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Background: Local bisphosphonate delivery may be a solution to prevent periprosthetic bone loss and
improve orthopedic implants fixation. In load-bearing implants, periprosthetic bone is exposed to high
mechanical demands, which in normal conditions induce an adaptation of bone. In this specific mechanical
situation, the modulation of the bone response by bisphosphonate remains uncertain.
Methods: We assessed the combined effects of zoledronate and mechanical loading on bone adaptation using
an in-vivo axial compression model of the mouse tibia and injections of zoledronate. Bone structure was
quantified with in-vivo μCT before and after the period of stimulation and the mechanical properties of the
tibias were evaluated with 3 point-bending tests after sacrifice.
Findings: Axial loading induced a localized increase of cortical thickness and bone area. Zoledronate
increased cortical thickness, bone perimeter, and bone area. At the most loaded site of the tibia, the
combined effect of zoledronate and mechanical stimulation was significantly smaller than the sum of the
individual effects measured at the same site in the control groups.
Interpretations: The results of this study suggested that a negative interaction between zoledronate and
mechanical loading might exist at high level of strain.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Periprosthetic bone loss is initiated at the very early stage after an
implant is set and facilitates the occurrence of aseptic loosening. Different
authors have suggested the solution of local bisphosphonate release from
the orthopedic implant to prevent the bone resorption at this early post-
operative stage (Horowitz and Gonzales, 1996; Peter et al., 2001). It has
been shown that local bisphosphonate preserves periprosthetic bone
stock, in rats and sheep (Peter et al., 2005; Stadelmann et al., 2008;
Wermelin et al., 2007) and also increases the fixation strength, in rats
(Peter et al., 2005, 2006).

In these studies, the implants were not specifically loaded, in
contrast to the clinical situation of load-bearing implants, where the
periprosthetic bone is exposed to high mechanical demands (Huiskes
et al., 1987). In this specific mechanical situation, the modulation of
the bone response by bisphosphonate remains uncertain.

An early study showed that the effect of a dichloromethylene
bisphosphonate on the bone apposition rate was increased when
combined with a mechanical stimulation (Shellhart et al., 1992). On the
other hand, by using 3-amino-1hydroxypropylidene-1-bisphosphonate,

Jagger et al. have shown that, in rats caudal vertebrae exposed to
mechanical stimulus, the rate of bone apposition is not affected (Jagger et
al., 1995). When fatigue loading is evaluated in rat bone, the use of
alendronate did not protect the bone from fatigue in highly strained bone
(Barrett et al., 2007). In another study, also in highly strained rat bone,
alendronate was shown to suppress the apoptosis of osteocyte induced
by the mechanical stimulation (Follet et al., 2007). The combination of
mechanical loading and bisphosphonate, in particular zoledronate needs
then to be further studied.

The aim of the present study was to assess the effect of zoledronate,
the newer member of the third generation bisphosphonates (Green
et al., 1996; Green, 1996; Pataki et al., 1997), on bone adaptationwhen a
mechanical loading is applied. For this purpose, we used an in-vivo axial
compression model of the mouse tibia (De Souza et al., 2005; Fritton
et al., 2005, Stadelmann et al., 2009) and analyzed the effect of
zoledronate on site-specific bone adaptation.

2. Methods

2.1. Animals

Eleven C57BL6 male mice, 17±1 weeks old, were acclimated to
our facility for three weeks. Mice were caged in groups of three or
four. They were maintained under standard no barrier conditions and
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had access to mouse chow and water ad libidum. The local ethics
committee on animal care approved all animal procedures (Protocol
#2006.1).

The mice were separated randomly into two groups: on day 0, the
five animals of the zoledronate group received a single subcutaneous
injection (80 μl) of 1 μg/kg zoledronate (Novartis Pharmaceuticals AG,
Switzerland) while the six animals of the control group received an
equivalent injection of saline.

2.2. Anesthesia

General anesthesia was induced with a ketamine (80 mg/kg) and
xylazine (5 mg/kg) cocktail administered intraperitoneally unless
specified.

2.3. μCT

We assessed bone architecture using in vivo micro-computed
tomography (μCT1076 in vivo, SkyScan, Belgium) 11 days after
zoledronate injection. Animals were anesthetized. The lower limbs
were fixed in a custom polystyrene support and alignedwith the axis of
rotation of the scanner. The tibias were then scanned with 9 μm
isotropic voxel size, 50 kV beam, 0.8° step rotation. Reconstructions
and analysis were performed with built-in routines of manufacturer's
softwares NRecon and CTan, following the standard protocols.
The reconstructed tibia contained about 1900 slices. Cortical thickness
(Ct.Th), bone perimeter (B.Pm) and bone area (B.Ar) were evaluated at
the proximal diaphysis (1/5 of the tibial length) (Fig. 1a). This region of
interest (ROI) was then divided in four sub-regions of interest (ROIa-d),
corresponding to the four facets, to assess orientation specific remodel-
ing (Fig. 1b).

2.4. In vivo compression

A compression machine was developed to apply controlled
compression cycles on the tibias (Stadelmann et al., 2009), based on
a previously published work (De Souza et al., 2005; Fritton et al.,
2005). On day 1, 3, 5, 8 and 10 the left tibia of all animals were
mechanically stimulated with dynamic axial compression sequences.
Custom molded pads were designed on the axes end to apply the
compression on the leg.

Each animal was anesthetized and placed on a warm support with
eye gel until completely unresponsive. The animal was then placed on
the stimulation machine with the left leg between the moving pad on
the knee and the fixed pad on the ankle (Fig. 2a).

To maintain the initial position of the leg, a pre-load of 0.5 N was
applied before the dynamic compression. The compression waveform
was composed of square-like cycles at 2 Hz frequency, and amplitude
from a force of 0.5 N during 0.25 s followed by a force of 8 N during
0.25 s (Fig. 2b). The sequence of compression was applied for 1 min.
Then the animal was placed at rest on thewarm support. After 15 min,
a second sequence of 1 min of dynamic compressions was applied.
The animal was again placed on the warm support until it moved.

Because of the natural curvature of the tibia, this simple axial
loading induced combined compressive and bending strains. Axial
compression of 8 N induces maximum octaedral shear strain at the
postero-tibial crest (1800 με±40 με) and the antero-distal tibia
(1940 με±30 με) (Stadelmann et al., 2009).

2.5. Sacrifice and tibias extraction

On day 11, while still under anesthesia for the μCT, the animals
were sacrificed with an overdose of ketamin. Both tibias were
extracted surgically and placed in wet conditions at 4 °C.

2.6. Mechanical tests

Tibial mechanical properties were assessed by 3-point bending
(Brodt et al., 1999; Jepsen et al., 2003), using the Instron Microtester
5848 (Instron, MA, USA), equipped with a 100 N gauge and custom
bone supports. The fibula was removed with a surgical blade before
the tests. The lower supports distance was set to 12 mm for all tibias,
and the tibias always placed proximal end to the left and up, distal on
the right. The crosshead speed was set to 0.02 mm/s and the force-
displacement data sampling to 100 Hz.

The ultimate force, stiffness and post-yield energy to failure were
calculated. The yield point was defined by using a 0.3 N offset from the
stiffness line (Schriefer et al., 2005).

Fig. 1. Region of interest. Definition (a) of the global ROI and (b) of the 4 sub-ROI.

Fig. 2. (a) Animal's left tibia placed in the compression machine between the molded cups. (b) Compression waveform.
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2.7. Data analysis

Data is presented as Mean±SD and all statistical procedures were
performed with Mathematica5® (Wolfram Research, USA). The
number of tibias per group was accounted for as repetition of the
measurement. Effects of mechanical loading and zoledronate were
analyzed with two-way ANOVA and Tukey posthoc-tests. For
independent data, Student t-test was used to determine the statistical
power of the difference: Pb0.05 was considered significant, while
Pb0.1 was considered as a strong trend.

3. Results

Twenty-two tibias were analyzed in this study (Table 1). Two
tibias were damaged during extraction; they were excluded from
mechanical analyses.

3.1. Effect of mechanical loading and zoledronate on biomechanical
parameters

Mechanical loading alone significantly enhanced the tibial stiffness
by 16% compared to control, but had no effect on ultimate force and
post-yield energy to failure. Zoledronate significantly increased the
stiffness, ultimate force and post-yield energy to failure by 31%, 24%
and 60% respectively, compared to the control group. The effect of
zoledronate on all three mechanical parameters was significantly
higher than the effect of mechanical loading alone.

Mechanical loading combined with zoledronate significantly
increased the biomechanical parameters, compared to control tibias.
This effect was significantly higher than the effect of mechanical
stimulation alone on ultimate force and post-yield energy to failure.
However, no significant difference was observed between the effect of
zoledronate and the combined effect of mechanical loading and
zoledronate (Fig. 3).

Finally, for the three mechanical parameters, the sum of the effect
of mechanical loading alone and the effect of zoledronate alone was
not significantly different from the effect of mechanical loading with
zoledronate. Note that no effect was detected on paired comparison of
the mechanical parameters.

3.2. Effect of mechanical loading and zoledronate on histomorphometric
parameters

For the histomorphometric analysis of the global ROI (Fig. 4 top),
combination of zoledronate and mechanical loading had no statistical

effect on B.Pm. A different behavior was observed for B.Ar as tibias
with zoledronate andmechanical loading had significantly higher B.Ar
compared to controls and mechanically stimulated ones. However
these tibias were not significantly different that zoledronate-treated
tibias. An effect was also statistically observed for Ct.Th in the global
ROI between control and zoledronate-mechanical loading groups.
When this parameter was further evaluated with respect to sub-ROI
(Fig. 4 bottom), interestingly the value of Ct.Th in ROIc of mechani-
cally loaded tibias was significantly greater by 10% compared to
controls, but no difference in other ROI was observed. Indeed in all
sub-ROI except ROIc, the effect of combined zoledronate and
mechanical stimulation was equivalent to the sum of the effect of
zoledronate alone and the effect of mechanical stimulation alone. In
ROIc, the effect of combined mechanical stimulation and zoledronate
was significantly different from the sum of the effects.

4. Discussion

Local bisphosphonate release may be a solution to prevent
periprosthetic bone loss and improve the implant fixation. However,
in the case of load-bearing implants, periprosthetic bone is exposed to
high mechanical demands, which in normal conditions induce an
adaptation of bone. When zoledronate is present in bone, it alters its
local metabolism. The aim of the study was to assess interactions
between mechanical loading and zoledronate on bone adaptation in
an in-vivo experiment.

We observed that axial mechanical loading induced a localized
increase of cortical thickness and cortical bone area. These site-
specific changes are concordant with previous studies (De Souza et al.,
2005; Fritton et al., 2005). Animals treated with zoledronate had site-
specific increased cortical thickness and cortical bone perimeter. The
cortical bone areawas increased in all zones, which is concordant with
previous studies (Brouwers et al., 2008; Gasser et al., 2005; Recker
et al., 2008).

In most cases, the effect of combined zoledronate and mechanical
stimulation was equivalent to the sum of the effect of zoledronate and
the effect of mechanical stimulation. However in ROIc, the combined
effect of zoledronate and mechanical stimulation on structural
properties was significantly smaller than the sum of the effects.

Using experimental measures and numerical simulations, we
previously showed that during axial compression, bone in ROIc
undergoes the highest strain levels (about 1900 με for 8 N load) while
the rest of the tibia is less loaded (Stadelmann et al., 2009). The
specific results in ROIc suggest that an interaction might exist
between the bone response to mechanical stimulation and the effect
of zoledronate at high levels of strain. The decreased effect of
combined mechanical stimulation and zoledronate compared to
mechanical stimulation alone, might reflect an upper limit on bone
adaptation rate induced by the zoledronate when mechanical
stimulations reach a high intensity.

This result seems to be contradicting previous studies that have
assessed the impact of bisphosphonate on bone response tomechanical

Table 1
Number of tibias in each group.

Force

Zoledronate 0 N (right) 8 N (left)

No 6 6
Yes (1 μg/kg s.c.) 5 5

Fig. 3. Box plot representing the mechanical parameters for each group. FN0 indicates mechanically stimulated groups. Z=y indicates zoledronate groups. Arrows indicate groups
with significant differences (Pb0.05). Note the ordinates do not start at zero.
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demands. As examples, Jagger et al. have shown that, in rats' caudal
vertebrae exposed tomechanical stimulus, the rate of bone apposition is
not affected by bisphosphonate (Jagger et al., 1995). Braith et al. have
shown that bone loss can be prevented by alendronate treatments and
that alendronate combined with physiological mechanical loading
induced a gain of bone mass (Braith et al., 2007). In the physiological
range of strains (corresponding to strains in ROI a, b and d in our study),
our data are consistent with Braith et al.'s results. At higher magnitudes
of loading (corresponding to ROIc in our experiments), the use of
bisphosphonate in combination with loading seems not as beneficial as
loading alone. From the results presented in this study based on a
limited number of rats, the use of bisphosphonate in situation of high
strain level may affect the structure of the bone, or at least as found in
previous studies using alendronate, may not protect the bone from
fatigue (Barrett et al., 2007).

While the combined effect of mechanical loading and zoledronate
has been suggested in a theoretical study (Pioletti and Rakotomanana,
2004), to our knowledge, no other data exist assessing the effect of
zoledronate in situation involving high strain level. With interpretation
valid only in rat so far, we could suggest that the possible limitation of
the bone response to high mechanical stimulations by zoledronate
would require a specific design of load-bearing implants, to prevent
drug accumulation in high-loading areas of the periprosthetic bone.
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