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DATA-orienTeD sCienT ifiC ProCesses  depend on 
fast, accurate analysis of experimental data generated 
through empirical observation and simulation. 
However, scientists are increasingly overwhelmed 
by the volume of data produced by their own 
experiments. With improving instrument precision 
and the complexity of the simulated models, data 
overload promises to only get worse. The inefficiency 
of existing database management systems (DBMSs) 
for addressing the requirements of scientists has led 
to many application-specific systems. Unlike their 
general-purpose counterparts, these systems require 
more resources, hindering reuse of knowledge. Still, 
the data-management community aspires to general-
purpose scientific data management. Here, we explore 
the most important requirements of such systems and 
the techniques being used to address them. 

Observation and simulation of phenomena are keys 
for proving scientific theories and discovering facts of

nature the human brain could other-
wise never imagine. Scientists must 
be able to manage data derived from 
observations and simulations. Con-
stant improvement of observational 
instruments and simulation tools give 
modern science effective options for 
abundant information capture, re-
flecting the rich diversity of complex 
life forms and cosmic phenomena. 
Moreover, the need for in-depth analy-
sis of huge amounts of data relent-
lessly drives demand for additional 
computational support. 

Microsoft researcher and ACM 
Turing Award laureate Jim Gray once 
said, “A fourth data-intensive sci-
ence is emerging. The goal is to have 
a world in which all of the science lit-
erature is online, all the science data 
is online, and they interoperate with 
each other.”9 Unfortunately, today’s 
commercial data-management tools 
are incapable of supporting the un-
precedented scale, rate, and complex-
ity of scientific data collection and 
processing. 

Despite its variety, scientific data 
does share some common features: 

˲˲ Scale usually dwarfing the scale of 
transactional data sets; 

˲˲ Generated through complex and 
interdependent workflows; 

˲˲ Typically multidimensional; 
˲˲ Embedded physical models; 
˲˲ Important metadata about experi-

ments and their provenance; 
˲˲ Floating-point heavy; and 
˲˲ Low update rates, with most up-

dates append-only. 
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Needed are generic, rather than one-off, DBMS 
solutions automating storage and analysis of 
data from scientific collaborations. 
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managing 
scientific Data 

	 key	insights
    managing the enormous amount of 

scientific data being collected is the key 
to scientific progress. 

    though technology allows for the 
extreme collection rates of scientific 
data, processing is still performed  
with stale techniques developed for 
small data sets; efficient processing  
is necessary to be able to exploit the 
value of huge scientific data collections. 

    Proposed solutions also promise 
to achieve efficient management for 
almost any other kind of data. 
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Persistent common requirements 
for scientific data management in-
clude: 

˲˲ Automation of data and metadata 
processing; 

˲˲ Parallel data processing; 
˲˲ Online processing; 
˲˲ Integration of multifarious data 

and metadata; and 
˲˲ Efficient manipulation of data/

metadata residing in files. 
Lack of complete solutions us-

ing commercial DBMSs has led sci-
entists in all fields to develop or 
adopt application-specific solutions, 
though some have been added on top 

of commercial DBMSs; for example, 
the Sloan Digital Sky Survey (SDSS-
1 and SDSS-2; http://www.sdss.org/) 
uses SQL Server as its backend. More-
over, the resulting software is typi-
cally tightly bound to the application 
and difficult to adapt to changes in 
the scientific landscape. Szalay and 
Blakeley9 wrote, “Scientists and scien-
tific institutions need a template and 
best practices that lead to balanced 
hardware architectures and corre-
sponding software to deal with these 
volumes of data.” 

Despite the challenges, the data-
management research community 

continues to envision a general-pur-
pose scientific data-management 
system adapting current innova-
tions: parallelism in data querying, 
sophisticated tools for data definition 
and analysis (such as clustering and 
SDSS-1), optimization of data orga-
nization, data caching, and replica-
tion techniques. Promising results 
involve automated data organization, 
provenance, annotation, online pro-
cessing of streaming data, embedded 
complex data types, support for de-
clarative data, process definition, and 
incorporation of files into DBMSs. 

Scientific databases cover a wide 

Result of seven-trillion-electronvolt collisions (march 30, 2010) in the atLas particle detector on the Large hadron collider at ceRn, hunting 
for dark matter, new forces, new dimensions, the higgs boson, and ultimately a grand theory to explain all physical phenomena.
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processing also helps detect and fine-
tune the telescope’s alignment. The 
image data is then recorded onto tape 
for archival purposes. 

The tapes are physically mailed to a 
processing center at Fermilab in Bata-
via, IL, to be processed through auto-
mated software pipelines to identify 
celestial objects. Many astronomical-
processing-software pipelines process 
the data in parallel. The output of this 
processing, along with the image data, 
is stored in the local archives at Fermi-
lab. The metadata generated from the 
processing pipelines is converted to 
relational format and stored in a MS-
SQL Server database. Astronomers 
closely associated with the SDSS ac-
cess the data from the local archives 
(see Figure 1). 

The data is also published (pub-
licly) once every two years through 
virtual observatories (http://www.
sdss.org/dr7, the final release of the 
SDSS-II project) by running SQL on 
the database at the observatories or 
downloading the entire database over 
the Internet while running the queries 
locally. The SDSS project began pro-
viding public data sets in 2002 with 
three such observatories located at 
the Space Telescope Science Institute 
in the U.S., the National Astronomi-
cal Observatory of Japan, and the Max 
Planck Institute for Astrophysics in 
Germany. 

scope, with notable demand for high 
performance and data quality. Scien-
tific data ranges from medical and 
biological to community science and 
from large-scale institutional to local 
laboratories. Here, we focus on the 
big amounts of data collected or pro-
duced by instruments archived in da-
tabases and managed by DBMSs. The 
database community has expertise 
that can be applied to solve the prob-
lems in existing scientific databases. 

observation and simulation 
Scientific data originates through ob-
servation and/or simulation.16 Obser-
vational data is collected through de-
tectors; input is digitized, and output 
is raw observational data. Simulation 
data is produced through simulators 
that take as input the values of simula-
tion parameters. Both types of data are 

often necessary for scientific research 
on the same topic; for instance, obser-
vational data is compared with simu-
lation data produced under the same 
experimental setup. Consider three 
examples, one each for observational, 
simulation, and combined: 

Observational scientific data. The 
SDSS located at Ohio State Univer-
sity and Johns Hopkins University, is 
a long-running astronomy project. 
Since 2000, it has generated a detailed 
3D map of about 25% of the sky (as 
seen from Earth) containing millions 
of galaxies and quasars. One reason 
for its success is its use of the SQL 
Server DBMS. The SDSS uses the tele-
scope at Apache Point Observatory, 
NM, to scan the sky at regular intervals 
to collect raw data. Online processing 
is done on the data to detect the stars 
and galaxies in the region. This online 

figure 1. Workflow of sDss data. 
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figure 2. Workflow of earthquake-simulation data. 
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The schema of SDSS data includes 
more than 70 tables, though most 
user queries focus on only a few of 
them, referring, as needed, to spectra 
and images. The queries aim to spot 
objects with specific characteristics, 
similarities, and correlations. Pat-
terns of query expression are also lim-
ited, featuring conjunctions of range 
and user-defined functions in both 
the predicate and the join clause. 

Simulation scientific data. Earth 
science employs simulation mod-
els to help predict the motion of the 
ground during earthquakes. Ground 
motion is modeled with an octree-
based hexahedral mesh19 produced by 
a mesh generator, using soil density 
as input (see Figure 2). A “solver” tool 
simulates the propagation of seismic 
waves through the Earth by approxi-
mating the solution to the wave equa-
tion at each mesh node. During each 
time step, the solver computes an 
estimate of each node velocity in the 
spatial directions, writing the results 
to the disk. The result is a 4D spatio-
temporal earthquake data set describ-
ing the ground’s velocity response. 
Various types of analysis can be per-
formed on the data set, employing 
both time-varying and space-varying 
queries. For example, a user might de-
scribe a feature in the ground-mesh, 
and the DBMS finds the approximate 
location of the feature in the simula-

tion data set through multidimen-
sional indexes. 

Combined simulation and observa-
tional data. The ATLAS experiment 
(http://atlas.ch/), a particle-physics 
experiment in the Large Hadron Col-
lider (http://lhc.web.cern.ch/lhc/) be-
neath the Swiss-French border near 
Geneva, is an example of scientific 
data processing that combines both 
simulated and observed data. ATLAS 
intends to search for new discoveries 
in the head-on collision of two highly 
energized proton beams. The entire 
workflow of the experiment involves 
petabytes of data and thousands of us-
ers from organizations the world over 
(see Figure 3). 

We first describe some of major AT-
LAS data types: The raw data is the di-
rect observational data of the particle 
collisions. The detector’s output rate 
is about 200Hz, and raw data, or elec-
trical signals, is generated at about 
320MB/sec, then reconstructed using 
various algorithms to produce event 
summary data (ESD). ESD has an ob-
ject-oriented representation of the 
reconstructed events (collisions), with 
content intended to make access to 
raw data unnecessary for most physics 
applications. ESD is further processed 
to create analysis object data (AOD), 
a reduced event representation suit-
able for user analysis. Data volume 
decreases gradually from raw to ESD 

to AOD. Another important data type 
is tag data, or event-level metadata, 
stored in relational databases, de-
signed to support efficient identifica-
tion and selection of events of interest 
to a given analysis. 

Due to the complexity of the ex-
periment and the project’s worldwide 
scope, participating sites are divided 
into multiple layers. The Tier-0 layer is 
a single site—CERN itself—where the 
detector is located and the raw data 
is collected. The first reconstruction 
of the observed electrical signals into 
physics events is also done at CERN, 
producing ESD, AOD, and tag data. 
Tier-1 sites are typically large national 
computing centers that receive repli-
cated data from the Tier-0 site. Tier-1 
sites are also responsible for repro-
cessing older data, as well as for stor-
ing the final results from Monte Carlo 
simulations at Tier-2 sites. Tier-2 sites 
are mostly institutes and universities 
providing computing resources for 
Monte Carlo simulations and end-
user analysis. All sites have pledged 
computing resources, though the vast 
majority is not dedicated to ATLAS or 
to high-energy physics experiments. 

The Tier-0 site is both computation- 
and storage-intensive, since it stores 
the raw data and performs the initial 
event reconstruction. It also serves 
data to the Tier-1 sites, with aggregate 
sustained transfer rates for raw, ESD, 

figure 3. Workflow of the atLas experiment. 
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and AOD in excess of 1GB/sec over the 
WAN or dedicated fiber. Tier-1 sites 
are also computation- and storage-
intensive, since they store new data 
samples while permanently running 
reconstruction of older data samples 
with newer algorithms. Tier-2 sites are 
primarily CPU-intensive, since they 
generally run complex Monte Carlo 
simulations and user analyses while 
only transiently storing data, with ar-
chival copies of interesting data kept 
at Tier-1s sites. 

The ATLAS experimental workflow 
involves a combination of observed 
and simulated data, as outlined in Fig-
ure 3. The “Data Taking” component 
consumes the raw data and produces 
ESD, AOD, and tags that are replicated 
to a subset of the Tier-1s sites and, 
in the case of AOD, to all Tier-1s and 
Tier-2s, where each Tier-2 site receives 
AOD only from its parent Tier-1 site. 
The “Reprocessing” component at 
each Tier-1 site reads older data and 
produces new versions of ESD and 

AOD data, which is sent to a subset of 
other Tier-1s sites and, in the case of 
AOD, to all sites. The primary differ-
ence between the first reconstruction 
at the Tier-0 site and later reconstruc-
tions at the Tier-1 sites is due to better 
understanding of the detector’s be-
havior. Simulated data is used for this 
reconstruction. 

Simulated data, using Monte Carlo 
techniques, is required to understand 
the behavior of the detector and help 
validate physics algorithms. The AT-
LAS machine is physically very large 
and complex, at 45 meters × 25 meters 
and weighing more than 7,000 tons, 
including more than 100 million elec-
tronic channels and 3,000 kilometers 
of cable. A precise understanding of 
the machine’s behavior is required 
to fine-tune the algorithms that pro-
cess its data and reconstruct simula-
tion data from the observed electrical 
signals. This is the role of the Monte 
Carlo simulations, using large statis-
tics and enough data to compensate 

and understand the machine’s bias. 
These simulations are run at Tier-2 
sites by the “MC Simulation” compo-
nent in Figure 3, with results sent to a 
Tier-1 site. 

Finally, the “User Analysis” compo-
nent aims to answer specific physics 
questions, using a model built with 
specific analysis algorithms. This 
model is then validated and improved 
against Monte Carlo data to compen-
sate for the machine’s bias, includ-
ing background noise, and validated 
against real, observed data, eventually 
testing the user’s hypothesis. 

Beyond observational and simula-
tion data and its hybrids, researchers 
discuss special cases of “information-
intensive” data.16 Sociology, biology, 
psychology, and other sciences ap-
ply research on heterogeneous data 
derived from both observation and 
simulation under various conditions. 
For example, in biology, research is 
conducted on data collected by biolo-
gists under experimental conditions P
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amsterdam, the netherlands.



contributed articles

june 2010  |   vol.  53  |   no.  6  |   communications of the acm     73

intended for a variety of purposes. 
Scientists involved in combustion 
chemistry, nanoscience, and the en-
vironment must perform research on 
data related to a variety of phenomena 
concerning objects of interest rang-
ing from particles to devices and from 
living organisms to inorganic sub-
stances. Information-intensive data 
is characterized by heterogeneity, in 
both representation and the way sci-
entists use it in the same experiment. 
Management of such data emphasizes 
logical organization and description, 
as well as integration. 

Independent of the data type char-
acterizing particular scientific data, 
its management is essentially divided 
into coarse phases: workflow manage-
ment, management of metadata, data 
integration, data archiving, and data 
processing: 

Workflow management. In a simple 
scenario, a scientific experiment is 
performed according to a workflow 
that dictates the sequence of tasks 
to be executed from the beginning 
until the end of the experiment. The 
tasks coarsely define the manner and 
means for implementing the other 
phases of data management: data 
acquisition, metadata management, 
data archiving, and data processing. 
Task deployment may be serial or par-
allel and sequential or looping. Broad 
and long-lasting experiments encom-
pass sets and hierarchies of partial ex-
perimental studies performed accord-
ing to complex workflows. In general, 
many experiments could share a work-
flow, and a workflow could use results 
from many experiments. 

Scientific workflow management 
systems have been a topic for much 
research over the past two decades, 
involving modeling and enactment15 
and data preservation.12 Numerous 
related scientific products are used in 
the sciences. 

Metadata management. Raw data 
is organized in a logically meaning-
ful way and enriched with respective 
metadata to support the diagnosis of 
unexpected (independent) reinvesti-
gation or reinterpretation of results, 
ideally automatically. Metadata in-
cludes information on data acquisi-
tion (such as parameters of the de-
tectors for observational data and 
simulation for simulation data), as 

task, especially for raw observational 
data derived from experiments that 
cannot be replayed or replayed only at 
prohibitively high cost. The complete 
data set is usually archived on tape, 
with selected parts stored on disks. 
Portions of the data might also have to 
be cached temporarily during migra-
tion between tape and disk or between 
various computers. 

Beyond archiving master copies, 
data replication on multiple sites 
may be necessary to accommodate 
geographically dispersed scientists. 
All the challenges of distributing and 
replicating data management come 
into play when coordinating the move-
ment of large data volumes. Efforts 
are under way to manage these repli-
cation tasks automatically.4 

Archiving scientific data is usually 
performed by storing all past data ver-
sions, as well as the respective meta-
data (such as documentation or even 
human communication like email). 
Nevertheless, the problem of organiz-
ing archives relates to the general re-
search problem of data versioning, so 
solutions to the versioning problem 
can be adapted to archiving scientific 
data. Representative versioning solu-
tions (such as the concurrent versions 
system) compute differences between 
sequential versions and use the dif-
ferences for version reconstruction. 
Recent proposals targeting scientific 
data3 exploit the data’s hierarchical 
structure in order to summarize and 
merge versions. 

Data processing. Data is analyzed 
to extract evidence supporting scien-
tific conclusions, ultimately yielding 
research progress. Toward this end, 
the data must undergo a series of 
procedures specified by scientists in 
light of the goal of their respective ex-
periments. These procedures usually 
involve data clustering, mining, and 
lineage, leading to the inference of 
association rules and abnormalities, 
as well as to computation for feature 
identification and tracking. 

Data analysis is often tightly corre-
lated with data visualization, especial-
ly when it comes to simulation data. 
Scientists want a visual representa-
tion of the data to help them recognize 
coarse associations and abnormali-
ties. Interleaving the steps involved in 
visualization and analysis yields the 

well as administrative data about the 
experiments, data model, and mea-
surement units. Other kinds of meta-
data are extracted from raw data, pos-
sibly through ontologies. Metadata 
may also denote data relationships 
and quality. Annotating the data, all 
metadata (accumulated or extracted) 
is critical to deducing experimental 
conclusions. The metadata and work-
flows often complement one another, 
necessitating combined manage-
ment.7 

Data and process integration. Data 
and its respective metadata may be 
integrated such that they can be ma-
nipulated as a unit. Moreover, newly 
collected data may be integrated with 
historic data representing different 
versions or aspects of the same ex-
periment or belonging to different ex-
periments in the same research track. 
The quality of the data, as well as its 
semantic interpretation, is crucial for 
data integration. Data quality can be 
achieved through data cleansing; se-
mantic integration can be achieved 
through ontologies. Beyond data in-
tegration, process integration is often 
needed to simplify the overall flow of 
the experiment and unify partial re-
sults. For example, integration may be 
necessary or desirable for data mining 
algorithms that facilitate feature ex-
traction and provenance. Process in-
tegration might necessitate creation 
or customization of middleware al-
lowing for interoperation among dif-
ferent procedures and technologies. 
Automatic integration of data and 
processes is highly desirable for ease 
of use but also because querying in-
formation as a unit allows parallel and 
online processing of partial results. 
Moreover, scientists want transpar-
ent access to all data. Automatic inte-
gration assumes customizable tools 
implementing generic integration so-
lutions appropriate for scientific data. 
A notably challenging task is how to 
identify commonalities in scientific 
experiments and data in order to cre-
ate integration tools. 

Data archiving. After they’ve met 
the expected standards of data con-
tent, scientists archive the data so 
other scientists are able to access and 
use it in their own research. The data 
must first be stored using robust, reli-
able storage technology, a mandatory 
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right data regions for testing hypothe-
ses and drawing conclusions. The key 
to efficient data processing is a care-
fully designed database and is why 
automated physical database design 
is the subject of recent research (dis-
cussed in the following section). In ad-
dition, there is an imminent need for 
online data processing (discussed in 
the second following section). 

automation 
Errors and inefficiencies due to hu-
man-handled physical database de-
sign are common in both metadata 
management and data processing. 
Much recent research has focused on 
automating procedures for these two 
phases of scientific data management. 

Metadata management. Metadata 
processing involves determining the 
data model, annotations, experimen-
tal setup, and provenance. The data 
model can be generated automatically 
by finding dependencies between dif-
ferent attributes of data.10 However, 
experimenters typically determine 
the model since this is a one-time pro-
cess, and dependencies A=πr2 are eas-
ily identified at the attribute level. 

Annotations are meta-information 
about the raw scientific data and espe-
cially important if the data is not nu-
meric. For example, annotations are 
used in biology and astronomy image 
data. Given the vast scale of scientific 
data, automatically generating these 
annotations is essential. Current au-
tomated techniques for gathering an-
notations from documents involve 
machine-learning algorithms, learn-
ing the annotations through a set of 
pre-annotated documents.14 Similar 
techniques are applied to images 
and other scientific data but must be 
scaled to terabyte or petabyte scale. 
Once annotations are built, they can 
be managed through a DBMS. 

Experimental setups are gener-
ally recorded in notebooks, both pa-
per and electronic, then converted to 
query-able digital records. The quality 
of such metadata is typically enforced 
through policies that must be as au-
tomated as possible. For example, 
when data is collected from instru-
ments, instrument parameters can be 
recorded automatically in a database. 
For manually generated data, the poli-
cies must be enforced automatically. 

For the ATLAS experiment, the pa-
rameters of the detectors, as well as 
the influence of external magnetic de-
vices and collider configurations, are 
all stored automatically as metadata. 
Some policies can be enforced auto-
matically through a knowledge base 
of logical statements; the rest can 
be verified through questionnaires. 
Many commercial tools are available 
for validating policies in the enter-
prise scenario, and the scientific com-
munity can borrow technology from 
them to automate the process (http://
www.compliancehome.com/). 

Provenance data includes experi-
mental parameters and task history 
associated with the data. Provenance 
can be maintained for each data en-
try or for each data set. Since work-
load management tracks all tasks ap-
plied to the data, it can automatically 
tag it with task information. Hence, 
automating provenance is the most 
straightforward of the metadata-pro-
cessing automation tasks. The enor-
mous volume of automatically col-
lected metadata easily complicates 
the effort to identify the relevant sub-
set of metadata to the processing task 
in hand. Some research systems are 
capable of automatically managing a 
DBMS’s provenance information.2 

Data processing. Data processing 
depends on how data is physically 
organized. Commercial DBMSs usu-
ally offer a number of options for de-
termining how to store and access it. 
Since scientific data might come in 
petabyte-scale quantities and many 
scientists work on the same data si-
multaneously, the requirements for 
efficient data organization and re-
trieval are demanding. Furthermore, 
the data might be distributed or rep-
licated in multiple geographically 
dispersed systems; hence, network 
resources play an important role in 
facilitating data access. Possibly hun-
dreds or thousands of scientists could 
simultaneously query a petabyte-scale 
database over the network, requiring 
more than 1GB/sec bandwidth. 

To speed data access, the database 
administrator might have to tune sev-
eral parameters, changing the data’s 
logical design by normalizing the 
data or its physical design. The logi-
cal design is determined by the data 
model in the metadata-processing 

not having to read 
from the disk and 
write computation 
results back saves 
hours to days of 
scientific work, 
giving scientists 
more time to 
investigate the data.
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phase of a science experiment. The 
physical design determines optimal 
data organization and location, cach-
ing techniques, indexes, and other 
performance-enhancing techniques. 
All depend on the data-access pattern, 
which is dynamic, hence, it changes 
much more frequently than logical 
design; physical design automation 
is therefore critical for efficient data 
processing. 

Considering the number of param-
eters involved in the physical design 
of a scientific database, requiring the 
database administrator to specify and 
optimize the parameters for all these 
techniques is unreasonable. Data 
storage and organization must be au-
tomated. 

All DBMSs today provide tech-
niques for tuning databases. Though 
the provision of these techniques is 
a step in the right direction, existing 
tools are insufficient for four main 
reasons: 

Precision. They require the query 
workload to be static and precise; 

Relational databases. They consider 
only auxiliary structures to be built on 
relational databases and do not con-
sider other types of data organization; 

Static database. They assume a 
static database, so the statistics in the 
database are similar to the statistics at 
the time the tool is run; and 

Query optimizer. They depend on 
the query optimizer to direct their 
search algorithms, making them slow 
for large workloads. 

Recent database research has ad-
dressed these inherent DBMS limita-
tions. For example, some techniques 
do not require prespecifying the 
workload,1 and others make the cost 
model more efficient, enabling more 
thorough search in the data space.18 
However, they also fall short in several 
areas; for example, they are not robust 
enough to change database statistics 
and do not consider data organization 
other than relational data. Likewise, 
data-organization methods for dis-
tributed data and network caches are 
nascent today. Automatically utilizing 
multiple processing units tuned for 
data-intensive workloads to scale the 
computation is a promising research 
direction, and systems (such as Gray-
Wulf24) apply this technique to achieve 
scalability. 

Physical and logical design-auto-
mation tools must consider all param-
eters and suggest optimal organiza-
tion. The tools must be robust to small 
variations in data and query changes, 
dynamically suggesting changes in 
the data organization when the query 
or data changes significantly. 

online Processing 
Most data-management techniques in 
the scientific community are offline to-
day; that is, they provide the full result 
of the computation only after process-
ing an entire data set. However, the 
ever-growing scale of scientific data 
volume necessitates that even simple 
processes, one-time data movement, 
checksum computation, and verifica-
tion of data integrity might have to run 
for days before completion. 

Simple errors can take hours to 
be noticed by scientists, and restart-
ing the process consumes even more 
time. Therefore, it is important that 
all processing of scientific data be per-
formed online. Converting the pro-
cesses from offline to online provides 
the following benefits: 

Efficiency. Many operations can be 
applied in a pipeline manner as data 
is generated or move around. The op-
erations are performed on the data 
when already in memory, which is 
much closer to the CPU than to a disk 
or tape. Not having to read from the 
disk and write computation results 
back saves hours to days of scientific 
work, giving scientists more time to 
investigate the data. 

Feedback. Giving feedback to the 
operations performed on the scientif-
ic data is important, because it allows 
scientists to plan their analysis accord-
ing to the progress of the operation. 
Modern DBMSs typically lack a prog-
ress indicator for queries, hence sci-
entists running queries or other pro-
cesses on DBMSs are typically blind to 
the completion time of their queries. 
This blindness may lead to canceling 
the query and issuing a different one 
or abandoning the DBMS altogether. 
DBMSs usually allow a query issuer 
to compute the “cost” of a query in a 
unit specific to the DBMS. This cost is 
not very useful to scientists, since it 
doesn’t correspond to actual running 
time or account for the complete set of 
resources (such as memory size, band-

width, and operation sharing) avail-
able to the DBMS for running the que-
ry. Operations, including querying/
updating data, should thus provide 
real-time feedback about the query 
progress to enable scientists to better 
plan their experiments. 

Debugging. Scientific data is typi-
cally processed on multiprocessor 
systems, as scientific applications are 
often parallelizable and computation 
can thus scale to data volume. How-
ever, it is nearly impossible to detect 
all the problems of a parallel program 
at development time. Using source 
debuggers for parallel programming 
is infeasible, since debuggers change 
the timing of the programs, thereby 
hiding many problems. Debugging be-
comes even more difficult when pro-
grams execute complex tasks (such as 
queries with user-defined functions). 

Some research DBMS prototypes 
provide feedback on query progress,13 
though they are not yet incorporated 
into commercial systems, so the bene-
fits are still not available to scientists. 
Similarly, tools that provide online 
visualization of progress for specific 
simulations are not generic enough 
for a variety of scientific experiments. 

Computational steering. Building 
complex simulations is a challenge 
even in uniprocessor systems. After 
building them, the submitters-scien-
tists often boot on suboptimal param-
eters, unaware that they’re indeed re-
lying on suboptimal parameters until 
the entire simulation is over. There-
fore, online processing, combined 
with online visualization, can simul-
taneously help debug such programs 
and parameters. The system’s opera-
tions should allow an observer to gen-
erate snapshots of the simulations or 
operations and, if possible, control 
the simulation to remove potential 
problems. Manual intervention in 
an otherwise automatic process is 
called “computational steering”; for 
example, in parallel programs, ob-
servers could decide which deadlocks 
to break or when simulations should 
change a parameter on the fly. 

Software for computational steer-
ing includes the scientific program-
ming environment SciRun (http://
www.sci.utah.edu/cibc/software/106-
scirun.html). Nevertheless, software 
must support simulations with pet-
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abytes of data and execution of com-
plex tasks. For software designers, it 
may sometimes be beneficial to model 
the simulations and data processing 
as event generators, using streaming 
and complex event-processing tech-
niques to summarize data operations 
with little overhead or controllable ac-
curacy guarantees. 

Data and Process integration 
Large-scale experiments organized 
by scientists collect and process huge 
amounts of raw data. Even if the origi-
nal data is reorganized and filtered in 
a way that keeps only the interesting 
parts for processing, these interest-
ing parts are still big. The reorganized 
data is augmented with large volumes 
of metadata, and the augmented reor-
ganized data must be stored and ana-
lyzed. 

Scientists must collaborate with 
computer engineers to develop cus-
tom solutions supporting data stor-
age and analysis for each experiment. 
In spite of the effort involved in such 
collaborations, the experience and 
knowledge gained this way is not 
generally disseminated to the wider 
scientific community or benefit next-
generation experimental setups. 
Computer engineers must therefore 
develop generic solutions for storage 
and analysis of scientific data that can 
be extended and customized to reduce 
the computing overhead of time-con-
suming collaborations. Developing 
generic solutions is feasible, since 
many low-level commonalities are 
available for representing and analyz-
ing experimental data. 

Management of generic physical 
models. Experimental data tends to 
have common low-level features not 
only across experiments of the same 
science, but across all sciences. For 
example, reorganized raw data en-
hanced with metadata usually involves 
complex structures that fit the object-
oriented model. Scientific data repre-
sentation benefits from inheritance 
and encapsulation, two fundamental 
innovations of the object-oriented 
data model. 

Beyond its complexity in terms of 
representation, scientific data is char-
acterized by complex interdependen-
cies, leading to complex queries dur-
ing data processing and analysis. Even 

though the object-oriented model is 
suitable for the representation of sci-
entific data, it cannot efficiently opti-
mize and support complex queries. 

Nevertheless, most scientific data 
is represented by objects with strong 
commonalities with respect to their 
structural elements. DBMSs must be 
extended so they manage the common 
structural elements of scientific data 
representations as generic database 
objects, and database support for 
these objects must include efficient 
ways to store and index data. 

Experimental data derived from 
simulations is frequently represented 
as meshes ranging from structured to 
unstructured and consisting of tetra-
hedra, hexahedra, or n-facets cells. 
For example, an earthquake simula-
tion data set may be represented as 
an unstructured hexahedral mesh. A 
typical volume of earth, say, 100km 
× 100km × 30km, is represented by a 
mesh consisting of roughly one bil-
lion nodes and one billion elements 
requiring about 50GB of storage; such 
a mesh is capable of resolving seis-
mic waves up to 2Hz. Scientific data 
management would benefit greatly if 
DBMSs offered storage and indexing 
methods for meshes. Initial efforts 
toward supporting meshes in DBMSs 
were presented in research19 and com-
mercial products.8 

Multidimensional data also needs 
storage and indexing methods. Most 
scientific data is represented as mul-
tidimensional arrays, but support for 
multidimensional arrays in RDBMSs 
is poor. Computer engineers must 
produce custom solutions for manip-
ulating multidimensional data, lead-
ing to many domain-specific data for-
mats, including netCDF (http://www.
unidata.ucar.edu/software/netcdf/) 
and HDF (http://www.hdfgroup.org/) 
for climate data; FITS (http://heasarc.
gsfc.nasa.gov/docs/heasarc/fits.html) 
for astronomical data; and ROOT 
(http://root.cern.ch/drupal/) for high-
energy physics data. 

An experimental study5 showed 
that, even if using array primitives in 
RDBMSs, native file formats outper-
formed the relational implementa-
tion by a factor of 20 to as much as 80. 
Proposed scientific DBMSs6,23 provide 
multidimensional arrays as first-class 
types, aiming to bridge the gap be-

tween DBMSs and native files in the 
process. The multidimensional ar-
rays are present in multidimensional 
online analytical processing (MOLAP) 
implementations from mainstream 
DBMSs that allow fast exploratory 
analysis of the data by pre-computing 
aggregations on multiple dimensions. 
However, MOLAP needs a significant 
amount of offline processing and an 
enormous amount of disk space to 
store the pre-computed aggregations, 
making them unsuitable for the enor-
mous scale of scientific data. Attempts 
to support exploratory ad hoc OLAP 
queries on large data sets, includ-
ing wavelets, promises to enable fast, 
powerful analysis of scientific data.21 

A frequently used type of scientific 
data is time-and-space-based observa-
tions, meaning interesting data sets 
are trajectories in space and time. As 
trajectories are not inherently sup-
ported by databases, data points are 
usually stored individually and pro-
cessed for line-fitting during scientific 
analysis. Line-fitting is a resource-
consuming task and could be avoided 
if a DBMS inherently supported tra-
jectories. Inherent support for trajec-
tories is related to multidimensional 
array support, since trajectories are 
actually polylines, and each line can 
be approximated (fitted) by functions. 
Promising research results have been 
reported for managing trajectories.22 

DBMSs should inherently support 
new data types while accounting for 
the specialized use of the new types 
for representing scientific data. For 
example, the Hierarchical Triangular 
Mesh method11 subdivides spheri-
cal surfaces so objects localized on a 
sphere can be indexed and queried 
efficiently. Scientific data is usually 
persistent, meaning it is rarely (if ever) 
changed or involved in complex as-
sociations. While developing support 
mechanisms (such as indexes) for new 
data types, priority must go to search 
rather than to update efficiency. The 
persistence of scientific data allevi-
ates a major requirement, making it 
possible to develop efficient indexes 
for the new types. 

Management of generic data pro-
cessing. Scientific data processing dif-
fers from experiment to experiment 
and discipline to discipline. No mat-
ter how wide the scope of processing 
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and overall heterogeneity, processing 
frequently encompasses generic pro-
cedures. 

It is most common that scientific 
data is searched in order to find inter-
esting regions with respect to prespec-
ified characteristics, data regions, and 
abnormalities. Moreover, metadata 
processing consists of data annota-
tion, as well as feature extraction. Data 
tagged with parameter values refers to 
the condition of the experiment and is 
mined to deduce common character-
istics and behavior rules. 

Generic processes that produce 
metadata (such as those just men-
tioned) must be supported inherently 
by the DBMS for all generic physical 
models in a parameterized manner, 
thus bringing processing close to 
the data and leading to reduced data 
movement and reorganization, along 
with efficient processing execution 
in the DBMS. Each generic physical 
model must include templates sup-
porting the generic procedures for the 
model in a customizable manner. For 
example, the particles in the ATLAS 
experiment are tracked using spatio-
temporal attributes. Even though the 
data sets are enormous, only a small 
amount of space and time are popu-
lated by particles. Therefore, the data 
sets would benefit from a generic 
DBMS customizable procedure sup-
porting compression. 

Scientists would benefit even more 
if the definition and customization 
of the templates could be performed 
using a declarative language. Such a 
language would give users intuitive 
guidance as to the specification of 
the customization procedure, as well 
as to the combination and pipelining 
of multiple procedures. In this way, 
the processing burden would be lev-
eraged to the DBMS, and scientists 
would not have to function as com-
puter engineers. 

file management 
The vast majority of scientific data 
is stored in files and manipulated 
through file systems, meaning all pro-
cessing, from search to computation, 
is performed in the content of the 
files. Sophisticated frameworks have 
been proposed to manage the files 
over a large number of disks, includ-
ing storage resource management 

technology (https://sdm.lbl.gov/srm-
wg/index.html). 

Existing persistent scientific data 
in files is huge and will not be moved 
to databases, even if they support ef-
ficient scientific experimentation. 
Moreover, the tradition in applica-
tions that manipulate scientific data 
files is long, and implementing the 
same functionality in modules that 
are plug-able on DBMSs needs further 
effort. A long tradition and the need 
for plug-able capabilities mean that 
a full-fledged querying mechanism 
for files, similar to DBMSs, is need-
ed. Such a querying mechanism can 
be constructed in either of two ways: 
enhance current DBMSs so they uni-
formly manage both structured data 
and unstructured data in files; and 
create a management layer on top of 
both the DBMS and the file system to 
enable transparent querying of struc-
tured and unstructured data. Each 
approach has advantages and disad-
vantages. 

Enhancing a DBMS to manage files 
and data means that all mechanisms 
in the system should be extended for 
files. Querying on files is assumed 
to be efficient since it would benefit 
from sophisticated database struc-
tures (such as indexes, autonomic 
database organization, and database 
query planning). Moreover, querying 
structured and unstructured data is 
an opportunity for tight interaction 
among queries and query results and 
refined optimization in intermediate 
querying steps. 

Extending DBMSs to manage files is 
a challenge for the data-management 
community since it entails reconsid-
eration of many database protocols 
and a total rebuild of all database 
procedures with new enhancements 
for unstructured data. Yet it is inevi-
table that such a breakthrough in the 
functionality of DBMSs will involve 
substantial redundancy, since a big 
part of database management (such 
as transaction management) is use-
less in the manipulation of scientific 
data. Recent research efforts seeking 
to integrate scientific files into DBMSs 
include Netlobs, a netCDF cartridge 
for Oracle (http://datafedwiki.wustl.
edu/images/f/ff/Dews_poster_2006.
ppt) and Barrodale Computing Ser-
vices, Ltd., on Postgres (http://www.

DBmss must be 
extended so  
they manage  
the common 
structural elements 
of scientific data 
representations  
as generic database 
objects, and 
database support 
for these objects 
must include 
efficient ways  
to store and  
index data. 
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and file management, but data manip-
ulation must still address the diversity 
of experimentation tasks across the 
sciences, the complexity of scientific 
data representation and processing, 
and the volume of collected data and 
metadata. Nevertheless, data-man-
agement research in all these areas 
suggests the inherent management 
problems of scientific data will indeed 
be addressed and solved. 
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