
Composing Relaxed Transactions
Vincent Gramoli
University of Sydney

Email: vincent.gramoli@epfl.ch

Rachid Guerraoui
EPFL

Email: rachid.guerraoui@epfl.ch

Mihai Letia
EPFL

Email: mihai.letia@epfl.ch

Abstract—As the classical transactional abstraction is some-
times considered too restrictive in leveraging parallelism, a lot of
work has been devoted to devising relaxed transactional models
with the goal of improving concurrency. Nevertheless, the quest
for improving concurrency has somehow led to neglect one of
the most appealing aspects of transactions: software composition,
namely, the ability to develop pieces of software independently
and compose them into applications that behave correctly in the
face of concurrency. Indeed, a closer look at relaxed transactional
models reveals that they do jeopardize composition, raising the
fundamental question whether it is at all possible to devise such
models while preserving composition. This paper shows that the
answer is positive.

We present outheritance, a necessary and sufficient condition
for a (potentially relaxed) transactional memory to support
composition. Basically, outheritance requires child transactions
to pass their conflict information to their parent transaction,
which in turn maintains this information until commit time.
Concrete instantiations of this idea have been used before,
classical transactions being the most prevalent example, but we
believe to be the first to capture this as a general principle as well
as to prove that it is, strictly speaking, equivalent to ensuring
composition.

We illustrate the benefits of outheritance using elastic trans-
actions and show how they can satisfy outheritance and provide
composition without hampering concurrency. We leverage this
to present a new (transactional) Java package, a composable
alternative to the concurrency package of the JDK, and evaluate
efficiency through an implementation that speeds up state of the
art software transactional memory implementations (TL2, LSA,
SwissTM) by almost a factor of 3.

Index Terms—composition; relaxed transactions; reusability

I. INTRODUCTION

One of the most desirable properties in software engi-
neering is composition. Basically, pieces of software, called
components, should be developed and tested independently
and then later composed to create larger software pieces
and ultimately applications. Szyperski [1] argues that, like
in all other engineering disciplines, designing software for
composition is crucial, naming reuse, time to market, quality
and viability as some of the key benefits.

Composition in the sequential domain has been studied
extensively and techniques such as object oriented program-
ming have proved to be very useful in this regard. How-
ever, recent technological trends have introduced concurrency

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement N 238639, ITN project TRANSFORM.

Part of this work was done when Vincent Gramoli was with EPFL receiving
funding from grant agreement N 248465, the S(o)OS project.

into programming, rendering composition significantly more
challenging. Key properties such as atomicity and deadlock
freedom are hard to preserve under composition. Other great
works [2], [3] consider parallel composition of software. In
this view, two operations π1 and π2 are said to be composed
when they are executed in parallel by different processes. In
this paper, we consider concurrent composition, meaning that
operations π1 and π2 are invoked in sequence by a higher
level operation π (referred to as a composed operation), and
that multiple instances of π can be executed in parallel.

The following simple example from Harris et al. [4]
illustrates the difficulty of composing lock-based programs:
remove and put cannot be composed into a move operation
because a concurrent execution with two instances of move,
one moving a value from key k to k′ and another one from
key k′ to k would be deadlock-prone. In the same vein,
lock-free implementations are generally hard to compose. It is
for instance impossible to use the remove and put operations
of a hash table to obtain a concurrent move operation
that can be used to rebalance the table after a resize [5].
Indeed, the difficulty of composing lock-free operations is
a major limitation of the java.util.concurrent package [6]
of the JDK [7]–[9]. For example, the size method of the
ConcurrentSkipListMap class is known not to be atomic,
forcing the user to explicitly lock existing sequential data
structures in a coarse-grained manner, which then severely
hampers concurrency.

A memory transaction is an appealing concurrent program-
ming abstraction for it makes programs easily composable [4],
[10]–[12]. Composing with transactions simply consists of
encapsulating operations inside a new transaction [4], without
needing to modify the code as when using techniques based
on compare-and-swap [13]. The result is a composition that
preserves atomicity and deadlock-freedom. One can further-
more use transactions to compose operations that are them-
selves obtained through composition, and so on. This modular
development process has the potential to greatly simplify the
task of the programmer.

Yet, transactions in their classical form are often considered
too restrictive [14]. They tend to reduce concurrency by over-
conservatively aborting transactions even in executions that
would semantically be correct at the application level, should
the transactions be actually committed. Several variants of the
original transactional abstraction have been proposed, all pro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

insertIfAbsent(x,y)

contains(y)

read-only (no conflicts)

insert(x)

TimeRead

Write

Fig. 1. Composing an insertIfAbsent.

moting concurrency by accounting for application semantics
when orchestrating transaction interleaving [15]–[20]. These
are referred to as relaxed (or weak) models because they
allow more interleavings with the intent of providing better
performance. Typically, these models do not blindly reason at
the level of memory reads and writes when detecting conflicts
between concurrent transactional operations, but rather require
from the programmer to somehow encode the way higher-level
operations conflict. Relaxed transactions [21] have been shown
to significantly outperform classical transactions using realistic
workloads such as the STAMP benchmark suite [22].

However, the attention has mainly been devoted to ef-
ficiently implementing these models, forgetting sometimes
about one of the most appealing aspects of transactions,
namely composition. In fact, a closer look reveals that com-
position can sometimes easily be compromised when relaxing
the original transactional model. We illustrate this using the
elastic model [17], designed to take advantage of the semantics
of search data structures. Elastic transactions improve concur-
rency by ignoring conflicts generated by their read-only prefix,
as in the case of lists, trees, etc. Now assume a set abstraction
having the operations contains(x) and insert(x) implemented
using elastic transactions, and a programmer who wants to
compose them to obtain the operation insertIfAbsent(x, y).
This operation will insert x only if y is not present in the set.
The programmer is now required to make a choice, to make
or not the new transaction elastic, and he must choose wisely.
If he chooses to make it elastic, the insertIfAbsent will not
generate any conflicts based on its read-only prefix, including
the entire contains(y) operation, as shown in Figure 1. If such
conflicts are ignored, a concurrent transaction could insert y
after the insertIfAbsent finds it absent but before inserting
x. The result is an execution that violates atomicity. As an
alternative, the model allows the programmer to make the
insertIfAbsent a regular transaction, and thus lose the perfor-
mance of having composed elastic insert and contains instead
of ones implemented using regular transactions. Whatever the
choice, either correctness or performance is sacrificed.

The motivation of this work is to determine whether
relaxing the original transaction model inherently hampers
composition. We believe the question to be fundamental
because, without its ability to facilitate concurrent software

composition, the transaction abstraction looses most of its
appeal.

This paper starts by defining a framework to reason about
the notion of concurrent composition of software. We believe
this framework to be interesting in its own right since, to the
best of our knowledge, the problem of concurrent composition
has not been studied theoretically. In short, we propose a
simple yet precise way to capture the very idea that one
should be able to construct a new operation that invokes
existing operations in sequence. Given that existing operations
behave correctly in the face of concurrency, both new and old
operations must execute correctly in a concurrent setting. In
our context, the desired correctness criterion is atomicity.

To the best of our knowledge, the present paper is the first
to clearly define a correctness criterion for composing relaxed
transactions. We continue by presenting a property we call
outheritance, which we show to be necessary and sufficient for
ensuring composition of relaxed transactions. The property is
defined using the notion of a protected set. Basically, every
transaction t protects certain elements (memory locations,
locks, etc.) in order to detect when atomicity might be violated.
These elements form what we call the protected set of t. In
a nutshell, outheritance stipulates that the protected set of the
child transactions must be included in the protected set of the
parent transaction, thus guaranteeing atomicity.

Concrete instantiations of the principle we call outheritance
have been used before. Probably the most notable one is repre-
sented by classical transactions, using flat nesting. A classical
transaction protects all the memory locations it accesses and
after commit, they are protected by its parent transaction.
However, we believe outheritance to be a general principle that
can be used for ensuring atomicity of different types of relaxed
transactions or even other synchronization mechanisms. Due
to its simple formulation, outheritance can easily be used to
check the composability of a relaxed transactional model, as
well as when designing a new model, to ensure that it provides
composition.

We show however that outheritance can be achieved
without necessarily hampering concurrency and performance.
We describe our new Software Transactional Memory
(STM), called OE-STM, which satisfies ouheritance while
implementing the elastic transaction model [17]. (Outheritance
is by no means tied to any specific transactional model and
other models could have been considered instead of the elastic
one). We compare our STM to three state of the art ones,
TL2 [23], LSA [24] and SwissTM [25]. Our STM speeds up
state-of-the-art STMs by up to 2.7× on a 64-hardware-thread
machine.

The rest of the paper is organized as follows. Section II
introduces our system model and Section III defines compo-
sition. Section IV presents outheritance and shows it to be
necessary and sufficient for composition. Section V describes

the design of our new STM, which we used to build the trans-
actional alternative to the concurrency package of the JDK
described in Section VI. Section VII shows the performance of
this package. Section VIII reviews related work and Section IX
concludes the paper.

II. SYSTEM MODEL

Our transactional model builds upon that of Weihl [26],
which we refine by introducing the notion of protection
element that abstracts away the conflict detection mechanisms
employed by relaxed transactional models. Using this we then
proceed to define relax-serializability, a correctness condition
for relaxed transactions, as well as a correctness criterion for
composing these transactions.

For our purposes, a system is composed of processes and
objects. Objects represent the state of the system; they provide
operations through which processes executing transactions
examine and change the system state. Objects are the only
mean through which processes can pass information among
themselves. We denote by O the set of objects in the system
and for an object o ∈ O, o.ops is the set of operations
provided by the object and o.vals is the set of return values of
these operations. Processes are sequential threads of control
that change the state of the system by executing transactions
supplied by a transactional memory. We denote by P the,
potentially infinite, set of processes in the system.

We consider that a transactional memory exposes an inter-
face allowing processes to start transactions, invoke operations
on objects in the system, and finally attempt to commit
the transaction. A transaction can either commit, making its
changes visible to other transactions, or abort, in which case
none of its changes are visible. Each transaction has a unique
transaction identifier t ∈ T , where T is the set of all
transaction identifiers. The transactional memory guarantees
serializability, or relax-serializability, as defined later in this
section. Throughout this work we are interested only in
transaction instances and, by abuse of notation, we refer to
them simply as transactions.

As we are reasoning about the atomicity properties of a
transactional memory system, we are interested in events that
occur at the interface between the transactional memory and
the objects. To make our reasoning simpler, we also consider
virtual events representing the beginning, commit or abort of
transactions. Thus we identify several types of events:
• process p ∈ P begins transaction t ∈ T , written
〈begin(t), p〉;

• transaction t ∈ T invokes operation op ∈ o.ops on object
o, written 〈op, o, t〉;

• operation op of object o invoked by transaction t ∈ T
terminates with result v ∈ o.vals, written 〈v, o, t〉;

• transaction t ∈ T executed by process p ∈ P commits,
written 〈commit(t), p〉;

• transaction t ∈ T executed by process p ∈ P aborts,
written 〈abort(t), p〉.

As we do not reason about progress properties of the transac-
tional memory, we found no need to separate the 〈begin(t), p〉,

〈commit(t), p〉 and 〈abort(t), p〉 events into invocation and
response pairs.

We model an observation of the system as a finite sequence
of events and we use the · operator to denote sequence
concatenation. We consider the virtual event 〈begin(t), p〉 to
precede the first operation invocation performed by transaction
t, while the 〈commit(t), p〉 virtual event follows the last
response received by the transaction.

For a sequence of events H and an object o ∈ O, we denote
by H|o the subsequence of H containing events involving
object o. For a transaction identifier t ∈ T and a process
p ∈ P , we say that transaction t is executed by process p
in event sequence H , if H contains the event 〈begin(t), p〉.
We then denote by H|p the subsequence of H containing the
events involving transactions executed by p.

A sequence of events is said to be a transaction having
transaction identifier t if:
• the first event is a 〈begin(t), p〉 for some process p;
• the next events are pairs of matching invocation and

response events involving transaction t;
• the sequence ends with either a commit event
〈commit(t), p〉 or an abort event 〈abort(t), p〉.

Not all event sequences make sense as observations and as
such we restrict our attention on sequences where for every
process p that appears in H , H|p can be extended by possibly
appending a response and a commit event to a sequence of
transactions. We refer to these “well-formed” sequences as
histories.

For a history H , we define transactions(H) to be
the set of transactions t such that 〈begin(t), p〉 ∈ H
for some process p. We then define committed(H) to be
the set of transactions t such that 〈commit(t), p〉 ∈ H
and aborted(H) as the set of transactions t such that
〈abort(t), p〉 ∈ H . We also define live(H) as the set
live(H) = transactions(H) \ (committed(H) ∪ live(H)).
We denote by committed-ops(H) the subsequence of H con-
taining events that involve transactions t ∈ committed(H).
As we continue to reason about the correctness of committed
and live transactions, we remove from histories all events
involving aborted transactions.

In the same way as Weihl [26], we consider the serial
specification o.seq of an object o to model the acceptable
behavior of the object in a sequential environment. If ω is
a sequence of pairs [op, v], with op ∈ o.ops and v ∈ o.vals,
then o.seq is the set of all sequences ω that are considered
acceptable behavior for the object in a sequential environment.

For an object o, a sequence ω of pairs [op, v], with op ∈
o.ops and v ∈ o.vals, is said to be trivially commutative if
∀ω′, ω′′ sequences of [op, v] pairs of o, ω · ω′ · ω′′ ∈ o.seq if
and only if ω · ω′′ · ω′ ∈ o.seq.

For a history H and two events e, e′ ∈ H , we denote
the fact that e′ follows e in H by e ≺ e′. By abuse
of notation, for two transactions t, t′ ∈ committed(H), if
〈commit(t), p〉 ≺ 〈commit(t′), p′〉 in H we also say that t′

follows t in H and we denote it by t ≺ t′. We say that t′

immediately follows t in H and denote it by t ≺i t′ if t ≺ t′

and @t′′ ∈ committed(H)\{t, t′} such that t ≺ t′′ ≺ t′ in H .
We say that two transactions, t executed by process p, and t′,
executed by p′, are concurrent in history H if 〈begin(t), p〉 ≺
〈begin(t′), p′〉 and 〈begin(t′), p′〉 ≺ 〈commit(t), p〉 in H .
History H is said to be sequential if no transactions are
concurrent in H .

For a history H we denote by ops(H) the subsequence of H
containing all the operation events (invocations and responses).
For a sequential history H , we define opseq(H) to be the
sequence obtained from ops(H) by mapping all the matching
pairs of invocation and response events 〈op, o, t〉, 〈v, o, t〉 to
operation, value pairs [op, v]. To do the opposite, for an object
o and transaction identifier t, we denote by ω 7→ t the sequence
of events obtained by converting every pair [op, v] ∈ ω to the
pair of events 〈op, o, t〉, 〈v, o, t〉.

A sequential history H is said to be legal if for every object
o that appears in H , opseq(H|o) ∈ o.seq. Two histories H
and H ′ are said to be equivalent if for every process p, H|p =
H ′|p. A history H induces an irreflexive partial order <H on
transactions in H: t <H t′ if 〈commit(t), p〉 ≺ 〈begin(t′), p′〉
in H .

A history H is said to be serializable if there exists a legal
sequential history S such that:
• committed-ops(H) is equivalent to S, and
• <H⊆<S .

Note that we will be considering the strict form of serializ-
ability [27] for the course of this work.

A. The protection element abstraction

As classical transactional semantics proved too restrictive
for concurrent data structures such as lists and trees [17],
relaxed transactions have been designed to take advantage of
the extra concurrency by ignoring some conflicts. To illustrate,
consider a linked list along with an add operation that goes
from the head towards the tail of the list and inserts an element
at some position. Now an add operation implemented using a
classical transaction is inserting an element somewhere in the
middle of the list, while in the meantime another transaction
is modifying the head of the list. In this situation, most
implementations would cause one of the transactions to unnec-
essarily abort in order to avoid the complex detection of cycles
in the conflict graph [14] and still guarantee serializability.
However, an elastic transaction [17] would consider this to be
a false conflict and hence allow both transactions to commit
since semantically the execution does not violate atomicity.
This type of transaction ignores conflicts caused by its read-
only prefix.

In order to reason about relaxed transactions we introduce
the notion of a protection element, an abstract entity used to
model different existing conflict detection schemes. To each
object o ∈ O we associate a protection element ε(o) that
is acquired by transaction t before invoking an operation
op ∈ o.ops. Transaction t will then release ε(o) when the
conflict becomes benign. Between the acquisition of ε(o) by
t and its release, we say that ε(o) belongs to the protected set
of t, denoted by P (t). Informally, a transaction maintains a

protected set in order to detect conflicts between operations it
has already applied and operations applied by other concurrent
transactions. In Section IV we show that passing the protected
set to the parent at commit time is a necessary and sufficient
condition for ensuring composition.

We extend histories by adding two types of events: the
acquisition of protection element ε(o) by process p, denoted
by 〈a(ε(o)), p〉, and the matching release event 〈r(ε(o)), p〉.
In order to be as general as possible, we only require that in
any history H , the invocation and response of any operation
op ∈ o.ops, invoked by transaction t executed by process
p, be between a pair of acquire and next matching release
event of protection element ε(o) by process p, 〈a(ε(o)), p〉 ≺
〈op, o, t〉 ≺ 〈v, o, t〉 ≺ 〈r(ε(o)), p〉. We do not allow an
acquire or release event between the last response event of
a transaction t and the commit event of t.

In the case of classical transactions, the protection element
associated with a memory location is acquired right before
reading or writing the location and released after the commit
of the transaction. In order to model transactional memories
using deferred updates, we consider the protection element to
be acquired at the point where the invocation was received by
the transactional memory, even though the actual invocation
on the object is performed at commit time. For modeling the
early release mechanism of DSTM [15], the protection element
is released when the release operation of the transactional
memory is called, while for elastic transactions, it is released
after a new protection element is acquired.

For a history H and a transaction t ∈ committed(H)
executed by process p, the minimal protected set of t, denoted
by Pmin(t) is the set of protection elements ε(o) for which
〈begin(t), p〉 ≺ 〈a(ε(o)), p〉 ≺ 〈commit(t), p〉 ≺ 〈r(ε(o)), p〉.
In other words, the minimal protected set contains the pro-
tection elements that are acquired by process p during the
execution of transaction t and are not released at the time
when t commits. We also define the kernel of transaction t as
the set ker(t) = {o ∈ O|ε(o) ∈ Pmin(t)}.

The notion of protection element is more general than a
lock and it can model any way in which a transactional
memory detects conflicts between transactions. For example,
an invisible read also needs to acquire a protection element
corresponding to the respective location, meaning that the
transaction will recheck the location for consistency before
committing, or until it releases the protection element.

The minimal protected set of a transaction t ensures that the
abstract postcondition of t is not violated until the elements of
the set are released. The content of this set does not depend
only on the data structure and semantics of t but also on other
transactions that can be executed concurrently. To illustrate,
consider a set abstraction S, implemented with a linked list,
where transaction t is performing an insert(x). If the only
other possible concurrent transactions are some remove(x′)
and contains(x′′), it is safe to consider Pmin(t) to be the
element preceding x. The postcondition x ∈ S cannot be
violated without modifying the element preceding x. However,
if we consider that a concurrent transaction can perform an

empty() operation that removes all elements from the list by
setting the head pointer to null, Pmin(t) must be reevaluated
because the empty() operation can remove x without changing
the element preceding it.

The reason for which operations sometimes need to acquire
elements outside of their minimal protected set is that for
many search structures such as lists, trees, graphs, etc., the
minimal protected set is not known from the start and the
operation needs to find the data and the elements from its
minimal protected set.

B. Relax-serializability

For a history H and a protection element ε(o), we denote
by H|ε(o) the subsequence of H containing the acquire and
release events involving ε(o).

A history H is said to be relax-serial if for every protection
element ε(o) that is acquired or released in H , the sequence
H|ε(o) is a sequence of pairs of matching acquire and release
events, starting with an acquire event. History H is said to be
relax-serializable if there exists a legal relax-serial history S
such that:
• committed-ops(H) is equivalent to H , and
• <H⊆<S .
We say that a history H contains relaxed transactions if

H is relax-serializable but not serializable. Note that since
relaxation is a property of a history, we cannot say if a single
transaction is relaxed or which transaction from a history is
relaxed.

III. COMPOSITION

To better capture the intuition behind composition, we use
as an example the Collection interface from the JDK, used to
represent a group of objects. This interface has methods to
add or remove elements from the group, check if an element
belongs to the group, and so on, and is implemented by
a number of classes such as HashSet, TreeSet, LinkedList,
etc. Assume that a programmer, say Alice, starts writing a
class implementing this interface, but she only implements the
methods that she needs in her program, leaving the others as
stubs. As such, Alice correctly implements add, remove and
contains, but she does not implement others methods, such
as addAll, that adds several elements to the group in a single
atomic step.

Now a second programmer, Bob, gets the code written by
Alice, wants to reuse it, but Bob also needs the addAll method.
Bob quickly thinks that he can implement the addAll method
by calling the add method for each of the elements that he
wants to add and decides to use a loop to accomplish his task.
Bob is relying on the correctness of the methods implemented
by Alice but also on the fact that when he puts together these
correct building blocks, the result is also correct. An important
observation is that the newly created addAll method must
behave as intended when other operations such as add and
remove are executed concurrently. This issue is specific to
concurrent programming.

As another example, Bob could use the add and remove
methods written by Alice to implement a move operation that
moves an element between two collections. Bob would again
be relying on the fact that the whole, here the move, is equal
to the sum of the parts, the add and remove. Bob would of
course like his move operation to be able to run concurrently
with instances of add and remove.

Our definition of composition captures the concept of cre-
ating a new operation by using existing operations as building
blocks, and having the new operation invoke the existing ones.
Starting with a set of atomic operations, the programmer would
be able to compose them to obtain new atomic operations.

For a history H , a set of transactions C ⊆ committed(H)
is said to be a composition of process p if:
• all t ∈ C are executed by p, and
• ∀t ∈ C, either ∃t′ ∈ C such that t ≺i t′ in history H|p

or ∀t′ ∈ C \{t}, t′ ≺ t in H|p; in the latter case, t is the
supremum of C, denoted by Sup(C).

Definition 3.1 (Strongly composable): Let H be a relax-
serializable history and C a composition over H . H is said to
be strongly composable with respect to C if H is equivalent
to a relax-serial history S such that ∀ti, tj ∈ C with ti ≺ tj ,
@tk ∈ committed(H) \ C, ti ≺ tk ≺ tj .

Informally, the above definition requires all transactions ti
and tj from composition C to appear to execute one imme-
diately after the other when observed from any object in the
system. One might consider this to be a reasonable correctness
condition for composing relaxed transactions. However, in the
next section we show that this condition is too strong and
therefore we relax it by only requiring ti and tj to appear
one immediately after the other when observed from objects
o ∈ ker(ti), a condition we call weak composability.

Definition 3.2 (Weakly composable): Let H be a relax-
serializable history and C a composition over H . H is said to
be weakly composable with respect to C if H is equivalent
to a relax-serial history S such that ∀t ∈ C and ∀o ∈ ker(t),
@t′ ∈ committed(H)\C such that t ≺ t′ ≺ sup(C) in history
S|o.

If C is a set of compositions, a relaxed-sequential history
H is said to be strongly (weakly) composition-consistent with
respect to C if ∀C ∈ C, H is strongly (weakly) composable
with respect to C.

IV. OUTHERITANCE

We now define outheritance and, although it is not sufficient
for ensuring strong composition (Theorem 4.2), we show it to
be both necessary (Theorem 4.3) and sufficient (Theorem 4.4)
for ensuring that a (potentially relaxed) transactional memory
provides weak composition.

Definition 4.1 (Outheritance): A history H is said to sat-
isfy outheritance with respect to composition C executed by
process p if, ∀t ∈ C and ∀ε(o) ∈ Pmin(t), @e = 〈r(ε(o)), p〉
such that 〈commit(t), p〉 ≺ e ≺ 〈commit(Sup(C)), p〉 in H .

Informally, outheritance prevents each protection element
from the minimal protected set of each transaction in C from
being released before the commit of the last transaction in C.

Outherit
Pmin(t)

t’

C

t

Fig. 2. Outheritance: minimal protected set is passed to the composed
transaction.

For a transactional memory to satisfy outheritance, it needs
to ensure that all the produced histories satisfy outheritance.
This is done by making the transactions being composed pass
their protection elements (be they locks or something else) to
their parent transaction, which in turn will hold them until it
commits.

Figure 2 shows transaction t passing its minimal protected
set Pmin(t) containing two elements to composition C. These
protection elements will not be released until the last transac-
tion in C commits.

Some relaxed transactional models such as that of Felber
et al. [17] do not satisfy outheritance and therefore can break
composition. Indeed, one can compose two elastic transac-
tions inside another elastic transaction, causing the protection
elements of the first composed transaction to be released as
soon as it commits instead of passing them to the resulting
transaction, situation depicted in Figure 1. Since this practice
can produce executions that are not atomic, the authors provide
a workaround, namely by advising the programmer to predict
these situations and use regular mode when composing.

A. Outheritance and strong composition

In this section we prove that outheritance is not a sufficient
condition for ensuring that a relaxed transactional memory
ensures strong composition.

Theorem 4.2: There exists a history H and a composition
C over H such that H satisfies outheritance with respect to
C but does not satisfy strong composition with respect to C.

Proof: We perform this proof by construction. History
H contains three transactions, t1, t2 and t3, with t1 and t3
executed by process p1 and t2 executed by p2, and composition
C = {t1, t3}. This situation is depicted in Figure 3.

Let history H be the following:

H = 〈begin(t1), p1〉, 〈a(ε1), p1〉, 〈w(2), x, t1〉, 〈ok, x, t1〉,

〈commit(t1), p1〉, 〈begin(t3), p1〉, 〈a(ε2), p1〉, 〈inc(), c, t3〉,

〈1, c, t3〉, 〈r(ε2), p1〉, 〈begin(t2), p2〉, 〈a(ε2), p2〉, 〈inc(), c, t2〉,

〈2, c, t2〉, 〈commit(t2), p2〉, 〈r(ε2), p2〉, 〈a(ε2), p1〉,

〈inc(), c, t3〉, 〈3, c, t3〉, 〈r(ε2), p1〉, 〈r(), x, t3〉,

〈2, x, t3〉, 〈commit(t3), p1〉, 〈r(ε1), p1〉.

The sequence H|ε1 = 〈a(ε1), p1〉, 〈r(ε1), p1〉 contains a
single pair of acquire and release events while the sequence

H|ε2 = 〈a(ε2), p1〉, 〈r(ε2), p1〉, 〈a(ε2), p2〉,

〈r(ε2), p2〉, 〈a(ε2), p1〉, 〈r(ε2), p1〉

is a sequence of pairs of acquire and release events. We
conclude that history H is relax-serial.

History H satisfies outheritance with respect to C since
Pmin(t1) = {ε1} and 〈r(ε1), p1〉 is after 〈commit(t3), p1〉 in
H . But in H, t1 ≺ t2 ≺ t3. In order to show that history H is
not strongly composable with respect to C we need to show
that there is no legal relax-serial history H ′ equivalent to H
such that t1 ≺i t3 in H ′.

History H is equivalent to history H ′ where t1 ≺ t3 ≺ t2,
but this implies opseq(H ′|c) = [inc, 1], [inc, 3], [inc, 2] and
therefore opseq(H ′|c) 6∈ c.seq and H ′ is not legal. History
H is also equivalent to history H ′′ where t2 ≺ t1 ≺ t3,
but this implies opseq(H ′′|c) = [inc, 2], [inc, 1], [inc, 3] and
opseq(H ′′|c) 6∈ c.seq and therefore H ′′ is not legal.

We therefore can conclude that H is not equivalent to a legal
relax-serial history in which t1 ≺i t3, i.e. H is not strongly
composable with respect to C and our proof is complete.

B. Ensuring weak composition

In this section we prove that outheritance is both necessary
(Theorem 4.3) and sufficient (Theorem 4.4) for ensuring that
a (potentially relaxed) transactional memory ensures weak
composition.

Theorem 4.3: For any history H and any composition C
over H such that ∃t ∈ (C ∩ live(H)) and H satisfies
outheritance with respect to C, if we extend H to history
H ′ = H ·〈r(ε(o)), p〉 such that H ′ does not satisfy outheritance
with respect to C and opseq(H|o) is not trivially commutative,
then H ′ can be extended to history H ′′ that is not weakly
composable with respect to C.

Proof: If H ′ = H · 〈r(ε(o)), p〉 does not satisfy outher-
itance with respect to C while H does satisfy it, we deduce
that ε(o) is part of the minimal protected set Pmin(t′) of some
t′ ∈ (C ∩ committed(H)).

Since opseq(H|o) is not trivially commutative, there exist
two sequences of operations of o, ωo and ω′o such that
opseq(H|o) · ωo · ω′o ∈ o.seq but opseq(H|o) · ω′o · ωo 6∈
o.seq. Hence we can append to H ′ a new transaction t′′

executed by some process p′, 〈begin(t′′), p′〉, 〈a(ε(o)), p′〉 ·
ωo 7→ t′′ · 〈commit(t′′), p′〉, 〈r(ε(o)), p′〉. We can now com-
plete transaction t by appending 〈a(ε(o)), p〉 · ω′o 7→ t ·
〈commit(t), p〉, 〈r(ε(o)), p〉 to the resulting sequence and we
obtain H ′′.

If H is equivalent to relax-serial history S, then H ′′ is
equivalent to the history

S′ = S · 〈r(ε(o)), p〉, 〈begin(t′′), p′〉, 〈a(ε(o)), p′〉 · ωo 7→ t′′·

〈commit(t′′), p′〉, 〈r(ε(o)), p′〉, 〈a(ε(o)), p〉 · ω′o 7→ t·

〈commit(t), p〉, 〈r(ε(o)), p〉

t1 t3

a(e2)

c.inc()->2

r(e2)

t2

time

a(e1)

x.w(2)->ok

a(e2)

c.inc()->1

r(e2)

x.r()->2

r(e1)a(e2)

c.inc()->3

r(e2)

Fig. 3. Execution that satisfies outheritance but does not satisfy strong composition.

that is relax-serial but does not satisfy composition with
respect to C since t′ ≺ t′′ ≺ t in history S′|o.

History H ′′ is also equivalent to the history

S′′ = S · 〈r(ε(o)), p〉, 〈a(ε(o)), p〉 · ω′o 7→ t · 〈commit(t), p〉,

〈r(ε(o)), p〉, 〈begin(t′′), p′〉, 〈a(ε(o)), p′〉 · ωo 7→ t′′·

〈commit(t′′), p′〉, 〈r(ε(o)), p′〉

and t′ ≺ t ≺ t′′ in history S′′|o, but S′′ is not legal since
opseq(S′′|o) = opseq(H|o) · ω′o · ωo 6∈ o.seq.

According to Theorem 4.3, it is necessary for all histories
produced by a transactional memory to satisfy outheritance in
order to ensure composition.

Theorem 4.4: Any relax-serializable history H that satisfies
outheritance with respect to composition C is weakly compos-
able with respect to C.

Proof: We perform this proof by contradiction. Assume
there exists a relax-serializable history H that satisfies outher-
itance with respect to C but is not weakly composable with
respect to C.

If H is relax-serializable, then there exists a relax-serial
history S equivalent to H . Since H is not weakly composable
with respect to C, then ∃t, t′ ∈ C, t′′ ∈ committed(H) \ C,
and ε(o) ∈ Pmin(t) such that t ≺ t′′ ≺ t′ in history S|o. If
history H is not weakly composable with respect to C, then
H is not equivalent to any legal relax-serial history S′ such
that t′′ ≺ t ≺ t′ in history S′|o.

Since S is a relax-serial history and ∀o ∈
ker(t), 〈commit(t′), p〉 ≺ 〈r(ε(o)), p〉, then @e =
〈a(ε(o)), p′〉 such that 〈commit(t), p〉 ≺ e ≺ 〈commit(t′), p〉.
Therefore @e′ = 〈op, o, t′′′〉 such that 〈commit(t), p〉 ≺
e′ ≺ 〈commit(t′), p〉. It follows that in history S|o,
@e′′ = 〈op, o, t′′′〉 such that commit(t) ≺ e′′ ≺ commit(t′).
We conclude that history S|o is equivalent to history S′

where commit(t′′′) ≺ commit(t) ≺ commit(t′) and we
have reached a contradiction.

According to Theorem 4.4, it is sufficient for all histories
produced by a transactional memory to satisfy outheritance in
order for composition to be ensured.

C. The cost of composition

Oftentimes a programmer is faced with the problem of
having to choose between several distinct options when imple-
menting an operation. These distinct solutions come down to
a choice between composing different operations to obtain the
desired result. But not all compositions have the same cost.
The cost of a composition of a process is a measure of the
number of operations that other processes cannot execute due
to this composition. By being able to compute the cost of
a composition, the programmer can choose between distinct
implementations of the same operation.

Let H be a history and C a composition of process p in H .
If He is the set of all histories He such that He|p = H|p and
Hc is the set of all histories Hc such that Hc|p = H|p that
compose with respect to C, the cost of composition C will be

cost(C) =
|He|
|Hc|

Intuitively, this cost is obtained by dividing the number of
possible histories of the system when process p is executing
transactions t ∈ C to the number of histories where process
p is executing the same transactions but are also composable
with respect to C.

Since both He and Hc contain an infinite number of histo-
ries, we perform an approximation in order to obtain a simpler
way of measuring the cost of composition C. For t ∈ C and
o ∈ ker(t), let H = H ′ · 〈commit(t), p〉 · H ′′ and ω =
opseq(H ′|o). We now define ∀op1, op2 ∈ o.ops,∀v1, v2 ∈
o.vals, the set Ne of sequences ω · [op1, v1], [op2, v2] ∈ o.seq.
We similarly define ∀op1, op2 ∈ o.ops,∀v1, v2 ∈ o.vals, the
set Nc of sequences ω · [op1, v1], [op2, v2] ∈ o.seq such that
ω · [op2, v2] · [op1, v1] ∈ o.seq. Then the cost of composition
C on object o is cost(o) = |Ne|

|Nc| . The cost of composition C
then becomes

cost(C) =
∑
t∈C

∑
o∈ker(t)

cost(o).

To illustrate, consider o to be a register supporting opera-
tions read and write and ω = ω′, [write(5), ok]. So the register
holds the value 5 after operation ω is executed. Assuming it

can hold integers from 1 to n, the set Ne contains n2 histories
where both op1 and op2 are writes, n histories where op1 is a
write and op2 is a read, n histories where op1 is a read and op2
is a write and one history where both op1 and op2 are reads, for
a total of n2+2n+1 histories. The set Nc, containing histories
from Ne where op1 and op2 commute, contains only n2 + 3
histories. We compute a cost for composing a transaction that
accesses this register to

cost(register) =
Ne

Nc
=
n2 + 2n+ 1

n2 + 3
.

V. OE -STM

We briefly present here our software transactional memory,
OE-STM (Outheritance-Elastic STM) that allows program-
mers to compose transactions while preserving concurrency.
It is largely based on E-STM of Felber et al. [17], which
we modified in order to satisfy outheritance and thus offer
composition.

The elastic transaction model allows the programmer to use
either an elastic or a regular transaction for implementing an
operation, depending on the semantics of that operation. An
elastic transaction ignores all conflicts induced by its read-
only prefix, i.e., all conflicts involving its reads that precede its
first write access. In the implementation, an elastic operation
is executed optimistically and during its execution, an elastic
transaction keeps track temporarily of the immediate past read
accesses, but ensures that each read returns a consistent value.
Upon writing, the transaction starts keeping track permanently
of all accesses including the immediate past reads. At commit-
time, the transaction can check that the access sequence it kept
track of looks like being executed atomically and can decide
to abort or commit accordingly. More precisely, if an operation
πi invokes only read operations, then the protected set of πi
is P (πi) = {rn}, where rn is the last memory location read
by πi. Otherwise, if rk is the first memory location written
by operation πi, the protected set is P (πi) = {rk, . . . , rn},
where rn is the last memory location accessed by πi.

In order to satisfy outheritance, elastic transactions must
pass their protected set to their parent transaction when
committing. More concretely, they need to add the read set
as well as the last read memory location into the read set
of the parent transaction and also add the write set to that
of the parent. Figure 4 presents the pseudocode that needs
to be added to E-STM in order to satisfy outheritance. The
outherit() function must be invoke by every transaction before
invoking the usual commit function of E-STM. This function
first checks if the transaction has a parent, and if so, invokes
the add-to-protected-set function of the parent, to which it
passes the read set, last read location and the write set of the
child transaction. The parent transaction then adds them to its
read and write set.

1: outherit()t:
2: if tparent 6=⊥ then
3: tparent.add-to-protected-set(read-set, last-read-entry,write-set)

4: add-to-protected-set(r-s, l-r ,w-s)t:
5: r-set ← r-set ∪ r-s ∪ l-r
6: w-set ← w-set ∪ w-s

Fig. 4: Changes to elastic transactions to satisfy outheritance.

VI. ILLUSTRATION: A JAVA TRANSACTIONAL PACKAGE

We illustrate the importance of composition (and thus
outheritance) for a relaxed transactional model by building
a highly-concurrent Composable Java Package, called e.e.c
(edu.epfl.compositional). Our solution provides composition,
unlike the similar j.u.c (java.util.concurrent) package [6].
Our implementation performs very well compared to other
composable alternatives, as shown in Section VII.

a) The java.util.concurrent package.: This package pro-
vides invaluable low level atomic primitives for concurrent
programming, however, it is not composable and several of
its methods violate atomicity. For instance, the JDK6 docu-
mentation describes the ConcurrentSkipListSet with “the bulk
operations addAll, removeAll [...] are not guaranteed to be per-
formed atomically” or describes the ConcurrentLinkedQueue
iterator as “weakly consistent”. This lack of atomicity makes
the semantics of these methods hard to reason about. For
example, the concurrent execution of removeAll and addAll
that both take a Collection of integers 1 and 2 as a parameter
may lead to an inconsistent state where only one of the two
integers is present.

To compose the methods of these lock-free algorithms
while preserving atomicity, the modifications could apply
speculatively on some copy of the whole data structure before
a current copy pointer could be compared-and-swapped from
the former copy to the new one, provided that no concurrent
accesses were executed. The time and space complexity of
such a solution justified the implementation of non-atomic
operations in java.util.concurrent.

The locking technique suggested in [28, Section 5.2.1] to
circumvent this issue for the ConcurrentHashMap is evaluated
in Section VII.

b) The edu.epfl.compositional package.: Figure 5 depicts
the atomic operations add and addAll of SkipListSet as present
in e.e.c, a skip list implementation of a set abstraction.

The first observation is that the add implementation is sim-
ilar to its sequential counterpart: no locks or synchronization
primitives are exposed to the programmer. What makes the
code concurrent are the region delimiters begin[relaxed] and
end indicating that the region should execute as a relaxed
transaction. The rest of the code simply comprises assignments
that rely on read and write accesses. All reads and writes
are instrumented automatically as long as they appear in
the delimited region. Section VII further details automatic
transactional instrumentation in Java.

The addAll operation includes a series of accesses to add
delimited by begin[regular] and end. These delimiters indicate
that all read/write accesses have to be executed in the regular

SkipListSet
add(Value val)

begin[relaxed]
Node[] preds = new Node[topLevel+1];
Node curr = head;
Node next = curr.getNext(topLevel);
for (int l = topLevel; l>0; l--) {
next = curr.getNext(l);
while (next.getVal() < val) {

curr = next;
next = curr.getNext(l);

}
preds[l] = cur;

}
if (next.getVal() != val) {
node = new Node(getVal(), getRndLevel());
for (int j=0; j<topLevel; j++) {

node.getNext(j) = preds[j].getNext(j);
preds[j].setNext(j, node);

}
}
return (next.getVal() != val);

end

addAll(Collection c)
begin[regular]

boolean result = false;
for (Value x : c) result |= this.add(x);
return result;

end

Fig. 5: The pseudocode for operations add and addAll of
SkipListSet of the e.e.c.

mode. Note that the original relaxed mode of add gets over-
written due to the priority of the regular mode of the outer
operation and there is no need to change the existing code of
add.

VII. EVALUATION

We evaluate our transactional memory implementation,
OE-STM, using as benchmark the new Java package,
edu.epfl.compositional (e.e.c), which we introduced in Sec-
tion VI. In short, our e.e.c package is a composable alternative
to the JDK concurrency package. This package provides basic
operations, contains, add and remove, as well as operations
resulting from the composition of these such as removeAll
and addAll that are part of classes implementing the Java
Collection interface. Although these composed operations tend
to limit concurrency, due to their results depending on ele-
ments located at different places in the data structure, we show
that our solution scales well with the level of parallelism and
performs better than other STMs.

A. Experimental setting

We compare OE-STM against bare sequential code, state-of-
the-art STMs. We use an UltraSPARC T2 with 8 cores running
up to 8 hardware threads each. For each run we averaged
the number of executed operations per millisecond and aborts
(for STMs) over 10 runs of 10 seconds each. We used Java
SE 1.6.0 12-ea in server mode and HotSpot JVM 11.2-b01.
All our workloads comprise 20% attempted updates on a data
structure of 212 elements. More precisely, each add/remove
picks a value among a range of 213 for a probability of success
of 1

2 and each addAll/removeAll takes one value v in the same

range and takes a second value as the closest integer to v
2 . The

rest comprises 80% of contains.

B. Performance comparison

TL2 [23] is an efficient STM whose writes are not visible
before commit-time and that uses timestamp intervals to
validate transactions at commit-time; LSA [24] relies on a
lazy snapshot algorithm that uses eager lock acquirement and
extends this validity interval as much as possible to increase
concurrency further; and SwissTM [25] builds upon LSA and
mixes eager and lazy conflict resolution to abort as soon as
possible while trying to maximize throughput.

Our STM runtime relies on the use of the bytecode in-
strumentation framework Deuce developed by [29], which
instruments delimited Java accesses by their transactional
reads/writes defined by the transactional memory given as
parameter. For the sake of comparison, we reused the existing
Java version of LSA, TL2 and we implemented SwissTM and
OE-STM. To improve concurrency, all STMs protect memory
locations at the granularity level of object fields.

We report on the throughput as the number of operations
performed per millisecond and the abort ratio on three data
structures, LinkedListSet (Figure 6), SkipListSet (Figure 7),
HashSet (Figure 8). Interestingly, the throughput does not drop
when increasing from 5% to 10% addAll/removeAll. OE-STM
has a higher throughput than other STMs at a high level of
parallelism. OE-STM presents similar performance as other
STMs at low parallelism which may be due to the heavy
metadata management of relaxed transactions.

The abort rate obtained on the linked list (Figure 6)
is significantly higher for regular transactions (LSA, TL2,
SwissTM) than for relaxed transactions which motivates the
need for relaxed STMs ensuring composition, like OE-STM.
Consequently, OE-STM has a much higher throughput on
LinkedListSet than other STMs. Specifically, OE-STM im-
proves the performance of other STMs by at least 6.6×. This
is due to the nature of the data structure whose linear time
accesses are good candidates for concurrency optimization
using relaxed transactions. Moreover, besides OE-STM the
STMs behave poorly as they almost never exceeds sequential
performance (normalized throughput remains below 1).

Only on the SkipListSet performs one STM comparably
well to OE-STM. In this particular workload the transaction
relaxation does not benefit much the performance. The reason
is that each update may modify (O(log n)) nodes inducing
a contention that relaxation cannot avoid. Also, the benefit is
proportional to the number of traversed nodes per transactions,
which is much lower than a linear data structure like the
linked list. Finally, OE-STM performs much better than other
regular STMs on the HashSet (Figure 8) whose load factor
(i.e., number of nodes / number of buckets) is set to 512 to
increase the contention.

To conclude, OE-STM, which composes like regular STMs,
present better performance than them because it provides
relaxed transactions that diminishing contention when the
application permits.

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
Th

ro
ug

hp
ut

 (o
ps

/m
illi

se
co

nd
)

Ab
or

t r
at

e
(%

)

Number of threads

O -STM abort rate
LSA abort rate
TL2 abort rate

SwissTM abort rate
Sequential

O -STM throughput
LSA throughput
TL2 throughput

SwissTM throughput

(a) 5 % update

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8 16 32 64
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Th
ro

ug
hp

ut
 (o

ps
/m

illi
se

co
nd

)

Ab
or

t r
at

e
(%

)

Number of threads

O -STM abort rate
LSA abort rate
TL2 abort rate

SwissTM abort rate
Sequential

O -STM throughput
LSA throughput
TL2 throughput

SwissTM throughput

(b) 15 % update

Fig. 6: Throughput and abort ratio of bare sequential code, OE-STM, LSA, TL2 and SwissTM on the LinkedListSet of e.e.c
when running 5% (left) and 15% (right) of addAll/removeAll.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64
 0

 1

 2

 3

 4

 5

 6

Th
ro

ug
hp

ut
 (o

ps
/m

illi
se

co
nd

)

Ab
or

t r
at

e
(%

)

Number of threads

O -STM abort rate
LSA abort rate
TL2 abort rate

SwissTM abort rate
Sequential throuhgput

O -STM throughput
LSA throughput
TL2 throughput

SwissTM throughput

(a) 5 % update

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 4 8 16 32 64
 0

 1

 2

 3

 4

 5

 6

 7

Th
ro

ug
hp

ut
 (o

ps
/m

illi
se

co
nd

)

Ab
or

t r
at

e
(%

)

Number of threads

O -STM abort rate
LSA abort rate
TL2 abort rate

SwissTM abort rate
Sequential throuhgput

O -STM throughput
LSA throughput
TL2 throughput

SwissTM throughput

(b) 15 % update

Fig. 7: Throughput and abort ratio of bare sequential code, OE-STM, LSA, TL2 and SwissTM on the SkipListSet of e.e.c
when running 5% (left) and 15% (right) of addAll/removeAll.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16 32 64
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Th
ro

ug
hp

ut
 (o

ps
/m

illi
se

co
nd

)

Ab
or

t r
at

e
(%

)

Number of threads

O -STM abort rate
LSA abort rate
TL2 abort rate

SwissTM abort rate
Sequential throuhgput

O -STM throughput
LSA throughput
TL2 throughput

SwissTM throughput
JDK throughput

(a) 5 % update

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16 32 64
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Th
ro

ug
hp

ut
 (o

ps
/m

illi
se

co
nd

)

Ab
or

t r
at

e
(%

)

Number of threads

O -STM abort rate
LSA abort rate
TL2 abort rate

SwissTM abort rate
Sequential throuhgput

O -STM throughput
LSA throughput
TL2 throughput

SwissTM throughput
JDK throughput

(b) 15 % update

Fig. 8: Throughput and abort ratio on the HashSet of java.util, throughput and abort ratio of bare sequential code, OE-STM,
LSA, TL2 and SwissTM on the HashSet of e.e.c when running 5% (left) and 15% (right) of addAll/removeAll.

VIII. RELATED WORK

The problem of composition objects with certain properties
to obtain atomic transactions was studied by Weihl [26].
Unlike his work, we compose relaxed transactions in order
to obtain new transactions that are also relaxed. For this we
consider relax-serializability, a condition that is strictly weaker
than classical serializability.

Transactional boosting [30] is a transactional model where
objects are not only reads/write registers as in classical trans-
actional memories, but also objects implemented in a separate
thread-safe library. In order to detect conflicts between these
operations, abstract locks are used. To convert this to our
model, one would acquire the protection element of an object o
whenever a transaction acquires an abstract lock corresponding
to object o. Since on rollback it is not sufficient to restore the
memory to the state before the start of the transaction, the
programmer must define a compensating operation for every
operation executed by the transaction. Although not described
in the paper, passing abstract locks from the child to the
parent transaction would make transactional boosting satisfy
outheritance and therefore compose.

Open nesting [16] is a relaxed transactional model that
allows the programmer to define open transactions that use
abstract locks for providing multi-level conflict detection. As
in the case of transactional boosting, each open transaction
has an abort handler that reverts its effect in case of rollback.
As this solution does not satisfy outheritance, no guarantees
of atomicity are given and the programmer is responsible for
ensuring correctness. The authors do however give guidelines
to the programmer for ensuring atomicity when using open
nesting. In order to accommodate for multi-level concurrency
control, one would add, for all the abstract locks protection
elements that are acquired and released at the same time as
abstract locks. In these conditions, outheritance would still
guarantee relax-serializability at the lower level, but one could
violate outheritance and still obtain the desired correctness of
higher level transactions.

View transactions [20] are a type of relaxed transactions that
define the critical view of a transaction, similar our minimal
protected set, by using programmer specified view pointers.
When committing, view transactions can pass their critical
view to their parent transaction, thus satisfying outheritance
and correctly composing.

Kulkarni et al. [31] provide yet another concrete instan-
tiation of our principle, outheritance, this time passing the
protected set from a child to the parent in the context of
automatic parallelization. By satisfying outheritance, their
approach ensures correct composition.

The classical way of using a transactional memory to
obtain a thread-safe implementation of some abstract operation
is to have every access to shared data performed by the
implementation instrumented by the transactional memory.
Bronson [32] proposed solutions where only some accesses to
shared data are transactional, while others are performed using
synchronization from a separate thread-safe library. When

composing such an implementation, the transactional memory
passes information about the transactional accesses to the
parent transaction as required by outheritance, allowing the
operations to compose correctly.

Chandy and Sanders [2] reason about parallel composition
by extending predicate transformer theory to concurrent pro-
gramming. They find some properties to be all-component,
meaning that if all the components have the property, then their
composition will have it as well, while other properties are
exists-component, if at least one component has the property,
then their composition will as well.

Gössler and Sifakis [3] describe a parallel composition
operator that preservers deadlock-freedom. They distinguish
between composability, the property of a component to meet
a given property after being composed, and compositionality,
which allows one to infer properties of a system from its
components’ properties. Our work falls in the latter category,
namely one can infer the atomicity of composed operations
from the atomicity of their sub-operations. This inference is
valid when the system satisfies outhritance, which is in essence
a concurrent composition operator.

Gava and Garnier [33] present a practical parallel compo-
sition operator using a continuation-passing-style transforma-
tion. This composition operator, useful for divide-and-conquer
style algorithms among others, can be used many times in a
single program, making an efficient implementation crucial. In
the same vein, an efficient concurrent composition based on
our outheritance principle has the potential of being widely
used in concurrent programming.

Fei and Lu [34] have studied composition in the context of
scientific workflows. They provide a workflow composition
framework in which workflows are the only operands for
composition, as well as workflow constructs such as Map and
Reduce. An easy programming model featuring straightfor-
ward composition has the potential of being the go-to solution
for scientific computing.

IX. CONCLUDING REMARKS

Transactional memory is commonly advertised as an appeal-
ing abstraction to bring concurrency to the masses. It hides
the difficult challenges of synchronization and makes it pos-
sible for inexperienced programmers to compose concurrent
software. This appealing view conveys however a dumbing
down of the programmers, for composition, at least in its
classical implicit and transparent sense, is possible only if
all programmers use transactions. Certain programmers are
however skilled enough to seek less transparent concurrency
abstractions that boost efficiency by enabling interleavings
that would be prevented by the original transactional scheme.
Relaxed transactional models are such abstractions. While
boosting concurrency, their usage jeopardizes the composition
dream.

This paper describes outheritance, a concrete property for
ensuring that a transactional memory providing relaxed trans-
actions composes. Using it, one can easily see if a given trans-
actional memory ensures composition or can build a new one

that does provide it. In short, outheritance stipulates that child
transactions must pass their conflict information to their parent
transaction, which in turn maintains it until commit time. As
outheritance does not add any false-conflicts, if the original
transactions do not manifest false-conflicts, nor does their
composition. However, the number of false-conflicts is not the
only factor that affects performance, but also the time duration
for which a certain location can cause conflicts. Part of our
future work includes a better understanding of the relationship
between false-conflicts, composition and performance.

It is also important to notice that outheritance is not tied to
any specific type of relaxation and can be used for building
a transactional memory providing different types of relaxed
transactions [35]. Another direction for future work consists
of using outheritance for composing multiple types of relaxed
transactions.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Addison-Wesley, 2002.

[2] K. Chandy and B. A. Sanders, “Predicate transformers for reasoning
about concurrent computation,” Sci. Comput. Program., 1995.

[3] G. Gössler and J. Sifakis, “Composition for component-based modeling,”
Sci. Comput. Program., 2005.

[4] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in PPoPP, 2005.

[5] Y. Afek, N. Shavit, and M. Tzafrir, “Interrupting snapshots and the java
size method,” in DISC, 2009.

[6] D. Lea, “The java.util.concurrent synchronizer framework,” Sci. Comput.
Program., vol. 58, pp. 293–309, December 2005.

[7] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in PODC, 1996.

[8] T. Harris, “A pragmatic implementation of non-blocking linked-lists,” in
DISC, 2001.

[9] K. Fraser, “Practical lock freedom,” Ph.D. dissertation, University of
Cambridge, 2003.

[10] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” SIGARCH Comput. Archit. News,
1993.

[11] N. Shavit and D. Touitou, “Software transactional memory,” Distributed
Computing, 1997.

[12] V. Pankratius, “Transactional memory versus locks - a comparative case
study,” in ICSE, 2009.

[13] D. Cederman and P. Tsigas, “Supporting lock-free composition of
concurrent data objects,” in CF, 2010, pp. 53–62.

[14] V. Gramoli, D. Harmanci, and P. Felber, “On the input acceptance of
transactional memory,” Parallel Processing Letters, vol. 20, no. 1, pp.
31–50, 2010.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software
transactional memory for dynamic-sized data structures,” in PODC,
2003.

[16] J. E. B. Moss, “Open nested transactions: Semantics and support,” in
Workshop on Memory Performance Issues, 2006.

[17] P. Felber, V. Gramoli, and R. Guerraoui, “Elastic transactions,” in DISC,
2009.

[18] E. Koskinen and M. Herlihy, “Concurrent non-commutative boosted
transactions,” in PODC, 2009.

[19] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “Transactional
predication: High performance concurrent sets and maps for STM,” in
PODC, 2010.

[20] Y. Afek, A. Morrison, and M. Tzafrir, “View transactions: Transactional
model with relaxed consistency checks,” in PODC, 2010.

[21] R. Zhang, Z. Budimlic, and W. N. Scherer III, “Composability for
application-specific transactional optimizations,” in 5th ACM SIGPLAN
Workshop on Transactional Computing (Transact’10), 2010.

[22] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in IISWC,
2008.

[23] D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” in DISC,
2006.

[24] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm with
eager validation,” in DISC, 2006.

[25] A. Dragojevic, P. Felber, V. Gramoli, and R. Guerraoui, “Why stm can
be more than a research toy,” Commun. ACM, vol. 54, pp. 70–77, April
2011.

[26] W. E. Weihl, “Local atomicity properties: modular concurrency control
for abstract data types,” ACM Trans. Program. Lang. Syst., 1989.

[27] C. H. Papadimitriou, “The serializability of concurrent database up-
dates,” J. ACM, 1979.

[28] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea, Java
Concurrency in Practice. Addison-Wesley, 2006.

[29] G. Korland, N. Shavit, and P. Felber, “Noninvasive java concurrency
with deuce STM,” in OOPSLA, 2009, poster session.

[30] M. Herlihy and E. Koskinen, “Transactional boosting: A methodology
for highly-concurrent transactional objects,” in PPoPP, 2008.

[31] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew, “Optimistic parallelism requires abstractions,” in PLDI,
2007.

[32] N. Bronson, “Composable operations on high-performance concurrent
collections,” Ph.D. dissertation, Standford University, 2011.

[33] F. Gava and I. Garnier, “New implementation of a bsp composition prim-
itive with application to the implementation of algorithmic skeletons,”
in IPDPS, 2009.

[34] X. Fei and S. Lu, “A dataflow-based scientific workflow composition
framework,” IEEE Transactions on Services Computing, 2012.

[35] V. Gramoli and R. Guerraoui, “Democratizing transactional program-
ming,” in Middleware, 2011, pp. 1–19.

