View metadata, citation and similar papers at core.ac.uk

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 4, DECEMBER 2010

-+
brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

103

Thermal-Aware Compilation for Register
Window-Based Embedded Processors

Mohamed M. Sabry, José L. Ayala, and David Atienza

Abstract—The development of compiler-based mechanisms to
optimize the thermal profile of large register files to improve the
processor reliability has become an important issue. Thermal
hotspots have been known to cause severe reliability issues, while
the thermal profile of the devices is also related to the leakage
power consumption and the cooling cost. Register window-based
architectures provide a relatively large register files. However,
such large register files are not designed or utilized for thermal
balancing or reliability enhancement. In this letter, we propose
a compilation flow that utilizes the register windows to optimize
the thermal profile and to reduce the hotspots. As a result, the
thermal profile and reliability of the device is clearly improved.
Simulation results show that the proposed flow achieves up to 91%
reduction of hotspots and 11% reduction of the peak temperature
in embedded processors.

Index Terms—Compilers, registers, reliability, thermal manage-
ment.

I. INTRODUCTION

EMPERATURE dissipation is an important factor in the
T performance and reliability of embedded systems. With
the advent of new technologies and scaling design parameters,
thermal issues have emerged as one of the key design parameters
that need to be addressed.

Thermal dissipation in integrated circuits has a negative effect

on multiple aspects.

* Leakage current, which presents an exponential depen-
dence with temperature [1].

» Reliability of the system, since several processes are driven
by the increase of temperature or the spatial and temporal
gradients that appear during normal functioning.

e Timing delay variations, transient reduction in overall
system performance, or even permanent damage in the de-
vices [2] resulted from thermal evolution over a threshold
in localized areas of the chip (hotspots).

Manuscript received June 18, 2010; accepted August 16, 2010. Date of pub-
lication September 27, 2010; date of current version December 17, 2010. This
work was supported in part by the EC-FP7 STREP Project (248776-PRO3D
STREP), and the Spanish Government Research Grants TIN2008-00508 and
CSDO00C-07-20811. This manuscript was recommended for publication by
R. Kumar.

M. M. Sabry and D. Atienza are with the Embedded Systems Laboratory
(ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland (e-mail: mohamed.sabry @epfl.ch; david.atienza@epfl.ch).

J. L. Ayala is with the Embedded Systems Laboratory (ESL), Ecole Poly-
technique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland, and
also with DACYA, Complutense University of Madrid, 28040 Madrid, Spain
(e-mail: jayala@fdi.ucm.es).

Color versions of one or more of the figures in this letter are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LES.2010.2081343

It has been shown how the mean time between failure (MTBF)
of an IC is divided by 10 for every 300° C rise in the junc-
tion temperature [3]. These facts explain the strong efforts being
done nowadays in the area of thermal optimization in electronic
circuits. Some of these efforts are being conducted to tackle the
thermal problem at all levels of abstraction. Computer architects
develop thermal efficient processor architectures that optimize
the thermal behavior by proposing smart ways of sharing the
computer resources [4]. Also, thermal-aware floorplanning is an
intense area of research [5], since temperature depends on the
placement of the units in the chip. Finally, the software part can
control the thermal profile of many processor-based systems by
the careful execution order of tasks, the assignment of resources
[6], and the code generation phase [7]. In this area, compilers
play an important (and yet unexplored) role.

Due to its high utilization and relatively small area, the reg-
ister file (RF) has been shown to have the highest peak temper-
ature in several studies [8]. Reducing the percentage of the RF
high-power-density spots leads to peak temperatures reduction
for both the entire chip and the RF, which in turn results in im-
proved reliability and reduced leakage power [9].

The thermal response of the RF is clearly determined by the
assignment of registers to the variables defined in the source
code, as well as by the profile of accesses to this device. As
we show in this letter, both parameters can be controlled by
the compiler from a software perspective and this leads to the
definition of our optimization policies. These techniques should
be conceived with a minimal impact on code size and execution
time of the application.

Overall, this letter proposes a novel thermal-aware compila-
tion flow that is embedded in a state-of-the-art compiler. The
proposed flow introduces a thermal-aware compiler that reallo-
cates the registers based on application-specific information re-
garding the control flow graph (CFG) of such application. This
technique is shown to be an effective stand-alone mechanism for
temperature optimization in the microprocessor architecture.

The main contributions of this letter are the following:

* development of compilation techniques that improve the

thermal profile of register window-based RF;

* integration of the proposed mechanisms in the CoSy com-

pilation flow [10], a professional retargetable compiler;

» expanding the set of benchmarks conducted in [11] to cover

a broader set of application types to assure the proposed
flow robustness and effectiveness.
Simulation results show significant enhancements in terms of
reduction of hotspots up to 91%, as shown in Section IV-A.

II. RELATED WORK

In recent years, there has been an intense work at the compiler
level in power-aware scheduling for VLIW processors, which

1943-0663/$26.00 © 2010 IEEE

https://core.ac.uk/display/147961395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

104

<Start compilation process)
v

Scanning, Parsing,
Code analysis, CFG

generation
v
| MWCS | Proposed thermal-
+ aware compilation
| BBCS | phases

‘ ‘ Code generation | |

(]

(End compilation)

Fig. 1. Proposed thermal-aware compilation flow.

proposed different approaches to turn off unused units to save
leakage power [12]-[14]. Some of these works [15] explicitly
target the RF for energy saving. However, these approaches do
not consider temperature as the metric to be improved. Some of
the first static approaches to thermal optimization are found in
[6], [16], where load balancing heuristics and high-level syn-
thesis techniques are considered. In Patel er al. [17], several
thermal managing techniques for multicore architectures are ex-
plored, where register temperature reduction through both RF
and register duplication are investigated.

Similar in scope to ours, a very recent work by Zhou et al. [18]
proposes a register reallocation algorithm for power-density and
thermal minimization in the RF. However, they target a few
specific cases (high-power density registers) in VLIW architec-
tures. VLIW architectures have been also considered in [19],
where a thermal-aware instruction generation algorithm is pro-
posed. However, VLIW architectures are not a window-based
embedded processor, which is the architecture we focus on for
typical embedded systems.

Our proposed work differs from previous static approaches
in: 1) the minimization of several thermal- and reliability-related
metrics like the mean and peak temperature of the RF, as well
as the percentage of hotspots, with a negligible penalty; 2)the
development of thermal-aware register reallocation techniques
that cope with the limitations exhibited by RFs with register
windows; and 3) the integration of these techniques in a high-
quality industrial compilation flow.

We proposed a similar compilation flow in [11], which was
proposed to a broad set of processing architectures. However,
this letter differs from our previous work in: 1) a more focused
analysis to register window-based embedded processors; and
2) the evaluation of the proposed flow effectiveness using an
expanded set of benchmarks.

III. THERMAL-AWARE REGISTER ASSIGNMENT FLOW

Registers in RFs exhibit a high thermal profile due to high
frequency of accesses and proximity of hot registers. Based on
the thermal traces collected for different benchmarks, it is ob-
served that the thermal profile of the device is improved when
the registers are assigned from spread spots of the RF, reducing
in this way the mutual diffusion effect [20]. Based on this obser-
vation, register reallocation policies should be designed in order
to allocate physically non-adjacent registers.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 4, DECEMBER 2010

Thus, a new thermal-aware compilation flow (Fig. 1) is pro-
posed to minimize the high thermal profile of the RF. Such
flow is designed to minimize the mutual diffusion, as well as
self-heating effects. The proposed flow targets register window-
based or register bank-based processing architectures.

The proposed flow is integrated within the compilation
process, before code generation or code emission process,
where the pseudocode generated in the previous phases is
translated to target code. This flow is divided into two stages:
multiwindow context switching (MWCS) and basic-block code
splitter (BBCS), which we describe next.

A. Multiwindow Context Switching (MWCS)

The MWCS technique aims to reduce the mutual thermal dif-
fusion between two adjacent windows allocated due to func-
tional (or subfunctional) calls. Normally, the hierarchy of any
program includes a group of functions, and such hierarchy has
a certain depth that indicates the number of nested called func-
tions (subfunctions). For a function F' that is in the hierarchy
and is allocated to register window ¢, the subfunction in the pro-
ceeding level is executed in window 7 — 1. This leads to the usage
of two adjacent windows that have a thermal diffusion impact
on each other. Hence, the overall thermal profile of the RF is
impacted negatively.

MWOCS is proposed such that successive levels in a program
functional hierarchy are executed in nonadjacent windows,
hence the thermal diffusion between register windows is dimin-
ished in such a scenario. The proposed technique shifts from
the working register window () to a new one (k), in case of a
functional call.

For an RF having N register windows, we calculate k using

k=(i—3+(N%2)+N)%N.)

This new window reallocation allows the called function to use
window ¢ — 3 in case of an even number of register windows
within the RF, and window 7 — 2 in case of an odd number. These
specific windows are selected since these are the first windows
that come in normal sequence after the adjacent window, ¢ — 1.
However, if 2 — 2 is chosen for an RF with an even number of
register windows, only half of it is utilized. Besides that, the
selection of a different value for the next window instead of the
chosen values might have larger overhead impact and slightly
similar performance outcome.

This technique ameliorates the sequence in which register
windows are utilized, such that the spatial distance between two
consecutively used windows is increased, as well as the tem-
poral separation between two physically adjacent windows.

Applying this technique has an overhead cost, since ad-
ditional instructions are needed for such window move-
ments. However, this overhead is negligible, as we show in
Section IV-A.

B. Basic-Block Code Splitter (BBCS)

BBCS aims to reduce the self heating effect of a register
window by allocating more than a single register window to the
same function, regardless the existence of subfunctional calls
in such function (subfunctions uses another window other than
the allocated ones). This technique allows a procedure to use

SABRY et al.: THERMAL-AWARE COMPILATION FOR REGISTER WINDOW-BASED EMBEDDED PROCESSORS 105

two register windows (¢ and ¢ — 1) instead of just one window.
However, these windows are used sequentially, not simultane-
ously (i.e., a portion of the procedure is executed using register
window ¢, and the rest is executed using + — 1). In addition to
thermal reduction benefits, BBCS aims to enhance the bias tem-
perature instability (BTI) by toggling more cells by using more
register windows, which in turn enhances the system reliability
[21].

The algorithmic flow of BBCS is briefly shown in Algorithm
III.1. This technique explores the whole procedure via its con-
trol flow graph (CFG) to locate a point in the procedure struc-
ture, where the preceding instructions are dead (are not executed
again) and the proceeding ones must be executed regardless the
state of the variables (i.e., no flow control instructions are pre-
venting such instructions from being executed).

Starting from the entry block, for each processed basic
block Bp, the predecessor blocks are checked to be in
Predecessor_list. If any block By, is not in this list, it implies
that such block is a successor block and is included in an itera-
tive loop with Bp. Hence, By, is inserted in another list named
Not found_list. When the predecessor blocks are processed,
the successor blocks are inserted in Swuccessor_list (if it is
not already there) and checked to be in Not found_list. If any
block is found, its index is removed from that list.

When the splitting condition is satisfied, the compiler counts
the number of input live registers that should be available in
the new window (Nyiyer). If Nijwer is lower than a certain
threshold (7 H), then the splitting occurs. If not, the algorithm
continues looking for another splitting point. This is shown in
the algorithm by a call to M AY _S PLIT thatreturns a flag indi-
cating if the above mentioned criteria is fulfilled or not (1 or 0).
When splitting occurs, a microcode is injected to move the live
registers to the new window, in addition to the context switching
instruction. It is worth mentioning that the scope of live regis-
ters here is within the local variables, since global variables are
promoted to the main memory, hence not affected by the change
of the used window.

The mentioned threshold (T'H) is related to the number of
output registers of the RF, Nog, and the remaining number in-
structions after the potential splitting block, N;p. T H is calcu-
lated using (2).

TH = {O.OONL'B, when O.OJNL'B S NOR) (2)

Nor, when otherwise

This equation can be interpreted as follows: the instruction
overhead resulting from moving the live registers from the
old window should not exceed 10% the number of proceeding
instructions; N;p. The overhead resulting from moving one
live register is two instructions; one instruction is required for
moving the live register to an output register, while the other is
executed after switching to move the input register (output of
the previous window) to its proper location.

Algorithm IIL.1: BBCS(CFG code_CFG)

Predecessor_list = |
Notfound_list = ||
Successor_list = [code_CFG.entry_block]

SPLIT =0

while SI1ZE(Successor_list > 0) and SPLIT ==

(Bp = FIRST_BLOCK (Successor_list)
DELETE_FIRST_BLOCK (Successor list)
L, = GET_PREDECESSOR(Bp,code_.CFQ)
for each By, € L,

do { if By, € Predecessor_list
then INSERT(BL, Notfound_list)
INSERT(Bp, Predecessor_list)
Ly = GET_SUCCESSOR(Bp,code_ CFQ)

for each B € Lo
if By, € Notfound_list

then DELETE(By, Notfound_list)
if By, € Predecessor_list and
Br & Successor_list
then INSERT(By, Successor_list)
if SIZE(Successor_list) == 1 and
IS_EMPTY (Notfound_list)
then { Bg = FIRST_BLOCK (Successor_list)
L SPLIT = MAY _SPLIT(Bs, code_.CFG)

do

do

if SPLIT ==
then return (FIRST_BLOCK (Successor_list))
else return (NULL)

Moreover, the instruction overhead is limited by the available
output registers in the window No g, because this is an architec-
tural-based limitation and it is not efficient to use the memory
to move the live registers between the used windows.

IV. CASE STUDY: SPARC V8

The SPARC V8 architecture has been selected as represen-
tative case study of register window-based architectures [22]
(other examples of such architecture are AMP 29k and Intel
1960). SPARC V8 is a 32-bit RISC machine with different in-
teger and floating point RFs. Register windows are found only in
the integer, while the floating point RF is a single window with
32-register RF. The considered SPARC processor contains an 8
window RF that includes 136 registers overall (8 global and 16
registers per window).

A. Simulation Results

The experimental work conducted has been performed using
the hardware-software (HW-SW) emulation platform presented
in [20]. This platform is required to extract the power traces
corresponding to the execution of the application.

The proposed compilation techniques have been embedded
in the professional CoSy compilation framework provided by
ACE [10]. A set of benchmarks have been used to measure the
proposed flow performance. Such benchmarks were selected
to explore various application types [multimedia [23], signal
processing (FFT and SPLINE], and conventional benchmarks
(Dhrystone)). The proposed compilation flow was applied on
the main application, unlike the system libraries, which is com-
piled using the default compilation flow. Such compilation pro-
cedure is conducted based on the fact that thermal-aware com-

106

= Default = Proposed

Percentage of total hot-spots in the register file (%)
= .

OG711_Decode DIPEG G711_Encode SPLINE MPEG FFT Dhrystone Average

Fig. 2. Percentage of hotspots on different applications using the original and
modified compilers.

59

1

45 L — — — o~ —
G711_Decode DIPEG G711_Encode SPLINE ~ MPEG FFT Dhrystone Average

Default = Proposed

Temperature (C)
IS ©n » w o
M 4 3 by N

s
3

Fig. 3. Peak temperature values of different applications using the original and
modified compilers.

piling the system libraries is application dependent, implying to
rebuild them for every application.

Simulation results show that the proposed compilation flow
achieves a significant reduction in both the percentage of
hotspots and the peak temperature, as shown in Figs. 2 and 3,
respectively. On average, the percentage of hotspots is reduced
by 63% with respect to such values of the original compilation,
as well as the peak temperature is reduced by 8% with respect
to the original peak temperature. The maximum reduction in
percentage of hotspots and peak temperature reached 91% and
11%, respectively with MPEG benchmark. However, the peak
temperature of FFT is not much affected (reduced by 1.5%).
This is related to the structure of this program. FFT has a
hierarchy depth of 3 levels and the dominant cause of thermal
evolution is the computation performed on a single function
named f ft_float. This function is a single loop function that
could not be split using BBCS. Hence, the only benefit ob-
tained here is the minimization of the diffusion effect between
windows.

V. CONCLUSION

In this letter, we have presented a thermal-aware compilation
flow that, based on a uniform distribution of accesses is able to
optimize the thermal profile of the register file, hence enhance
the reliability of the processor. This flow has been embedded in
a high-quality commercial compiler, and is able to reduce the
percentage of hotspots as well as the peak temperature of the
device up to 91% and 11%, respectively, without any impact on
execution time.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 4, DECEMBER 2010

ACKNOWLEDGEMENT

The authors would like to thank Associated Compiler Ex-

perts (ACE) for their licenses donation of the CoSy Compilation
Framework.

REFERENCES

[1] F. Fallah et al., “Standby and active leakage current control and mini-
mization of CMOS VLSI circuits,” IEICE Trans. Electron., vol. E88-C,
no. 4, pp. 509-519, 2005.

[2] O. Semenov et al., “Impact of self-heating effect on long-term relia-
bility and performance degradation in CMOS circuits,” IEEE Trans.
Device Mater. Rel., vol. 6, no. 1, pp. 17-27, Mar. 2006.

[3] National Semiconductor, Understanding Integrated Circuit Package
Power Capabilities [Online]. Available: www.national.com Apr. 2000

[4] Y.Lietal., “Performance, energy and thermal considerations for SMT
and CMP architectures,” in Proc. Int. Symp. High-Perform. Comput.
Arch. (HPCA-11), San Francisco, CA, 2005, pp. 71-82.

[5] H. D. Mogal et al., “Thermal-aware floorplanning for task migration
enabled active sub-threshold leakage reduction,” in Proc. Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, Nov. 2008, pp.
302-305.

[6] R. Mukherjee et al., “Temperature-aware resource allocation and
binding in high-level synthesis,” in Proc. Design Autom. Conf. (DAC),
Shanghai, China, 2005, pp. 196-201.

[7] F. Mulas et al., “Thermal balancing policy for multiprocessor stream
computing platforms,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 28, no. 12, pp. 1870-1882, Dec. 2009.

[8] J. Srinivasan et al., “Predictive dynamic thermal management for multi-
media applications,” in Proc. Int. Conf. Supercomput. (ICS), San Fran-
cisco, CA, 2003, pp. 109-120.

[9] J. L. Ayala et al., “Thermal-aware data flow analysis,” in Proc. Design
Autom. Conf. (DAC), San Francisco, CA, 2009.

[10] ACE Cosy Compiler [Online]. Available: http://www.ace.nl/compiler/
cosy.html

[11] M. M. Sabry et al., “Thermal-aware compilation for system-on-chip
processing architectures,” in Proc. Great Lakes Symp. VLSI, Provi-
dence, RI, 2010, pp. 221-226.

[12] H. S. Kim et al., “Adapting instruction level parallelism for optimizing
leakage in VLIW architectures,” SIGPLAN Not., vol. 38, no. 7, pp.
275-283, 2003.

[13] H.-S. Yun et al., “Power-aware modulo scheduling for high-perfor-
mance VLIW processors,” in Proc. Int. Symp. Low Power Electron.
Design (ISLPED), Huntington Beach, CA, 2001, pp. 40-45.

[14] W. Zhang et al., “Exploiting VLIW schedule slacks for dynamic and
leakage energy reduction,” in Proc. 34th Annu. Int. Symp. Microarch.
(MICRO 34), Austin, TX, 2001, pp. 102-113.

[15] J. L. Ayala et al., “Energy-aware compilation and hardware design for
VLIW embedded systems,” Indersci. Int. J. Embed. Syst., vol. 3, no. 1,
pp. 73-82, 2007.

[16] M. Mutyam et al., “Compiler-directed thermal management for VLIW
functional units,” SIGPLAN Not., vol. 41, no. 7, pp. 163-172, 2006.

[17] K. Patel et al., “Active bank switching for temperature control of the
register file in a microprocessor,” in Proc. Great Lakes Symp. VLSI,
Lausanne, Switzerland, 2007, pp. 231-234.

[18] X. Zhou et al., “Temperature-aware register reallocation for register
file power-density minimization,” ACM Trans. Design Autom. Elec-
tron. Syst., vol. 14, no. 2, pp. 1-22, 2009.

[19] B. C. Schafer et al., “Temperature-aware compilation for VLIW pro-
cessors,” in Proc. 13th IEEE Int. Conf. Embed. Real-Time Comput.
Syst. Appl., Daegu, Korea, 2007, pp. 426-431.

[20] D. Atienza et al., “Reliability-aware design for nanometer-scale de-
vices,” in Proc. Asia South Pacific Design Autom. Conf. (ASP-DAC),
Seoul, Korea, 2008.

[21] S. V. Kumar et al., “Impact of NBTI on SRAM read stability and de-
sign for reliability,” in Proc. 13th IEEE Int. Conf. Embed. Real-Time
Comput. Syst. Appl., Daegu, Korea, 2006.

[22] “The SPARC Architecture Manual Version 8,” SPARC International,
Inc, Menlo Park, CA.

[23] MediaBench Benchmark Suite [Online]. Available: http://euler.slu.
edu/fritts/mediabench/

