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1 Introduction

The idea that our observable 4-dimensional universe may be a brane extended in
some higher-dimensional space-time has a long history [1]-[6] and has been the sub-
ject of many recent studies (for a review see, e.g. [7]). To implement this idea
in practical terms one needs to find physical mechanisms which localise the higher-
dimensional fields to a 3-dimensional brane whose world volume is our 4-dimensional
space-time. D-branes of string theory [8] may provide a natural mechanism for lo-
calisation of the fields of the standard model. It is natural to ask whether local
quantum field theory formulated in higher dimensional space-time can achieve this
goal.

It was noticed already in [1] that this is not an easy task. Although the localisation
of fermionic fields is quite easy to achieve, it is much more difficult to obtain localised
massless gauge fields minimally coupled to the fermions living on a brane. A purely
field-theoretical mechanism for localisation of gauge fields based on confinement was
proposed in [4]; it is still not clear if it can be realised, as the higher-dimensional
gauge theories leading to confinement in the bulk and its absence on a brane are
not known (it may work, however, in a non-field theoretical model of confinement,
[9]). Gravitational interactions in higher dimensions help to improve the situation.
For example, a local string-like defect in six dimensions [10] provides localisation
of the gauge field that has only gravitational interactions with the string [11]. A
six-dimensional model in which the sixth coordinate is non-compact à la Randall-
Sundrum [6] and the fifth is compact à la Kaluza-Klein does the same job [12].

In fact, the existence of a localised zero mode for the gauge field is not enough for
construction of a lower dimensional effective theory - it is required that the modes
living in the bulk interact weakly with the mode living on a brane. It appears
that the spectrum of the bulk gauge modes localised by gravity is gapless [12], and,
therefore, the viability of four-dimensional effective theory is questionable. The
arguments that it can be valid for the Abelian case were presented in [9], whereas
what happens in non-Abelian case is obscure.

The gauge fields discussed in [11, 12] were external to the fields forming a topolog-
ical defect. In the case of an infinitely thin string, the metric solution has an SO(2)
isometry group and the corresponding metric component hµθ, with θ being an angu-
lar coordinate, can play the role of the U(1) gauge field [14]. In fact, a natural field
theory realisation of a string in six-dimensional space-time is the Nielsen-Olesen vor-
tex [15]. This solution admits gravity localisation [13] and contains automatically

1



the massless U(1) gauge field, which is a mixture of the the graviton fluctuation hµθ

and the original U(1) gauge field fluctuation Aµ field forming the Nielsen-Olesen
vortex. This mode was found by direct computation in [16, 17] and by symmetry
arguments in [18].

It is known that fermion interaction with topological defects leads to the existence
of localised fermion zero modes [19, 20]. Thus, if fermions are added to the gravi-
tating Abelian Higgs model in six dimensions, the low energy effective field theory
is expected to be the four-dimensional quantum electrodynamics with 4d gravity.

The aim of the present paper is to construct explicitly such an effective theory.
Fermionic zero modes in the absence of gravity and in 4 dimensions in vortex back-
ground have been studied by Jackiw and Rossi in [20]. Extending this work to six
dimensions is not entirely straightforward. For one thing, the zero mode of ref. [20]
is localised with the help of a Majorana-type Yukawa interaction, the structure of
which is somewhat different in D = 6. Secondly, unlike the flat space case, the pres-
ence of gravity, as we will see, allows the existence of fermion zero modes even in
the absence of Yukawa interactions. Furthermore, the Nielsen-Olesen string without
gravity does not contain any localised gauge field, so that the effective field theory
contains nothing but free massless fermions [22].

We shall start from an Abelian Higgs model with fermions in D = 6 and obtain
quantum electrodynamics in 4-dimensional space-time, with fermionic and gauge
wave-functions spread in transverse direction in a small region in the vicinity of
the core of the vortex. We shall show that with a judicious choice of variables our
zero-mode fermion equations can be reduced to a form similar, but not identical,
to those of [20]. We will see that a vector-like theory in six dimensions leads to a
vector-like QED in four dimensions. At the same time, if one starts from a genuine
chiral, but anomaly free theory in D = 6, the resulting D = 4 QED of zero modes
in general contains chiral anomalies. In other words, the six-dimensional theory
can be considered as a self-consistent regularisation of an anomalous U(1) gauge
theory in four dimensions. We also study the bulk gauge and fermion spectrum
and show that fluctuations of the gauge field have no mass gap, but those of the
charged fermion modes are massive. The existence of fermion mass gap makes
it more plausible to consider the resulting low-energy theory as a consistent four-
dimensional electrodynamics.

The paper is organized as follows. In the second section we describe the bosonic
sector of the model: the background solution and the localised gauge field. In the
third section we construct fermion zero modes for a model in which there is an
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interaction between fermions and a scalar. In the fourth section we find interac-
tion between fermions and the localised gauge field. In section 5 we will consider
localisation of fermions by gravity in the absence of Yukawa coupling and discuss
anomalies. In Section 6 we discuss the bulk gauge and fermion fields and show the
absence of mass gap for vectors and its presence in the charged fermion spectrum.
Section 7 contains our conclusions.

2 The model

2.1 The action

We start from a gravity-Maxwell system in D = 6, coupled to a complex scalar field
Φ of charge e and two chiral fermions

Ψ1 =
(1 + Γ7)

2
Ψ1, Ψ2 =

(1 − Γ7)

2
Ψ2 (1)

in 4+ and 4− representations of SO(1, 5) with U(1)-charges e1 and e2. Here Γ7 is
the chirality matrix in D = 6. The action is

S =
∫

d6x
√
−G

{

1

κ2
R − 1

4
FMNF

MN − (DMΦ)†DMΦ − U(Φ)

+
2
∑

i=1

Ψ̄iΓ
AEM

A ∇MΨi + gΨ̄1ΦΨ2 + h.c.

}

, (2)

where DMΦ = ∂MΦ + ieAMΦ and ∇MΨi = (∂M − ΩM + ieiAM)Ψi. Here ΩM =
1
2
ΩM [AB]Σ

AB is the spin connection which takes its value in the Lie algebra of
SO(1, 5) with generators ΣAB = 1

4
[ΓA,ΓB] which along with ΓA are six 8 × 8

curved space Dirac matrices with anticommutational relation {ΓA,ΓB}+ = 2ηAB,
Γ7 = diag(1,−1). The indices M,N run from 0 to 5, indices µ, ν correspond to
4-dimensional space, and the signature of the metric is chosen to be (−,+, . . . ,+).
The model is free from gravitational, gauge and mixed anomalies only for e21 = e22.
We choose e1 = −e2, the other option e1 = e2 is the same as the first one since 4+

representation of SO(1, 5) is equivalent to 4∗+. The Yukawa-type coupling in (2),
which can be taken to be real, is non-zero only for e1 − e2 = e. So, the charge
assignment we take in Sections 3 and 4 of the paper is e1 = e/2, e2 = −e/2. The
general case of multiple fermionic species and arbitrary fermionic charges consistent
with anomaly cancellation in D = 6 will be considered in Section 5.
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In fact, a gauge-invariant mass term

LM = MΨc
1Ψ2 + h.c. , (3)

where Ψc = CΨ̄T , and C is the matrix of charge conjugation, can be added to the
action (2). We shall not include it for the analysis of the zero mode structure, but
will comment on its influence on effective field theory at the end of the Section 3.
This term breaks the fermionic number conservation and can be forbidden if the
fermion number conservation is imposed.

The chiral spinors Ψ1 and Ψ2 can be unified in a single eight-component spinor
as Ψ = Ψ1 +Ψ2, which does not have a well defined U(1) charge unless e1 = e2, and
the fermionic part of the Lagrangian (2) can be written in another form,

LF = Ψ̄ΓAEM
A (∂M − ΩM + iefΓ7AM)Ψ + gΨ̄

(1 − Γ7)

2
ΨΦ + h.c. . (4)

The mass term (3) in these notations is simply

LM = MΨc
(1 − Γ7)

2
Ψ + h.c. . (5)

To get another form of this Lagrangian, which makes its vector-like structure and
thereby the absence of anomalies evident, one can introduce a genuine Dirac spinor
in six dimensions ΨD = Ψ1 + Ψc

2. In these notations, the fermionic part of the
Lagrangian is:

LF = Ψ̄DΓAEM
A (∂M − ΩM + iefAM)ΨD + gΨ̄c

DΓ7ΨDΦ +MΨ̄DΨD + h.c. . (6)

In the paper we are going to use the form (2-5), as it allows a simpler treatment of
fermionic zero modes.

2.2 Vortex solution

It has been shown in [13] that the bosonic equations derived from (2) admit a
Nielsen-Olesen vortex-type solution for which the various field configurations are

ds2 = eA(r)ηµνdx
µdxν + dr2 + eB(r)a2dθ2 , (7)

Φ = f(r)einθ, aeAθ = (P (r) − n)dθ ,
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where ηµν is the flat metric, a is the radius of the circle covered by the coordinate
θ ∈ [0, 2π). The integer n is the vortex number and, as in the flat space, the functions
f(r) and P (r) satisfy the boundary conditions

f(0) = 0 , f(∞) = f0 6= 0 , (8)

P (0) = n , P (∞) = 0.

As r → ∞, Φ approaches a minimum of the potential U(Φ) in (2). The boundary
conditions on the metrical functions A(r) and B(r) introduced in (7) are

A(0) = 1, B(r → 0) = 2 ln
r

a
, (9)

A(r → ∞) = B(r → ∞) = −2cr, c > 0.

The parameters c and a are the combinations of the Newton constant κ in the bulk,
the D = 6 cosmological constant (related to the value of the scalar potential U(Φ)
at the minimum), and of the parameters of the Abelian Higgs model [10, 13].

As r → 0, we recover the flat space geometry at the core of the vortex. Away
from the core, the geometry is curved. In particular at r → ∞, the metric does not
become flat Minkowski and is in fact the ADS space. It has been shown in [10, 13]
that this configuration localises the gravitational fluctuations to the 4-dimensional
subspace spanned by xµ at the core of the vortex.

2.3 Localisation of gauge fields

In [18] we made a detailed analysis of the spectrum of fields of spins 0, 1 and 2 in a
warped geometry and on non-trivial gauge and scalar field backgrounds. In partic-
ular, we have given a specific mixture of the fluctuation of the vector potential and
the θµ component of the metric which is massless in D = 4 and has a normalisable
action. This configuration, derived from a symmetry argument similar to the one
given in [21] for the SU(2) case, is given by

Vµ =
1

ae
P (r)Wµ(x, r), hµθ = eB(r)Wµ(x, r), (10)

where Wµ is a function of xµ and r. Substitution of (10) in the spin-1 part of the
quadratic action, given by equations (38) to (41) of [18], gives rise to an effective
action for the vector Wµ field:

S(W ) = − 1

2a2

2πa

e2

∫ ∞

0
dr e

1

2
B

(

P 2(r) +
a2e2

κ2
eB

)

∫

d4x[(∂µWν)
2 + e−A∂rWµ∂rWµ].

(11)
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The r independent Wµ corresponds to localised massless vector fields. Their
effective action is

S(W ) = − 1

2q2

∫

d4x(∂µWν)
2. (12)

where the four-dimensional gauge coupling is

1

q2
=

2πa

e2

∫ ∞

0
dr e

1

2
B

(

P 2(r) +
a2e2

κ2
eB

)

. (13)

With our boundary conditions on B(r) and P (r), the integral over r converges at
both ends. A physical interpretation of (12,13) is that the fluctuation energy of the
µ-component of the 6-dimensional Maxwell field and the Kaluza-Klein vector field
hµθ are localised to a region r ∼ max(1/c, 1/MW , 1/MH) near the core of the vortex,
where MW and MH are the bulk vector and scalar masses in the absence of gravity
and c is the parameter of the solution, defined in (10). The effective localised field
can be taken to be

(

P 2(r) +
a2e2

n2
eB

)
1

2

Wµ(x),

which approaches Wµ(x) as r → 0 and vanishes rapidly as r → ∞. It is important
to note that the gravitational field plays a key role in ensuring the normalisability
of the effective action in (10), through the factor of e

1

2
B.

3 Fermions

3.1 Dirac equation in string background

As a first step in construction of effective field theory for fermions one has to find
fermionic zero modes in the string background. This problem has been solved for a
Nielsen-Olesen string in 4-dimensions in the absence of gravity in [20]. In six dimen-
sions and without gravity similar consideration for supersymmetric Abelian Higgs
model has been carried out in [22]; in [23, 24] fermionic modes were considered for
a global string, without gravity and gauge fields. In [25] gravity has been taken into
account, but interaction of fermions with gauge and Higgs was not included. In this
section we will find fermionic zero modes on a six-dimensional string incorporating
gravity as well as gauge-Higgs interactions, a special cases of the general problem
which was addressed in [26].
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General equations for the fermions in the warped metric and in the presence of
gauge and Higgs fields can be found, e.g. in [26]. Applied to our case, the Dirac
equation reads:

{

e−A/2Γµ∂µ + Γr

(

∂r + A′ +
B′

4

)

+ e−
B
2 Γθ

(

1

a
∂θ + i

e

2
Γ7Aθ

)

+ (14)

g
(1 − Γ7)

2
Φ + g

(1 + Γ7)

2
Φ∗

}

Ψ = 0 ,

where prime denotes the derivative with respect to r, and underlined indices corre-
spond to flat space coordinates. Here we take g 6= 0 and e1 = −e2 = e/2.

A special care should be taken on the boundary conditions of fermionic wave
function with respect to θ. Because of the veilbein transformation properties it has
to be antiperiodic, Ψ(θ) = −Ψ(θ + 2π). This corresponds to a single valued spinor
in Cartesian coordinate system near r → 0.

To proceed, we fix the D = 6 Dirac matrices in the following form: Γµ = γµ × σ1,
Γr = γ5 × σ1 and Γθ = 1 × σ2, where σ1 and σ2 are Pauli matrices and γµ are
4× 4 Dirac matrices chosen in such a way that γ5 is diagonal, i.e. γ5 = diag(1,−1).
Taking into account that

Γrθ ≡ ΓrΓθ =





iγ5 0

0 −iγ5



 , (15)

it is convenient to introduce a new field ψ through the definition,

Ψ = exp

{

θ

2
Γrθ − A− 1

4
B +

∫ r

dρe−B(ρ)/2
(

1

2a
− iΓ7

e

2
ΓrθAθ(ρ)

)

}

ψ , (16)

where

ψ =

(

ψ1

ψ2

)

. (17)

Note that due to the prefactor exp (θ
2
Γrθ) and the antiperiodicity of Ψ the new field

ψ must be periodic in θ.

Substitution of eq.(16) to (14) removes the gauge field from the equations and
yields the equations for 4d zero modes γµ∂µψi = 0:

e+iθγ5

(

∂r +
i

a
γ5e

−B/2∂θ

)

ψ1 + gΦγ5ψ2 = 0, (18)

e−iθγ5

(

∂r −
i

a
γ5e

−B/2∂θ

)

ψ2 + gΦ∗γ5ψ1 = 0.
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To understand better their chiral structure, we write ψi in terms of D = 4 left
and right handed spinors,

ψi =

(

ψL
i

ψR
i

)

, (19)

and get the system of four equations for the four different chiral components. For
the left spinors we have

e+iθ
(

∂r +
i

a
e−B/2∂θ

)

ψL
1 + gΦ ψL

2 = 0, (20)

e−iθ
(

∂r −
i

a
e−B/2∂θ

)

ψL
2 + gΦ∗ψL

1 = 0,

and, for the right spinors correspondingly

e−iθ
(

∂r −
i

a
e−B/2∂θ

)

ψR
1 − gΦ ψR

2 = 0, (21)

e+iθ
(

∂r +
i

a
e−B/2∂θ

)

ψR
2 − gΦ∗ψR

1 = 0 .

These equations are similar but not identical to those of [20].

3.2 Localised fermion zero modes

The four-dimensional effective Lagrangian for fermion reads

∫

drdθ
√
−G

2
∑

i=1

Ψ̄iΓ
AEM

A ∇MΨi =
∫

drdθ
2
∑

i=1

{

NL(r)ψ̄L
i γ

µ∂µψ
L
i +NR(r)ψ̄R

i γ
µ∂µψ

R
i

}

,

where

NL(r) = exp
[

−A
2

+
∫ r

dρe−B(ρ)/2
(

1

a
+ eAθ(ρ)

)]

, (22)

NR(r) = exp
[

−A
2

+
∫ r

dρe−B(ρ)/2
(

1

a
− eAθ(ρ)

)]

.

This fixes the condition of normalisation of fermion zero modes. The behaviour of
functions NL,R at zero and infinity are as follows:

NL,R(r → 0) → r ,

NL(r → ∞) → exp
(

cr +
1 − n

ac
ecr
)

, (23)

NR(r → ∞) → exp
(

cr +
1 + n

ac
ecr
)

.
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In the following, we take the string winding number n to be positive.

The θ dependence can be removed by the substitutions

ψL
1 = eimθuL

m(r)χL
m(xµ), ψL

2 = ei(m+1−n)θvL
m(r)χL

m(xµ), (24)

and
ψR

2 = eimθuR
m(r)χR

m(xµ), ψR
1 = −ei(m+1+n)θvR

m(r)χR
m(xµ) , (25)

where χL,R
m (xµ) are two-component SO(1, 3) spinors. The radial wave functions can

be found from
(

∂r −
m

a
e−B/2

)

uL
m + gfvL

m = 0 , (26)
(

∂r −
n− 1 −m

a
e−B/2

)

vL
m + gfuL

m = 0 .

for the D = 4 left fermions and from
(

∂r −
m

a
e−B/2

)

uR
m + gfvR

m = 0 , (27)
(

∂r +
n + 1 +m

a
e−B/2

)

vR
m + gfuR

m = 0 .

for the D = 4 right fermions. These equations reduce exactly to the ones of refs.
[20, 23] for the flat case, when B = 2log(r/a). They have the symmetry m ↔
n− 1−m, u↔ v for the left fermions and the symmetry m↔ −n− 1−m, u↔ v
for the right ones. This property will be used later to combine chiral fields to D = 4
Dirac fermions.

The behaviour of the modes at small r follows immediately from [20]: solutions
for left-handed fermions are always regular provided m takes integer values m =
0, . . . , n − 1, whereas one of the independent solutions for right-handed modes is
always singular at the origin. So, we concentrate on large r limit, where B → 2cr
and gf →Mf , where Mf is the fermion mass in the bulk.

Consider first left-handed modes. Introducing x = ecr

ac
, mf = Mf/c > 0, and

uL = xmf emxy(x), equation for y(x) is the one for a degenerate hypergeometric
function,

xy′′ + (1 + 2mf − (n− 2m− 1)x) y′ −mf (n− 2m− 1)y = 0 . (28)

If m = n−1
2

which is possible for odd n, the solution is simply

y = C1 + C2x
−2mf . (29)
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The normalisability condition gives C1 = 0 and requires mf 6= 0. This solution
corresponds to a left-handed chiral fermion localised on a string. If mf = 0, the
mode is not normalisable, since the normalisation integral diverges as exp(cr)1.

For m 6= n−1
2

the x→ ∞ asymptotics of the general solution to (28) is:

y = C1x
−mf + C2e

(n−1−2m)xx−mf−1 , (30)

what gives for uL

uL → C1e
mx + C2e

(n−1−m)xx−1 . (31)

From here and (23) it is clear that the left-handed fermionic modes with m =
0, . . . , n − 1 are always normalisable: to get a normalisable left mode one should
take C2=0 for m < n−1

2
and C1=0 for m > n−1

2
.

For the analysis of the right-handed modes it is sufficient to change n to −n in
eqs. (28-31). These modes are not normalisable at any choice of m.

Finally, the effective Lagrangian is

L =
n−1
∑

m=0

Nmχ̄
L
mγ

µ∂µχ
L
m , (32)

where
Nm = 2π

∫

drNL(r)
(

|um|2 + |vm|2
)

. (33)

To summarise: for g 6= 0 we have exactly n left-handed normalisable fermionic
zero modes. So far we have assumed that n is positive. If n is negative we get the
same pattern for the localised right-handed modes.

The inclusion of the bulk Majorana-type mass (3) adds the following term to the
four-dimensional effective Lagrangian:

Mψc
1Lψ2L + h.c. . (34)

In this case, the modes with number m can be put together with charge-conjugated
modes (n− 1−m) to form a massive Dirac spinor, whereas the mode m = n−1

2
is a

Majorana fermion (for n odd). As we will see in Section 6, the spectrum of charged

bulk fermions develops a mass gap, and, therefore, four-dimensional massive charged
spinors are the genuine localised states. On the contrary, for neutral Majorana
fermions the mass gap is absent (see Section 6 and also [27]), and it represents in
fact a metastable state.

1In examining the normalisability of a solution we need to include the contribution of the r-
dependent prefactor in eq. (22,23).
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4 U(1) charges in D = 4

Our aim in this section is to define the interaction between the localised fermionic
modes and the gauge field Wµ(x), defined in (10). While the interaction of a part
of Wµ coming from the initial gauge field Vµ can be written down immediately, the
gravity part, related to the component of the metric hµθ requires some care. To find
the coupling of the “graviphoton” to ψ, one can calculate the spin connections ΩM

starting from the metric

ds2 = eA(r)ηµνdx
µdxν + dr2 + eB(r) (adθ +Wµ(x)dxµ)2 . (35)

Using standard formulae we can calculate the components of ΩA. They are given
more compactly in terms of the frame components ΩA = EA

MΩM . We choose the
frames

Ea
µ = e−A/2δa

µ , Eθ
µ = −e−A/2Wµ , (36)

Er
r = 1 , Eθ

θ = e−B/2 ,

where a = 0, 1, 2, 3 and an underlined character refers to the orthonormal frame.
The non-vanishing components are

Ωa =
1

4
A′Γra −

1

4
eB/2WabΓ

bθ , (37)

Ωθ =
1

4
B′Γrθ −

1

4
eB/2WabΣ

ab ,

where Wab = e−Aδa
µδb

ν (∂µWν − ∂νWµ). The Wab containing terms could give rise
to the tree level magnetic moment couplings in 4–dimensions. In our model, due to
the D = 6 chirality, they drop out.

Upon substitution from (16), (35) and (36) in (2) we obtain the action,

SF =
∫

d6x
[

Nε1
(r)ψ̄1γ

µ(∂µ +
i

a
WµQ1)ψ1 +Nε2

(r)ψ̄2γ
µ(∂µ +

i

a
WµQ2)ψ2

]

, (38)

where ε2
i = 1 define the chirality, i.e. γ5ψi = εiψi with N+1 = NL, N−1 = NR, and

NL,R are defined in (22). The U(1) charge operator acting on ψ1 is defined by

Q1 = i∂θ −
ε1

2
+
n

2
(39)

and the one acting on ψ2 is given by

Q2 = i∂θ +
ε2

2
+
n

2
. (40)

11



Written in terms of χL introduced in (24) the trilinear part of the effective La-
grangian contain χL and Wµ becomes

Lint =
i

a

n−1
∑

m=0

Qmχ̄
L
mγ

µχL
mWµ , (41)

where

Qm = 2π
(

m− n− 1

2

)∫

drNL(r)
(

|um|2 + |vm|2
)

. (42)

It is essential, that the part of the localised U(1) gauge field, coming from Vµ and
proportional to P (r), cancels out. Using (32), (33), (38) and (39) the D = 4 effective
Lagrangian becomes

L =
m=n−1
∑

m=0

Nmχ̄mγ
µ(∂µ +

i

a
qmWµ)χm (43)

Therefore, the four-dimensional charges of fermions are simply

qm =
(

m− n− 1

2

)

q , (44)

where q is defined in (13). This means that the chiral fermion with m = n−1
2

(for
odd n) is neutral. We also notice that χm can be unified with χc

n−1−m to form a
Dirac spinor.

Thus, for the even vortex number n = 2k, we find k Dirac fermions with charges
1
2
, . . . , k − 1

2
, whereas for an odd vortex number n = 2k + 1 one gets k charged

Dirac fermions and one neutral Weyl fermion. Such a Weyl fermion would give
rise to a gravitational anomaly in two, six or ten dimensions, but has an anomaly
free coupling to gravity in a four-dimensional space-time. As a result, a vector-like
theory in D = 6 leads to a vector-like QED in D = 4. It is interesting to note that
for even n the charges are quantised in units of half-odd integers, while for odd n
we obtain integrally quantised charges.

5 Gravitational localisation of fermions

and anomalies

If there is no interaction between fermions and the scalar, the values ofD = 6 left and
right handed fermionic charges can be arbitrary, up to the requirement of anomaly
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cancellation in six dimensions. If we have nL left fermions with charges ei
L and

nR right-handed fermions with charges ei
R, the absence of gravitational anomalies

requires nL = nR ≡ nF , the absence of gauge anomalies gives
∑

(ei
L)4 =

∑

(ei
R)4, and

the absence of mixed anomalies leads to
∑

(ei
L)2 =

∑

(ei
R)2 [28]. For nF = 1, 2 these

conditions lead necessarily to a vector-like theory in D = 6, whereas for nF ≥ 3 a
genuine chiral gauge theory is allowed2.

To analyse the general case, it is sufficient to put the Yukawa coupling g = 0 in all
equations of the previous sections and remove the constraint relating the charges of
the fermions and the scalar. Without loss of generality all charges can be assumed to
be positive, as the fermion with negative charge can be transformed into a fermion
with the positive charge by operation of charge conjugation which, due to the pseudo
complexity of the chiral spinor representation of SO(1, 5), commutes with chirality
in D = 6. We take, as usual, the winding number n > 0. Since the results are
obvious from trivial modifications of eqs. (22-26), we omit the details.

For each left-handed (right-handed) six-dimensional spinor with charge ei
L (ei

R)
one has left-handed four-dimensional Weyl spinors with normalisable (accounting for
the factor (23)) wave-functions

ψ = exp(±imθ) exp
[

m

a

∫ r

dρe−B(ρ)/2
]

χ(x) , (45)

where, m in the exponent stands for mL or mR which assume integer values in the

range mR = 0, 1, 2... <
ei
R

e
n− 1

2
and mL = 0, 1, 2... <

ei
L

e
n− 1

2
. Also the plus (minus)

sign in the exponent refers to the left (right) D = 6 spinor chirality. The D = 4
electric charges of localised spinors can be read by acting the charge operators Q1

or Q2 given above in (39,40) on ψ. The result is:

1

2
+mL − n

ei
L

e
and − 1

2
−mR + n

ei
R

e
. (46)

The region where D = 4 fermions are localised is related to c and is of the order of
r ∼ 1

c
.

For nF = 1, 2 the effective 4D theory is necessary vectorlike, but for nF ≥ 3
the resulting theory can be chiral and anomalous. As an example, consider the
string with winding number n = 1 and the following anomaly-free in D = 6 charge
assignment: eL

1 = 0, eL
2 = 1, eL

3 = 1 and eR
1 = 2/

√
3, eR

2 = 1/
√

3, eR
3 = 1/

√
3,

e = 1. Normalisable solutions do not exist for the D = 6 fermion with eL
1 =

2We are not assuming that the values of the e’s are necessarily quantized.
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0, while for other fermions only the choice of mL = mR = 0 leads to localised
D = 4 fermions. So, in D = 4 we have five left-handed fermions with charges
−1/2, −1/2, (2/

√
3−1/2), (1/

√
3−1/2) and (1/

√
3−1/2). The four-dimensional

anomaly cancellation equation
∑

(qL
i )3 = 0 is not satisfied. The fact that anomalous

U(1) gauge theory in four dimensions can be constructed as an effective theory out
of an anomaly free theory in higher dimensions means that an abelian anomalous
gauge theory can be made mathematically consistent. Indeed, there has been some
attempts in the past (see, e.g. [29] and references therein) to make physical sense
out of anomalous chiral gauge theories. In our scheme the D = 4 theory is a low
energy approximation to a bigger and consistent theory in D = 6. In this sense our
construction can be considered as a regularization of D = 4 anomalous chiral gauge
theories. The restoration of D = 4 gauge invariance should come from the fact that
the excitations of heavy fermions living in the bulk must be essential and cannot be
discarded, in analogy with ref. [30]. However, the study of the question of how this
happens exactly, goes beyond the scope of this paper.

6 The mass gaps

As we have already discussed, a theory of fermionic and gauge zero modes, localised
on a string, can be a “good” four-dimensional effective field theory provided bulk
modes interact weakly with the localised modes at small energies. A complete
analysis of this problem is complicated, and, to our knowledge has never been done
for any type of brane-world scenario. Our aim in this section is more modest: we
are going to demonstrate that the bulk gauge modes are not separated from zero
modes by a mass gap. At the same time, the charged bulk fermions are massive,
with a mass gap mF ∼ 1

a
. This means that at small energies, E < 1

a
our theory is

indeed the four-dimensional QED. In particular, the processes with visible electric
charge nonconservation have a threshhold behaviour, in contrast with the model of
ref. [12].

6.1 Gauge fields

To define the spectrum of gauge modes one can use general equations of [18] for
spin-1 fluctuations. In our case, three vector fields are present - two coming from
the metric, hµθ and hµr, and the third is the U(1) gauge field making the Nielsen-

14



Olesen string. Our interest is related to the bulk excitations with photon quantum
numbers. The field, corresponding to photon, decouples from all other vector fields
and has the form of (10), where Wµ is now a function of r and xµ (but not of θ).
Since our metric is regular at r → 0, to understand the structure of the spectrum
it is sufficient to consider the r → ∞ limit of the corresponding equation for mass
eigenvalues. In what follows, we will assume that MW > c, so that P (r) can be
neglected in comparison with eA, eB at large distances. Then the equation defining
the spectrum of bulk photons with four-dimensional masses mw follows directly from
eq.(42) of [18] and is, at r → ∞:

− e−
3

2
B ∂

∂r

[

e
3

2
B+A∂W (r)

∂r

]

= m2
wW (r) , (47)

At large r the asymptotic of the solution is simply a collection of plane waves

W (r) → z2 (C1 sin(z) + C2 cos(z)) , (48)

where z = mw

c
ecr, what proves the absence of a mass gap.

6.2 Fermions

A similar consideration can be carried out for fermions. For large r, the Yukawa
term and Majorana mass in (14) can be neglected, and the equations for bulk modes
(19) reads (we consider only 4+ six-dimensional fermion, the case of 4− is treated in
full analogy) :

e+iθ
(

∂r +
i

a
e−B/2∂θ

)

ψL = −e− 1

2
A−2

∫ r
dρe−

B
2 eLAθγµ∂µψR , (49)

e−iθ
(

∂r −
i

a
e−B/2∂θ

)

ψR = e−
1

2
A+2

∫ r
dρe−

B
2 eLAθγµ∂µψL .

The ansatz ψL = eimθψm
L , ψR = ei(m+1)θψm

L removes the angular dependence and
leads, for large r, to the following equation for the spectrum:
[

− ∂2

∂r2
+

2neL/e− 1

a
e−

B
2

∂

∂r
+
m(m+ 1 − 2neL/e)

a2
e−B

]

ψm
L = e−Am2

Fψ
m
L , (50)

where n is the string winding number andm2
F are the eigenvalues of the 4-dimensional

mass2 operator ∂2. At large r, asymptotics of the solutions are

ψm
L → 1√

z
exp

(

−1 − 2neL/e

2amF

z

)

(C1 sin(ωz) + C2 cos(ωz)) , (51)
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where z = mF

c
ecr and

ω2 = 1 − (m− neL/e+ 1
2
)2

(amF )2
. (52)

The numerator on the right hand side of ω2 − 1, is nothing but the square of the
charge operator Q = i∂θ − 1

2
+ neL

e
acting on ψL. It is easy to work out a similar

solution for ψR and show that the states ψR with the same charge as ψL can be put
together to construct a four component massive charged spinor.

From (49) one can see that at small r and mF 6= 0 and for any value ofm > 0 there
is only one regular wave function with the behaviour ψm

L ≃ 2C(m + 1)rm, ψm
R ≃

−CmF r
m+1, where C is an arbitrary constant. This means that the spectrum of

the mass operator is discrete for mF < 1
a
Q and continuous afterwords, see eq. (52).

Thus, the masses of the bulk Dirac fermions are bounded by their charge, viz,
mF > 1

a
Q, and the charged zero modes are separated from other modes by a mass

gap.

7 Conclusion and outlook

In this paper, starting from an anomaly free U(1) gauge theory in D = 6 we have
constructed a full fledged effective D = 4 electrodynamics of charged particles inter-
acting with photons and gravitons. Due to gravitational interactions in D = 6 the
theory dynamically localises massless (or massive, if a Majorana-type mass term is
added in D = 6) charged fermions and photons to a small region around the core of
a Nielsen-Olsen vortex.

Of course, there is a very long way from gravitating quantum electrodynamics
to a realistic model incorporating non-Abelian gauge fields. The U(1) theory we
discussed may be considered as a prototype of such a model. It would be interesting
to extend our work to anomaly free supersymmetric models in D = 6. Such models
do exist [31] and they contain Yukawa type couplings between fermions of different
chiralities which played an important role in our construction.

Another question to ask is what is the low-energy behaviour of an anomalous
D = 4 chiral gauge theory derived from an anomaly free theory in D = 6. In
Section 5 we argued that our scheme can be considered as a regularisation of the
anomalous D = 4 chiral gauge theories. It is clear that by including a finite number
of massive fermionic modes, which have vector-like couplings, the theory cannot be

16



made anomaly free. This implies that all the infinite number of fermionic modes
must be incorporated, i.e. for the full consistency of the theory the heavy fields
should not completely decouple from low energy physics. The study of this question
deserves further investigation.
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