advantage is that no inver-
sion of Eqns. (19, 20) is required.

4. Numerical results

We solve the equations (10)-(15) with the initial conditions

g2

4π
= 0.034 ,

g′2

4π
= 0.010 ,

g2
3

4π
= 0.13 ,

yt
v
√

2
= 171.2 GeV,

√
2λv = mH , ξ = ξ0

at µ = MZ. Herev = 246.22 GeV and the central value of the
mass of t-quark is specified for concreteness. With this solution
we obtain the RG improved potential, which is then used for
computation of the parameters of inflation. We takeκ = 1.

We find that inflation can take place provided the Higgs mass
lies in the interval

mmin < mH < mmax ,

mmin =[136.7+ (mt − 171.2)× 1.95] GeV , (21)

mmax =[184.5+ (mt − 171.2)× 0.5] GeV .

If the mass is smaller thanmmin, the slope of the effective po-
tential for large field values becomes negative, making inflation
impossible. If the mass is larger thanmmax, the value ofµmax,
corresponding to inflationary stage is close to the Landau pole
in λ(µ), making the theory strongly coupled. The specific num-
bers in (21) correspond toµmax coinciding with the Landau pole
for λ. More elaborate definitions of the applicability of the per-
turbative theory may be introduced (likeλ(µmax) ∼ 1), and lead
to slightly smallermmax.

The value ofξ (at the MZ scale), leading to proper CMB
normalization, is presented in Fig. 1. As expected, smallerξ

correspond to smaller Higgs masses, cf. (7). The small rise in
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ΞHMZL

Figure 1: Non-minimal coupling parameterξ as a function of the Higgs mass
mH . Solid line is for the choice I, dashed—for the choice II.
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Figure 2: RG improved effective potential. The four nearly coinciding upper
lines correspond to the choice I andmH = 137, 140, 170 GeV and choice II with
mH = 170 GeV. The middle and lower lines correspond to the choice II with
mH = 140 GeV and 137 GeV, respectively.

ξ at smallmH for the prescription of [13] corresponds to the
potential which starts to decrease at high field values. Note,
that for theλ-ξ relation the approximate formula (7) can still be
used, (except for the Higgs masses very close to the boundaries
of the allowed region). Of course,ξ andλ in (7) should be
calculated then at the scaleµ, corresponding to inflation.

Figure 2 shows the resulting RG improved potential for sev-
eral values of the Higgs mass. It is seen, that for the choice I
the shape of the potential is nearly universal, while the overall
normalization is always the same, due to the proper choice ofξ.
The form of the potential (related to theλ(µ)/ξ2(µ) ratio) start
to change only very close to the boundaries of the allowed mass
for the Higgs field, when the zero or the pole ofλ are close to
the inflationary value ofµ. For the choice II the change ofµ
during the inflationary epoch is larger, so the deviation of the
potential from the tree level form is more pronounced, espe-
cially for small Higgs masses.

For the choice I the spectral index stays nearly constant over
the whole admissible range of the Higgs masses, except for an
extremely small region near the boundaries (see Fig. 3). The
tensor-to scalar ratior also stays constantly small. However,

140 145 150 155 160 165 170
mH

0.964

0.966

0.968

0.97

ns

Figure 3: Spectral indexns depending on the Higgs massmH . Solid line is for
the choice I, dashed—for the choice II.

for the choice II the potential is different for the lower Higgs
masses, and the spectral index becomes smaller. At masses
mH < 137 GeV the spectral index goes out of the WMAP al-
lowed regionns > 0.93 [18]. Thus, the choice made in [13]
leads, after renormalization group improvement, to a window
just slightly smaller, than the one, following from the choice I.
Moreover, contrary to what was claimed in [13], the predictions
of ns and r depend on the Higgs mass in the allowed interval
only weakly.

Several comments are now in order. The analysis we carried
out in this Letter can be improved in several respects.

1. For the solution of the RG equations the initial conditions
were specified with the use of the tree relations for the
masses of the Higgs boson and t-quark. This should be
modified accounting for the physical pole masses.

2. For the RG improvement of the potential we chose a
unique scaleµ related to the top mass (see Eq. (19)) and
dropped the one-loop contribution completely. This can be
accounted for.

3. The one-loop running of the couplings can be further re-
placed by the two-loop one.

However, these effects cannot change the main pattern of the
Higgs-inflation and will only result in some modification of the
window for the Higgs mass.

5. Conclusions

To summarize, the inflation in the Standard Model is possi-
ble for the Higgs masses in the window 136.7 GeV < mH <

184.5 GeV (formt = 171.2 GeV). This roughly coincides with
the domain ofmH , in which the SM can be considered as a con-
sistent quantum field theory all the way up to the Planck scale.
For the scale invariant normalization choice I the spectralin-
dex in the whole region is constant and satisfies the WMAP
constraints, while in the normalization choice II from [13]the
spectral index ismH-dependent and leads to a slightly stronger
limit mH > 137 GeV (no change in the upper limit).
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If one extends the SM by three relatively light singlet
fermions (νMSM of [28, 29]), then the model (1) is able to
address allexperimentally confirmedindications for existence
of physics beyond the SM, including neutrino oscillations,dark
matter, baryon asymmetry of the Universe, and inflation. Fur-
ther extending the model, by making it scale invariant via intro-
duction of one more scalar field (the dilaton) [22] and adding
unimodular constraint on gravity, allows to explain also the
late time accelerating expansion of the Universe (Dark Energy).
The scale-invariant quantum renormalization procedure of[23],
applied to this model, allows to construct a theory were all mass
parameters come from one and the same source, cosmologi-
cal constant is absent due to the symmetry requirement, and no
quadratically divergent corrections to the Higgs mass are gen-
erated. Various cosmological and experimental consequences
of the model were studied in [28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 12, 38, 39, 16, 40, 41, 42, 43].

These considerations indicate that no intermediate energy
scale between theZ mass and the Planck scale is required to
deal with the observational and a number of fine-tuning prob-
lems of the SM. A crucial test of this conjecture and of the
Higgs-inflation will be provided by LHC, if it finds nothing but
the Higgs boson in a specific mass range, found in this Letter.

A closely related paper [44] appeared in the arXiv simultane-
ously with the current work, providing a different approach to
the same problem. The conclusions of this paper about the pos-
sibility of Higgs-inflation are similar, but not exactly identical
to ours.

The upgrade of the computation of this Letter to the two-loop
level is performed in [45], where a more detailed comparison
with [44] is also carried out.
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